Difference between revisions of "Aufgaben:Exercise 2.12Z: Reed-Solomon Syndrome Calculation"

From LNTwww
 
(31 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Fehlerkorrektur nach Reed–Solomon–Codierung}}
+
{{quiz-Header|Buchseite=Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding}}
  
[[File:P_ID2559__KC_T_2_5_Darstellung.png|right|frame|$\rm GF(2^3)$–Umrechnungstabellen]]
+
[[File:EN_KC_Z_2_5_neu.png|right|frame|$\rm GF(2^3)$  representation as powers, polynomials, vectors]]
 +
As in the  [[Aufgaben:Exercise_2.12:_Decoding_at_RSC_(7,_4,_4)_to_Base_8|"Exercise 2. 12"]]  we consider the Reed–Solomon code  $(7, \, 4, \, 4)_8$  based on the Galois field  ${\rm GF}(q)$  with   $q = 8 = 2^3$.   The graph shows the corresponding conversion table.
  
 +
Given are the possible code symbols in
 +
# exponent representation  $($powers of  $\alpha)$ 
 +
# polynomialrepresentation,
 +
# coefficient vector representation.
  
  
===Fragebogen===
+
Given is the received word   $\underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$.
 +
 
 +
*Based on the syndrome   $\underline {s} = (s_0, s_1, s_2) = \underline {y}  \cdot { \boldsymbol{\rm H }}^{\rm T}$   it is to check whether individual symbols of the received vector  $\underline{y}$  were falsified during transmission.
 +
 
 +
*Given is the parity-check matrix  $\mathbf{H}$  of the considered code and its transpose:
 +
:$${ \boldsymbol{\rm H}} =
 +
\begin{pmatrix}
 +
1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\
 +
1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\
 +
1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4}
 +
\end{pmatrix} \hspace{0.05cm},\hspace{0.4cm}
 +
{ \boldsymbol{\rm H}}^{\rm T} =
 +
\begin{pmatrix}
 +
1 & 1 & 1 \\
 +
\alpha^1 & \alpha^2 & \alpha^3 \\
 +
\alpha^2 & \alpha^4 & \alpha^6 \\
 +
\alpha^3 & \alpha^6 & \alpha^2 \\
 +
\alpha^4 & \alpha^1 & \alpha^{5} \\
 +
\alpha^5 & \alpha^{3} & \alpha^{1} \\
 +
\alpha^6 & \alpha^{5} & \alpha^{4}
 +
\end{pmatrix} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
Hints:  This exercise refers to the section  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD| "Step (A): Evaluation of the syndrome in BDD"]]  of the chapter  "Error Correction according to Reed–Solomon Coding".
 +
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{It holds for the weceived word: &nbsp; $\underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$. Specify the first element of the syndrome&nbsp; $\underline{s} = (s_0, \, s_1, \, s_2)$.
|type="[]"}
+
|type="()"}
+ correct
+
+ $s_0 = \alpha^4$,
- false
+
- $s_0 = \alpha^5$,
 +
- $s_0 = \alpha^6$,
 +
- $s_0 = 0, \, 1, \, \alpha, \, \alpha^2$&nbsp; or&nbsp; $\alpha^3$.
 +
 
 +
{What is the second syndrome element for the same received word?
 +
|type="()"}
 +
- $s_1 = \alpha^4$,
 +
+ $s_1 = \alpha^5$,
 +
- $s_1 = \alpha^6$,
 +
- $s_1 = 0, \, 1, \, \alpha, \, \alpha^2$&nbsp; or&nbsp; $\alpha^3$.
 +
 
 +
{What is the third syndrome element for the same received word?
 +
|type="()"}
 +
- $s_2 = \alpha^4$,
 +
- $s_2 = \alpha^5$,
 +
+ $s_2 = \alpha^6$,
 +
- $s_2 = 0, \, 1, \, \alpha, \, \alpha^2$ oder $\alpha^3$.
  
{Input-Box Frage
+
{Known is that the received word &nbsp; $\underline{y}$ &nbsp; can be decoded correctly.&nbsp; How many symbol errors does the received word contain?
 
|type="{}"}
 
|type="{}"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
$r \ = \ ${ 1 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
[[File:EN_KC_Z_2_5_neu.png|right|frame|Conversion tables for the Galois field&nbsp; $\rm GF(2^3)$]]
'''(2)'''&nbsp;  
+
'''(1)'''&nbsp; The corresponding equation for syndrome calculation is:
'''(3)'''&nbsp;  
+
:$$\underline {s} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (s_0, s_1, s_2) =
'''(4)'''&nbsp;  
+
\begin{pmatrix}
'''(5)'''&nbsp;  
+
\alpha,0, \alpha^3,0, 1, \alpha,0
 +
\end{pmatrix}\cdot
 +
\begin{pmatrix}
 +
1 & 1 & 1 \\
 +
\alpha^1 & \alpha^2 & \alpha^3 \\
 +
\alpha^2 & \alpha^4 & \alpha^6 \\
 +
\alpha^3 & \alpha^6 & \alpha^2 \\
 +
\alpha^4 & \alpha^1 & \alpha^{5} \\
 +
\alpha^5 & \alpha^{3} & \alpha^{1} \\
 +
\alpha^6 & \alpha^{5} & \alpha^{4}
 +
\end{pmatrix} 
 +
\hspace{0.05cm}.$$
 +
 
 +
*The first element results in
 +
:$$s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha \cdot 1 + \alpha^3 \cdot \alpha^2 + 1 \cdot \alpha^4 + \alpha \cdot \alpha^5=
 +
\alpha  + \alpha^5 + \alpha^4+ \alpha^6$$
 +
:$$\Rightarrow\hspace{0.3cm} s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  (\alpha) + (\alpha^2 + \alpha+ 1)+ (\alpha^2 + \alpha) + + (\alpha^2 +  1) = \alpha^2 + \alpha = \alpha^4\hspace{0.05cm}.$$
 +
 
 +
*Correct is the&nbsp; <u>proposed solution 1</u>.
 +
 
 +
 
 +
'''(2)'''&nbsp; Correspondingly,&nbsp; for the second syndrome element,&nbsp; the&nbsp; <u>proposed solution 2</u>&nbsp; applies accordingly:
 +
:$$s_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha \cdot 1 + \alpha^3 \cdot \alpha^4 + 1 \cdot \alpha^1 + \alpha \cdot \alpha^3=
 +
\alpha  + \alpha^7 + \alpha+ \alpha^4= 1 + \alpha^4 = \alpha^2 + \alpha + 1 =  \alpha^5
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; To calculate $s_2$,&nbsp; the received word must be multiplied by the last matrix column:
 +
:$$s_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha \cdot 1 + \alpha^3 \cdot \alpha^6 + 1 \cdot \alpha^5 + \alpha \cdot \alpha^1=
 +
\alpha  + \alpha^2 + \alpha^5 + \alpha^2=\alpha^5 + \alpha = (\alpha^2 + \alpha + 1) + \alpha = \alpha^2  + 1 = \alpha^5
 +
\hspace{0.05cm}.$$
 +
 
 +
*Correct is the&nbsp; <u>proposed solution 3</u>.
 +
 
 +
 
 +
'''(4)'''&nbsp; Due to the calculated syndrome &nbsp; $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6) &ne; 0$,&nbsp; the received word contains at least one symbol error &nbsp; &#8658; &nbsp; $r > 0$.
 +
*The present Reed&ndash;Solomon&ndash;code&nbsp; $(7, \, 4, \, 4)_8 \ \Rightarrow \ d_{\rm min} = 4$&nbsp; cannot correct more than&nbsp; $t = &lfloor;d_{\rm min}/2&rfloor; = 1$&nbsp; errors.
 +
 
 +
* Since the received word can actually be decoded according to the specification &nbsp; &rArr; &nbsp; $\underline{r = 1}$.
 +
 
 +
*Without this specification&nbsp; "The received word can be decoded",&nbsp; this subtask would not be solvable.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^2.5 Fehlerkorrektur nach Reed–Solomon–Codierung^]]
+
[[Category:Channel Coding: Exercises|^2.5 Reed-Solomon Error Correction^]]

Latest revision as of 16:30, 23 January 2023

$\rm GF(2^3)$  representation as powers, polynomials, vectors

As in the  "Exercise 2. 12"  we consider the Reed–Solomon code  $(7, \, 4, \, 4)_8$  based on the Galois field  ${\rm GF}(q)$  with   $q = 8 = 2^3$.   The graph shows the corresponding conversion table.

Given are the possible code symbols in

  1. exponent representation  $($powers of  $\alpha)$ 
  2. polynomialrepresentation,
  3. coefficient vector representation.


Given is the received word   $\underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$.

  • Based on the syndrome   $\underline {s} = (s_0, s_1, s_2) = \underline {y} \cdot { \boldsymbol{\rm H }}^{\rm T}$   it is to check whether individual symbols of the received vector  $\underline{y}$  were falsified during transmission.
  • Given is the parity-check matrix  $\mathbf{H}$  of the considered code and its transpose:
$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm},\hspace{0.4cm} { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 & 1 & 1 \\ \alpha^1 & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha^4 & \alpha^6 \\ \alpha^3 & \alpha^6 & \alpha^2 \\ \alpha^4 & \alpha^1 & \alpha^{5} \\ \alpha^5 & \alpha^{3} & \alpha^{1} \\ \alpha^6 & \alpha^{5} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$


Hints:  This exercise refers to the section  "Step (A): Evaluation of the syndrome in BDD"  of the chapter  "Error Correction according to Reed–Solomon Coding".



Questions

1

It holds for the weceived word:   $\underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$. Specify the first element of the syndrome  $\underline{s} = (s_0, \, s_1, \, s_2)$.

$s_0 = \alpha^4$,
$s_0 = \alpha^5$,
$s_0 = \alpha^6$,
$s_0 = 0, \, 1, \, \alpha, \, \alpha^2$  or  $\alpha^3$.

2

What is the second syndrome element for the same received word?

$s_1 = \alpha^4$,
$s_1 = \alpha^5$,
$s_1 = \alpha^6$,
$s_1 = 0, \, 1, \, \alpha, \, \alpha^2$  or  $\alpha^3$.

3

What is the third syndrome element for the same received word?

$s_2 = \alpha^4$,
$s_2 = \alpha^5$,
$s_2 = \alpha^6$,
$s_2 = 0, \, 1, \, \alpha, \, \alpha^2$ oder $\alpha^3$.

4

Known is that the received word   $\underline{y}$   can be decoded correctly.  How many symbol errors does the received word contain?

$r \ = \ $


Solution

Conversion tables for the Galois field  $\rm GF(2^3)$

(1)  The corresponding equation for syndrome calculation is:

$$\underline {s} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (s_0, s_1, s_2) = \begin{pmatrix} \alpha,0, \alpha^3,0, 1, \alpha,0 \end{pmatrix}\cdot \begin{pmatrix} 1 & 1 & 1 \\ \alpha^1 & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha^4 & \alpha^6 \\ \alpha^3 & \alpha^6 & \alpha^2 \\ \alpha^4 & \alpha^1 & \alpha^{5} \\ \alpha^5 & \alpha^{3} & \alpha^{1} \\ \alpha^6 & \alpha^{5} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$
  • The first element results in
$$s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot 1 + \alpha^3 \cdot \alpha^2 + 1 \cdot \alpha^4 + \alpha \cdot \alpha^5= \alpha + \alpha^5 + \alpha^4+ \alpha^6$$
$$\Rightarrow\hspace{0.3cm} s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (\alpha) + (\alpha^2 + \alpha+ 1)+ (\alpha^2 + \alpha) + + (\alpha^2 + 1) = \alpha^2 + \alpha = \alpha^4\hspace{0.05cm}.$$
  • Correct is the  proposed solution 1.


(2)  Correspondingly,  for the second syndrome element,  the  proposed solution 2  applies accordingly:

$$s_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot 1 + \alpha^3 \cdot \alpha^4 + 1 \cdot \alpha^1 + \alpha \cdot \alpha^3= \alpha + \alpha^7 + \alpha+ \alpha^4= 1 + \alpha^4 = \alpha^2 + \alpha + 1 = \alpha^5 \hspace{0.05cm}.$$


(3)  To calculate $s_2$,  the received word must be multiplied by the last matrix column:

$$s_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot 1 + \alpha^3 \cdot \alpha^6 + 1 \cdot \alpha^5 + \alpha \cdot \alpha^1= \alpha + \alpha^2 + \alpha^5 + \alpha^2=\alpha^5 + \alpha = (\alpha^2 + \alpha + 1) + \alpha = \alpha^2 + 1 = \alpha^5 \hspace{0.05cm}.$$
  • Correct is the  proposed solution 3.


(4)  Due to the calculated syndrome   $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6) ≠ 0$,  the received word contains at least one symbol error   ⇒   $r > 0$.

  • The present Reed–Solomon–code  $(7, \, 4, \, 4)_8 \ \Rightarrow \ d_{\rm min} = 4$  cannot correct more than  $t = ⌊d_{\rm min}/2⌋ = 1$  errors.
  • Since the received word can actually be decoded according to the specification   ⇒   $\underline{r = 1}$.
  • Without this specification  "The received word can be decoded",  this subtask would not be solvable.