Difference between revisions of "Aufgaben:Exercise 2.16: Bounded Distance Decoding: Decision Regions"

From LNTwww
 
(30 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Fehlerwahrscheinlichkeit und Anwendungsgebiete}}
+
{{quiz-Header|Buchseite=Channel_Coding/Error_Probability_and_Areas_of_Application}}
 +
[[File:EN_KC_A_2_16.png|right|frame|Two coding space schemes]]
 +
We assume a block code of length  $n$  with symbols  $c_i ∈ {\rm GF}(2^m)$  that can correct up to  $t$  symbols. 
 +
*Each possible received word  $\underline{y}_i$  can then be viewed as a point in a high-dimensional space.
  
[[File: P_ID2583__KC_A_2_16neu.png|right|frame|Zwei unterschiedliche Codierraumschemata|]]
+
*Assuming the basis  ${\rm GF}(2) = \{0, \, 1\}$  the dimension is  $n \cdot m$.
Wir gehen von einem Blockcode der Länge $n$ mit Symbolen $c_i ∈ {\rm GF}(2^m)$ aus, der bis zu $t$ Symbole korrigieren kann. Jedes mögliche Empfangswort $\underline{y}_i$ kann dann als ein Punkt in einem hochdimensionalen Raum angesehen werden. Geht man von der Basis ${\rm GF}(2) = \{0, \, 1\}$ aus, so beträgt die Dimension $n \cdot m$.
 
  
Die Grafik zeigt einen solchen Raum in stark vereinfachender 2–Darstellung. Die Abbildung ist wie folgt zu interpretieren:
 
* Gesendet wurde der rote Punkt $\underline{c}_j$. Alle rot umrandeten Punkte $\underline{y}_i$ in einer Hyperkugel um diesen Punkt $\underline{c}_j$ mit dem Parameter $t$ als Radius können korrigiert werden. Mit der Nomenklatur gemäß der [[Grafik]] im Theorieteil gilt dann $\underline{z}_i = \underline{c}_j$  ͡  „Die Fehlerkorrektur ist erfolgreich&rdquo.
 
  
* Bei sehr vielen Symbolfehlern kann $\underline{c}_j$ in einen blauen (oder weißblauen) Punkt $\underline{y}_j$ verfälscht werden, der zur Hyperkugel eines anderen Codewortes $\underline{c}_{k ≠ j}$ gehört. In diesem Fall trifft der Decoder eine falsche Entscheidung  ⇒  „Das Empfangswort $\underline{y}_j$ wird falsch decodiert”.
+
The diagram shows such spaces in  schematic two-dimensional representation.  The illustration is to be interpreted as follows:
 +
# The red dot&nbsp; $\underline{c}_j$&nbsp; was sent.&nbsp; All red outlined points&nbsp; $\underline{y}_i$&nbsp; in a hypersphere around this point&nbsp; $\underline{c}_j$&nbsp; with the parameter&nbsp; $t$&nbsp; as radius can be corrected.&nbsp; Using the nomenclature according to the&nbsp; [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|$\rm graph$]]&nbsp; in the theory section,&nbsp; then&nbsp; $\underline{z}_i = \underline{c}_j$ &nbsp; <br>&#8658; &nbsp; "Error correction is successful".
 +
# For very many symbol errors,&nbsp; $\underline{c}_j$&nbsp; may be falsified into a blue&nbsp; $($or white-blue$)$&nbsp; dot&nbsp; $\underline{y}_j$&nbsp; belonging to the hypersphere of another code word&nbsp; $\underline{c}_{k &ne; j}$.&nbsp; In this case the decoder makes a wrong decision &nbsp; <br>&#8658; &nbsp; "The received word&nbsp; $\underline{y}_j$&nbsp; is decoded incorrectly".
 +
# Finally,&nbsp; as in the sketch below,&nbsp; there may be yellow dots that do not belong to any hypersphere &nbsp; <br>&#8658; &nbsp; "The received word&nbsp; $\underline{y}_j$&nbsp; is not decodable".
  
* Schließlich kann es wie in der unteren Skizze auch noch gelbe Punkte geben, die zu keiner Hyperkugel gehören &nbsp;&#8658;&nbsp; &bdquo;Das Empfangswort $\underline{y}_j$ ist nicht decodierbar&rdquo;.
 
  
 +
In this exercise you are to decide which of the two code space schemes is suitable for describing
 +
* [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes|"Bounded Distance Decoding  of Hamming codes"]],&nbsp; resp.
  
In dieser Aufgabe sollen Sie entscheiden, welches der beiden Coderaumschemata geeignet ist zur Beschreibung der
+
* [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|"Bounded Distance Decoding by Reed&ndash;Solomon codes"]].
* [[Kanalcodierung/Beispiele_bin%C3%A4rer_Blockcodes#Hamming.E2.80.93Codes|BDD&ndash;Decodierung von Hamming&ndash;Codes]] bzw.
 
* [[Kanalcodierung/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete#Blockfehlerwahrscheinlichkeit_f.C3.BCr_RSC_und_BDD|BDD&ndash;Decodierung von Reed&ndash;Solomon&ndash;Codes]].
 
  
  
''Hinweis:''
 
* Die Aufgabe ergänzt die Thematik des Kapitels [[Kanalcodierung/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete|Fehlerwahrscheinlichkeit und Anwendungsgebiete]] und soll signifikante Unterschiede bei der Decodierung von Reed&ndash;Solomon&ndash;Codes und Hamming&ndash;Codes verdeutlichen.
 
  
  
  
===Fragebogen===
+
<u>Hints:</u>
 +
* The exercise complements the topic of the chapter&nbsp; [[Channel_Coding/Error_Probability_and_Areas_of_Application|"Error Probability and Application Areas"]].
 +
 
 +
* It is intended to illustrate significant differences in decoding Reed&ndash;Solomon codes and Hamming codes.
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Which coding space scheme applies to the Hamming codes?
 +
|type="()"}
 +
+ Coding space scheme &nbsp;$\rm A$,
 +
- Coding space scheme &nbsp;$\rm B$.
 +
 
 +
{Which statement is true for the probability that a received word&nbsp; $\underline{y}$&nbsp; cannot be decoded with Hamming coding?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ The probability&nbsp; ${\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} not \hspace{0.15cm} decodable)$&nbsp; is exactly zero.
- false
+
- ${\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} not \hspace{0.15cm} decodable)$&nbsp; is nonzero,&nbsp; but negligible.
 +
- It holds &nbsp; ${\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} not \hspace{0.15cm} decodable) > {\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} incorrectly \hspace{0.15cm} decoded)$.
 +
 
 +
{Which coding space scheme applies to the Reed&ndash;Solomon codes?
 +
|type="()"}
 +
- Coding space scheme &nbsp;$\rm A$,
 +
+ Coding space scheme &nbsp;$\rm B$.
  
{Input-Box Frage
+
{Which statement applies to the probability that a received word&nbsp; $\underline{y}$&nbsp; cannot be decoded after Reed&ndash;Solomon coding?
|type="{}"}
+
|type="[]"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
- The probability &nbsp; ${\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} not \hspace{0.15cm} decodable)$ &nbsp; is exactly zero.
 +
- ${\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} not \hspace{0.15cm} decodable)$&nbsp; is nonzero,&nbsp; but negligible.
 +
+ It holds &nbsp; ${\rm Pr}(\underline{y} {\rm \ is \ not \ decodable}) > {\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} incorrectly \hspace{0.15cm} decoded)$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Correct is&nbsp; <u>solution 1</u>,&nbsp; since the coding space scheme &nbsp;$\rm A$&nbsp; describes a perfect code and each Hamming code&nbsp; $(n, \, k, \, 3)$&nbsp; is a perfect code:
'''(2)'''&nbsp;  
+
*For any Hamming code&nbsp; $(n, \, k, \, 3)$,&nbsp; there are a total of&nbsp; $2^n$&nbsp; possible received words&nbsp; $\underline{y}_i$,&nbsp; which are assigned to one of&nbsp; $2^k$&nbsp; possible code words&nbsp; $\underline{c}_j$&nbsp; during syndrome decoding.
'''(3)'''&nbsp;  
+
'''(4)'''&nbsp;  
+
*Because of the Hamming code property&nbsp; $d_{\rm min} = 3$,&nbsp; all spheres in the&nbsp; $n$&ndash;dimensional space have radius&nbsp; $t = 1$.&nbsp; Thus in all spheres there are&nbsp; $2^{n-k}$ points.
'''(5)'''&nbsp;  
+
 
 +
:* $\text{HC (7, 4, 3)}$: &nbsp; One point for error-free transmission and seven points for one bit error &nbsp; &#8658; &nbsp; $1 + 7 = 8 = 2^3 = 2^{7-4}$.
 +
:* $\text{HC (15, 11, 3)}$: &nbsp; One point for error-free transmission and now fifteen points for one bit error &nbsp; &#8658; &nbsp; $1 + 15 = 16 = 2^4 = 2^{15-11}$.
 +
 
 +
<u>Note:</u> &nbsp; Since the Hamming code is a binary code,&nbsp; here the code space has the dimension&nbsp; $n$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Correct is&nbsp; <u>answer 1</u>:
 +
*In the gray area outside&nbsp; "spheres"&nbsp; there is not a single point in a perfect code.
 +
 
 +
*This was also shown in the calculation for subtask&nbsp; '''(1)'''.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The Reed&ndash;Solomon codes are described by the coding space scheme &nbsp;$\rm B$&nbsp; &nbsp; &#8658; &nbsp; <u>Answer 2</u>.
 +
*Here there are numerous yellow points in the gray area,&nbsp; i.e. points that cannot be assigned to any sphere in&nbsp; "Bounded Distance Decoding".
 +
 
 +
*For example,&nbsp; if we consider the &nbsp; $\rm RSC \, (7, \, 3, \, 5)_8$ &nbsp; with code parameters&nbsp; $n = 7, \, k = 3$,&nbsp; and&nbsp; $t = 2$,&nbsp; there are a total of&nbsp; $8^7 = 2097152$&nbsp; points and&nbsp; $8^3 = 512$&nbsp; hyperspheres here.
 +
 
 +
*If this code were perfect,&nbsp; then there should be&nbsp; $8^4 = 4096$&nbsp; points within each sphere.&nbsp; However,&nbsp; it holds:
 +
:$${\rm Pr}(\underline{\it y}_{\it i} {\rm \hspace{0.1cm}lies\hspace{0.1cm} within\hspace{0.1cm} the\hspace{0.1cm} red\hspace{0.1cm} sphere)}
 +
= {\rm Pr}(f \le t) = {\rm Pr}(f = 0)+ {\rm Pr}(f = 1)+{\rm Pr}(f = 2) =1 + {7 \choose 1} \cdot 7 + {7 \choose 2} \cdot 7^2 = 1079
 +
\hspace{0.05cm}.$$
 +
 
 +
*For&nbsp; ${\rm Pr}(f = 1)$&nbsp; it is considered that there can be&nbsp; "$7 \rm \ over \ 1$" $= 7$&nbsp; error positions,&nbsp; and for each error position also seven different error values.&nbsp; The same is considered for&nbsp; ${\rm Pr}(f = 2)$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Correct is&nbsp; <u>answer 3</u>:
 +
*A point in gray no-man's land is reached with fewer symbol errors than a point in another hypersphere.
 +
 +
*For long codes,&nbsp; an upper bound on the error probability is given in the literature:
 +
 
 +
:$${\rm Pr}(\underline{y} {\rm \hspace{0.15cm} is \hspace{0.15cm} incorrectly \hspace{0.15cm} decoded})
 +
= {\rm Pr}(\underline{z} \ne \underline{c}) \le \frac{1}{t\hspace{0.05cm}!}
 +
\hspace{0.05cm}.$$
 +
*For the ${\rm RSC} \, (225, \, 223, \, 33)_{256} \ \Rightarrow \ t = 16$ &nbsp; &rArr; &nbsp; this upper bound yields the value&nbsp; $1/(16!) < 10^{-14}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^2.6 Fehlerwahrscheinlichkeit und Anwendungsgebiete^]]
+
[[Category:Channel Coding: Exercises|^2.6 Block Error Probability of RS Codes^]]

Latest revision as of 16:31, 23 January 2023

Two coding space schemes

We assume a block code of length  $n$  with symbols  $c_i ∈ {\rm GF}(2^m)$  that can correct up to  $t$  symbols. 

  • Each possible received word  $\underline{y}_i$  can then be viewed as a point in a high-dimensional space.
  • Assuming the basis  ${\rm GF}(2) = \{0, \, 1\}$  the dimension is  $n \cdot m$.


The diagram shows such spaces in schematic two-dimensional representation.  The illustration is to be interpreted as follows:

  1. The red dot  $\underline{c}_j$  was sent.  All red outlined points  $\underline{y}_i$  in a hypersphere around this point  $\underline{c}_j$  with the parameter  $t$  as radius can be corrected.  Using the nomenclature according to the  $\rm graph$  in the theory section,  then  $\underline{z}_i = \underline{c}_j$  
    ⇒   "Error correction is successful".
  2. For very many symbol errors,  $\underline{c}_j$  may be falsified into a blue  $($or white-blue$)$  dot  $\underline{y}_j$  belonging to the hypersphere of another code word  $\underline{c}_{k ≠ j}$.  In this case the decoder makes a wrong decision  
    ⇒   "The received word  $\underline{y}_j$  is decoded incorrectly".
  3. Finally,  as in the sketch below,  there may be yellow dots that do not belong to any hypersphere  
    ⇒   "The received word  $\underline{y}_j$  is not decodable".


In this exercise you are to decide which of the two code space schemes is suitable for describing



Hints:

  • It is intended to illustrate significant differences in decoding Reed–Solomon codes and Hamming codes.


Questions

1

Which coding space scheme applies to the Hamming codes?

Coding space scheme  $\rm A$,
Coding space scheme  $\rm B$.

2

Which statement is true for the probability that a received word  $\underline{y}$  cannot be decoded with Hamming coding?

The probability  ${\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} not \hspace{0.15cm} decodable)$  is exactly zero.
${\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} not \hspace{0.15cm} decodable)$  is nonzero,  but negligible.
It holds   ${\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} not \hspace{0.15cm} decodable) > {\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} incorrectly \hspace{0.15cm} decoded)$.

3

Which coding space scheme applies to the Reed–Solomon codes?

Coding space scheme  $\rm A$,
Coding space scheme  $\rm B$.

4

Which statement applies to the probability that a received word  $\underline{y}$  cannot be decoded after Reed–Solomon coding?

The probability   ${\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} not \hspace{0.15cm} decodable)$   is exactly zero.
${\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} not \hspace{0.15cm} decodable)$  is nonzero,  but negligible.
It holds   ${\rm Pr}(\underline{y} {\rm \ is \ not \ decodable}) > {\rm Pr}(\underline{y} \rm \hspace{0.15cm} is \hspace{0.15cm} incorrectly \hspace{0.15cm} decoded)$.


Solution

(1)  Correct is  solution 1,  since the coding space scheme  $\rm A$  describes a perfect code and each Hamming code  $(n, \, k, \, 3)$  is a perfect code:

  • For any Hamming code  $(n, \, k, \, 3)$,  there are a total of  $2^n$  possible received words  $\underline{y}_i$,  which are assigned to one of  $2^k$  possible code words  $\underline{c}_j$  during syndrome decoding.
  • Because of the Hamming code property  $d_{\rm min} = 3$,  all spheres in the  $n$–dimensional space have radius  $t = 1$.  Thus in all spheres there are  $2^{n-k}$ points.
  • $\text{HC (7, 4, 3)}$:   One point for error-free transmission and seven points for one bit error   ⇒   $1 + 7 = 8 = 2^3 = 2^{7-4}$.
  • $\text{HC (15, 11, 3)}$:   One point for error-free transmission and now fifteen points for one bit error   ⇒   $1 + 15 = 16 = 2^4 = 2^{15-11}$.

Note:   Since the Hamming code is a binary code,  here the code space has the dimension  $n$.


(2)  Correct is  answer 1:

  • In the gray area outside  "spheres"  there is not a single point in a perfect code.
  • This was also shown in the calculation for subtask  (1).


(3)  The Reed–Solomon codes are described by the coding space scheme  $\rm B$    ⇒   Answer 2.

  • Here there are numerous yellow points in the gray area,  i.e. points that cannot be assigned to any sphere in  "Bounded Distance Decoding".
  • For example,  if we consider the   $\rm RSC \, (7, \, 3, \, 5)_8$   with code parameters  $n = 7, \, k = 3$,  and  $t = 2$,  there are a total of  $8^7 = 2097152$  points and  $8^3 = 512$  hyperspheres here.
  • If this code were perfect,  then there should be  $8^4 = 4096$  points within each sphere.  However,  it holds:
$${\rm Pr}(\underline{\it y}_{\it i} {\rm \hspace{0.1cm}lies\hspace{0.1cm} within\hspace{0.1cm} the\hspace{0.1cm} red\hspace{0.1cm} sphere)} = {\rm Pr}(f \le t) = {\rm Pr}(f = 0)+ {\rm Pr}(f = 1)+{\rm Pr}(f = 2) =1 + {7 \choose 1} \cdot 7 + {7 \choose 2} \cdot 7^2 = 1079 \hspace{0.05cm}.$$
  • For  ${\rm Pr}(f = 1)$  it is considered that there can be  "$7 \rm \ over \ 1$" $= 7$  error positions,  and for each error position also seven different error values.  The same is considered for  ${\rm Pr}(f = 2)$.


(4)  Correct is  answer 3:

  • A point in gray no-man's land is reached with fewer symbol errors than a point in another hypersphere.
  • For long codes,  an upper bound on the error probability is given in the literature:
$${\rm Pr}(\underline{y} {\rm \hspace{0.15cm} is \hspace{0.15cm} incorrectly \hspace{0.15cm} decoded}) = {\rm Pr}(\underline{z} \ne \underline{c}) \le \frac{1}{t\hspace{0.05cm}!} \hspace{0.05cm}.$$
  • For the ${\rm RSC} \, (225, \, 223, \, 33)_{256} \ \Rightarrow \ t = 16$   ⇒   this upper bound yields the value  $1/(16!) < 10^{-14}$.