Difference between revisions of "Aufgaben:Exercise 1.16Z: Bounds for the Gaussian Error Function"

From LNTwww
 
(34 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Schranken für die Blockfehlerwahrscheinlichkeit
+
{{quiz-Header|Buchseite=Channel_Coding/Limits_for_Block_Error_Probability}}
  
 +
[[File:P_ID2415__KC_A_1_15.png|right|frame|Function&nbsp; ${\rm Q}(x)$&nbsp; and approximations;<br>it holds:&nbsp; ${\rm Q_u}(x)\le{\rm Q}(x)\le{\rm Q_o}(x)$]]
  
 +
The probability that a zero-mean Gaussian random variable&nbsp; $n$&nbsp; with standard deviation&nbsp; $\sigma$ &nbsp; &rArr; &nbsp; variance&nbsp; $\sigma^2$&nbsp; is greater in magnitude than a given value&nbsp; $A$&nbsp; is equal to
  
}}
+
:$${\rm Pr}(n > A) = {\rm Pr}(n < -A) ={\rm Q}(A/\sigma) \hspace{0.05cm}.$$
 +
 +
Here is used one of the most important functions for Communications Engineering&nbsp; (drawn in red in the diagram): &nbsp;<br>the&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error function"]]
  
[[File:P_ID2415__KC_A_1_15.png|right|farme|Q(<i>x</i>) und verwandte Funktionen]]
+
:$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$
 +
 +
${\rm Q}(x)$&nbsp; is a monotonically decreasing function with&nbsp; ${\rm Q}(0) = 0.5$.&nbsp; For very large values of&nbsp; $x$ &nbsp; &rArr; &nbsp;  ${\rm Q}(x)$ tends $\to 0$.
  
Die Wahrscheinlichkeit, dass eine Gaußsche Zufallsgröße ''n'' mit Streuung $\sigma$ → Varianz $\sigma^2$ betragsmäßig größer ist als ein Wert ''A'', ist gleich
 
  
:$${\rm Pr}(n > A) = {\rm Pr}(n < -A) ={\rm Q}(A/\sigma) \hspace{0.05cm}.$$
+
The integral of the ${\rm Q}$&ndash;function is not analytically solvable and is usually given in tabular form.&nbsp; From the literature,&nbsp; however,&nbsp; manageable approximations or bounds for positive&nbsp; $x$&nbsp; values are known:
 +
 
 +
*the&nbsp;  "upper bound" &nbsp; &rArr; &nbsp; upper &nbsp; $($German:&nbsp; "obere" &nbsp; &rArr; &nbsp; subscript: "o"$)$&nbsp; blue curve in adjacent graph,&nbsp; valid for&nbsp; $x > 0$:
 
   
 
   
Hierbei verwendet ist eine der wichtigsten Funktionen für die Nachrichtentechnik (in der Grafik rot eingezeichnet): [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen#.C3.9Cberschreitungswahrscheinlichkeit|die Komplementäre Gaußsche Fehlerfunktion]]
+
:$$ {\rm Q_o}(x)=\frac{\rm 1}{\sqrt{\rm 2\pi}\cdot x}\cdot {\rm e}^{-x^{\rm 2}/\rm 2}\hspace{0.15cm} \ge \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm},$$
  
:$$\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int\limits_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$
+
*the&nbsp;  "lower bound" &nbsp; &rArr; &nbsp; upper &nbsp; $($German:&nbsp; "untere" &nbsp; &rArr; &nbsp; subscript: "u"$)$&nbsp; blue curve in adjacent graph,&nbsp; valid for&nbsp; $x > 1$:
 +
:$$ {\rm Q_u}(x)=\frac{\rm 1-{\rm 1}/{\it x^{\rm 2}}}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-x^{\rm 2}/\rm 2} \hspace{0.15cm} \le \hspace{0.15cm}  {\rm Q} (x) \hspace{0.05cm},$$
 +
 
 +
*the&nbsp; "Chernoff-Rubin bound"&nbsp; $($green curve in the graph, drawn for&nbsp; $K = 1)$:
 
   
 
   
${\rm Q}(x)$ ist eine monoton fallende Funktion mit ${\rm Q}(0) = 0.5$. Für große Werte von ''x'' tendiert ${\rm Q}(x)$ gegen Null.
+
:$${\rm Q_{CR}}(x)=K \cdot {\rm e}^{-x^{\rm 2}/\rm 2} \hspace{0.15cm} \ge \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm}.$$
 +
 
 +
In the exercise it is to be investigated to what extent these bounds can be used as approximations for&nbsp; ${\rm Q}(x)$&nbsp; and what corruptions result.
 +
 
 +
 
 +
 
  
Das Integral der Q–Funktion ist analytisch nicht lösbar und wird meist in Tabellenform angegeben. Aus der Literatur bekannt sind aber handhabbare Näherungslösungen bzw. Schranken für positive ''x''–Werte:
+
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Bounds_for_Block_Error_Probability|"Bounds for block error probability"]].
  
*die obere Schranke (obere blaue Kurve in nebenstehender Grafik, nur gültig für $x > 0$):
+
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|"Gaussian distributed random variables"]]&nbsp; in the book&nbsp; "Stochastic Signal Theory".
 
   
 
   
:$$ \rm Q_o(\it x)=\frac{\rm 1}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-\it x^{\rm 2}/\rm 2}\hspace{0.15cm} \ge \hspace{0.15cm} \rm Q (\it x) \hspace{0.05cm},$$
+
*The exercise provides some important hints for solving&nbsp; [[Aufgaben:Exercise_1.16:_Block_Error_Probability_Bounds_for_AWGN|"Exercise 1.16"]],&nbsp; in which&nbsp; ${\rm Q}_{\rm CR}(x)$&nbsp; is used to derive the &nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#The_upper_bound_according_to_Bhattacharyya|"Bhattacharyya Bound"]]&nbsp; for the AWGN channel.
 
 
*die untere Schranke (untere blaue Kurve in der Grafik, nur gültig für $x > 1$):
 
 
   
 
   
:$$ \rm Q_u(\it x)=\frac{\rm 1-{\rm 1}/{\it x^{\rm 2}}}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-\it x^{\rm 2}/\rm 2} \hspace{0.15cm} \le \hspace{0.15cm} \rm Q (\it x) \hspace{0.05cm},$$
+
* Further we refer to the interactive HTML5/JavaScript applet&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen| "Complementary Gaussian error functions"]].
  
*die Chernoff–Rubin–Schranke (grüne Kurve in der Grafik, gezeichnet für $K = 1$):
 
 
   
 
   
:$$\rm Q_{CR}(\it x)=K \cdot \rm e^{-\it x^{\rm 2}/\rm 2} \hspace{0.15cm} \ge \hspace{0.15cm} \rm Q (\it x) \hspace{0.05cm}.$$
 
  
In der Aufgabe ist zu untersuchen, in wie weit diese Schranken als Näherungen für ${\rm Q}(x)$ herangezogen werden können und welche Verfälschungen sich dadurch ergeben.
 
  
''Hinweis:''
 
  
Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit|Schranken für die Blockfehlerwahrscheinlichkeit]] dieses Buches sowie auf das Kapitel [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken|Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken]] im Buch „Stochastische Signaltheorie”. Die Aufgabe bietet auch einige wichtige Hinweise zur Lösung der [[Aufgaben:1.16_Schranken_für_AWGN|Aufgabe 1.16]], in der die Funktion ${\rm Q}_{\rm CR}(x)$ zur Herleitung der [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Die_obere_Schranke_nach_Bhattacharyya|Bhattacharyya–Schranke]] für den AWGN–Kanal benötigt wird. Weiter verweisen wir auf das folgende Interaktionsmodul:
 
  
Komplementäre Gaußsche Fehlerfunktion
+
===Questions===
 
 
 
 
===Fragebogen===
 
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche Werte liefern die obere und die untere Schranke für $x = 4$?
+
{What values do the upper and lower bounds for&nbsp; $x = 4$&nbsp; provide?
 
|type="{}"}
 
|type="{}"}
${\rm Q}_{o}(x = 4)$ = { 3.346 3% }$\ \cdot 10^{-5} $
+
${\rm Q_{o}}(x = 4) \ = \ $ { 3.346 3% }$\ \cdot 10^{-5} $
${\rm Q}_{u}(x = 4)$ = { 3.137 3% }$\ \cdot 10^{-5} $
+
${\rm Q_{u}}(x = 4) \ = \ $ { 3.137 3% }$\ \cdot 10^{-5} $
  
 
+
{What statements hold for the functions&nbsp; ${\rm Q_{o}}(x)$&nbsp; and&nbsp; ${\rm Q_{u}}(x)$?
{Welche Aussagen gelten für die Funktionen ${\rm Q}_{o}(x = 4)$ und ${\rm Q}_{u}(x = 4)$?
 
 
|type="[]"}
 
|type="[]"}
+ Für $x ≥ 2$ sind die beiden Schranken brauchbar.
+
+ For&nbsp; $x ≥ 2$:&nbsp; Both bounds are usable.
+ Für $x < 1$ ist ${\rm Q}_{u}(x)$ unbrauchbar (wegen ${\rm Q}_{u}(x) < 0$).
+
+ For&nbsp; $x < 1$:&nbsp;  ${\rm Q_{u}}(x)$&nbsp; is unusable &nbsp; $($because&nbsp; ${\rm Q_{u}}(x)< 0)$.
- Für $x < 1$ ist ${\rm Q}_{o}(x)$ unbrauchbar (wegen ${\rm Q}_{o}(x) > 1$).
+
- For&nbsp; $x < 1$:&nbsp;  ${\rm Q_{o}}(x)$&nbsp; is unusable&nbsp; $($because&nbsp; ${\rm Q_{o}}(x)> 1)$.
  
  
{1
+
{By what factor is the Chernoff-Rubin Bound above&nbsp; ${\rm Q_{o}}(x)$?
Um welchen Faktor liegt die Chernoff–Rubin–Schranke oberhalb von ${\rm Q}_{o}(x)$?
 
 
|type="{}"}
 
|type="{}"}
$\ {\rm Q}_{\rm CR}(x)/{\rm Q}_{o}(x) \ : \ \ \ x =2$ = { 5 3% }
+
${\rm Q}_{\rm CR}(x = 2)/{\rm Q_{o}}(x = 2 ) \ = \ $ { 5 3% }
$\ x =4$ = { 10 3% }
+
${\rm Q}_{\rm CR}(x = 4)/{\rm Q_{o}}(x = 4 )  \ = \  $ { 10 3% }
$\ x =6$ = { 15 3% }
+
${\rm Q}_{\rm CR}(x = 6)/{\rm Q_{o}}(x = 6 )  \ = \  $ { 15 3% }
  
{Bestimmen Sie ''K'' derart, dass $K \ · \ {\rm Q}_{\rm CR}(x)$ möglichst nahe bei ${\rm Q}(x)$ liegt und gleichzeitig im gesamten Bereich ${\rm Q}(x) \ \ K · \ {\rm Q}_{\rm CR}(x)$ eingehalten wird.
+
{Determine&nbsp; $K$&nbsp; such that&nbsp; $K \cdot {\rm Q}_{\rm CR}(x)$&nbsp; is as close as possible to&nbsp; ${\rm Q}(x)$&nbsp; and at the same time&nbsp; ${\rm Q}(x) ≤ K · {\rm Q}_{\rm CR}(x)$&nbsp; is observed for all &nbsp;$x > 0$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$\ K$ = { 0.5 3% }
+
$K \ = \ $ { 0.5 3% }
 +
</quiz>
 +
 
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)'''&nbsp; The upper bound is:
 +
 
 +
:$${\rm Q_o}(x)=\frac{1}{\sqrt{\rm 2\pi}\cdot x}\cdot {\rm e}^{-x^{\rm 2}/\rm 2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q_o}(4 )=\frac{1}{\sqrt{\rm 2\pi}\cdot 4}\cdot {\rm e}^{-8 }\hspace{0.15cm}\underline{\approx 3.346 \cdot 10^{-5}}\hspace{0.05cm}.$$
 +
 +
*The lower bound can be converted as follows:
 +
 +
:$${\rm Q_u}( x)=(1-1/x^2) \cdot {\rm Q_o}(x) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q_u}(4 ) \hspace{0.15cm}\underline{\approx 3.137 \cdot 10^{-5}} \hspace{0.05cm}.$$
 +
 
 +
*The relative deviations from the&nbsp; actual&nbsp; value&nbsp; ${\rm Q}(4) = 3.167 · 10^{–5}$&nbsp; are&nbsp; $+5\%$&nbsp; resp.&nbsp; $–1\%$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Correct are the&nbsp; <u>solutions 1 and 2</u>:
 +
*For&nbsp; $x = 2$,&nbsp; the actual function value&nbsp; ${\rm Q}(x) = 2.275 \cdot 10^{-2}$&nbsp; is bounded by&nbsp; ${\rm Q_{o}}(x) = 2.7 \cdot 10^{-2}$&nbsp; and&nbsp; ${\rm Q_u}(x) = 2.025 \cdot 10^{-2}$, respectively.
 +
 +
*The relative deviations are therefore&nbsp; $18.7\%$&nbsp;resp.&nbsp; $-11\%,$.
 +
 
 +
*The last statement is wrong: &nbsp; Only for&nbsp; $x < 0.37$ &nbsp; &rArr; &nbsp;  ${\rm Q_o}(x) > 1$&nbsp; is valid.
 +
 
 +
 
  
  
 +
'''(3)'''&nbsp; For the quotient of&nbsp; ${\rm Q}_{\rm CR}(x)$&nbsp; and&nbsp; ${\rm Q_o}(x)$,&nbsp; according to the given equations:
 +
 +
:$$q(x) = \frac{{\rm Q_{CR}}(x)}{{\rm Q_{o}}(x)} = \frac{{\rm exp}(-x^2/2)}{{\rm exp}(-x^2/2)/({\sqrt{2\pi} \cdot x})} = {\sqrt{2\pi} \cdot x}$$
 +
 
 +
:$$\Rightarrow \hspace{0.3cm} q(x) \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} q(x =2) \hspace{0.15cm}\underline{=5}\hspace{0.05cm}, \hspace{0.2cm}q(x =4)\hspace{0.15cm}\underline{=10}\hspace{0.05cm}, \hspace{0.2cm}q(x =6) \hspace{0.15cm}\underline{=15}\hspace{0.05cm}.$$
 +
 +
*The larger the abscissa value&nbsp; $x$&nbsp; is,&nbsp; the more inaccurately&nbsp; ${\rm Q}(x)$&nbsp; is approximated by&nbsp; ${\rm Q}_{\rm CR}(x)$.
 +
 +
*When looking at the graph in the information section,&nbsp; I first had the impression that&nbsp; ${\rm Q}_{\rm CR}(x)$&nbsp; results from&nbsp; ${\rm Q}(x)$&nbsp; by shifting to the right or shifting up.&nbsp;
 +
 +
*But this is only an optical illusion and does not correspond to the facts.
  
</quiz>
 
  
===Musterlösung===
 
{{ML-Kopf}}
 
'''(1)'''&nbsp;
 
'''2.'''
 
'''3.'''
 
'''4.'''
 
'''5.'''
 
'''6.'''
 
'''7.'''
 
{{ML-Fuß}}
 
  
  
 +
'''(4)'''&nbsp; With&nbsp; $\underline{K = 0.5}$&nbsp; the new bound&nbsp; $0.5 \cdot {\rm Q}_{\rm CR}(x)$&nbsp; for&nbsp; $x = 0$&nbsp; agrees exactly with ${\rm Q}(x=0) = 0.500$.
 +
*For larger abscissa values,&nbsp; the falsification&nbsp; $q \approx 1.25 \cdot x$&nbsp; thus also becomes only half as large.
 +
{{ML-Fuß}}
  
[[Category:Aufgaben zu  Kanalcodierung|^1.6 Schranken für die Blockfehlerwahrscheinlichkeit
 
  
  
^]]
+
[[Category:Channel Coding: Exercises|^1.6 Error Probability Bounds^]]

Latest revision as of 17:03, 23 January 2023

Function  ${\rm Q}(x)$  and approximations;
it holds:  ${\rm Q_u}(x)\le{\rm Q}(x)\le{\rm Q_o}(x)$

The probability that a zero-mean Gaussian random variable  $n$  with standard deviation  $\sigma$   ⇒   variance  $\sigma^2$  is greater in magnitude than a given value  $A$  is equal to

$${\rm Pr}(n > A) = {\rm Pr}(n < -A) ={\rm Q}(A/\sigma) \hspace{0.05cm}.$$

Here is used one of the most important functions for Communications Engineering  (drawn in red in the diagram):  
the  "complementary Gaussian error function"

$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$

${\rm Q}(x)$  is a monotonically decreasing function with  ${\rm Q}(0) = 0.5$.  For very large values of  $x$   ⇒   ${\rm Q}(x)$ tends $\to 0$.


The integral of the ${\rm Q}$–function is not analytically solvable and is usually given in tabular form.  From the literature,  however,  manageable approximations or bounds for positive  $x$  values are known:

  • the  "upper bound"   ⇒   upper   $($German:  "obere"   ⇒   subscript: "o"$)$  blue curve in adjacent graph,  valid for  $x > 0$:
$$ {\rm Q_o}(x)=\frac{\rm 1}{\sqrt{\rm 2\pi}\cdot x}\cdot {\rm e}^{-x^{\rm 2}/\rm 2}\hspace{0.15cm} \ge \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm},$$
  • the  "lower bound"   ⇒   upper   $($German:  "untere"   ⇒   subscript: "u"$)$  blue curve in adjacent graph,  valid for  $x > 1$:
$$ {\rm Q_u}(x)=\frac{\rm 1-{\rm 1}/{\it x^{\rm 2}}}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-x^{\rm 2}/\rm 2} \hspace{0.15cm} \le \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm},$$
  • the  "Chernoff-Rubin bound"  $($green curve in the graph, drawn for  $K = 1)$:
$${\rm Q_{CR}}(x)=K \cdot {\rm e}^{-x^{\rm 2}/\rm 2} \hspace{0.15cm} \ge \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm}.$$

In the exercise it is to be investigated to what extent these bounds can be used as approximations for  ${\rm Q}(x)$  and what corruptions result.



Hints:

  • The exercise provides some important hints for solving  "Exercise 1.16",  in which  ${\rm Q}_{\rm CR}(x)$  is used to derive the   "Bhattacharyya Bound"  for the AWGN channel.




Questions

1

What values do the upper and lower bounds for  $x = 4$  provide?

${\rm Q_{o}}(x = 4) \ = \ $

$\ \cdot 10^{-5} $
${\rm Q_{u}}(x = 4) \ = \ $

$\ \cdot 10^{-5} $

2

What statements hold for the functions  ${\rm Q_{o}}(x)$  and  ${\rm Q_{u}}(x)$?

For  $x ≥ 2$:  Both bounds are usable.
For  $x < 1$:  ${\rm Q_{u}}(x)$  is unusable   $($because  ${\rm Q_{u}}(x)< 0)$.
For  $x < 1$:  ${\rm Q_{o}}(x)$  is unusable  $($because  ${\rm Q_{o}}(x)> 1)$.

3

By what factor is the Chernoff-Rubin Bound above  ${\rm Q_{o}}(x)$?

${\rm Q}_{\rm CR}(x = 2)/{\rm Q_{o}}(x = 2 ) \ = \ $

${\rm Q}_{\rm CR}(x = 4)/{\rm Q_{o}}(x = 4 ) \ = \ $

${\rm Q}_{\rm CR}(x = 6)/{\rm Q_{o}}(x = 6 ) \ = \ $

4

Determine  $K$  such that  $K \cdot {\rm Q}_{\rm CR}(x)$  is as close as possible to  ${\rm Q}(x)$  and at the same time  ${\rm Q}(x) ≤ K · {\rm Q}_{\rm CR}(x)$  is observed for all  $x > 0$ .

$K \ = \ $


Solution

(1)  The upper bound is:

$${\rm Q_o}(x)=\frac{1}{\sqrt{\rm 2\pi}\cdot x}\cdot {\rm e}^{-x^{\rm 2}/\rm 2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q_o}(4 )=\frac{1}{\sqrt{\rm 2\pi}\cdot 4}\cdot {\rm e}^{-8 }\hspace{0.15cm}\underline{\approx 3.346 \cdot 10^{-5}}\hspace{0.05cm}.$$
  • The lower bound can be converted as follows:
$${\rm Q_u}( x)=(1-1/x^2) \cdot {\rm Q_o}(x) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q_u}(4 ) \hspace{0.15cm}\underline{\approx 3.137 \cdot 10^{-5}} \hspace{0.05cm}.$$
  • The relative deviations from the  actual  value  ${\rm Q}(4) = 3.167 · 10^{–5}$  are  $+5\%$  resp.  $–1\%$.


(2)  Correct are the  solutions 1 and 2:

  • For  $x = 2$,  the actual function value  ${\rm Q}(x) = 2.275 \cdot 10^{-2}$  is bounded by  ${\rm Q_{o}}(x) = 2.7 \cdot 10^{-2}$  and  ${\rm Q_u}(x) = 2.025 \cdot 10^{-2}$, respectively.
  • The relative deviations are therefore  $18.7\%$ resp.  $-11\%,$.
  • The last statement is wrong:   Only for  $x < 0.37$   ⇒   ${\rm Q_o}(x) > 1$  is valid.



(3)  For the quotient of  ${\rm Q}_{\rm CR}(x)$  and  ${\rm Q_o}(x)$,  according to the given equations:

$$q(x) = \frac{{\rm Q_{CR}}(x)}{{\rm Q_{o}}(x)} = \frac{{\rm exp}(-x^2/2)}{{\rm exp}(-x^2/2)/({\sqrt{2\pi} \cdot x})} = {\sqrt{2\pi} \cdot x}$$
$$\Rightarrow \hspace{0.3cm} q(x) \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} q(x =2) \hspace{0.15cm}\underline{=5}\hspace{0.05cm}, \hspace{0.2cm}q(x =4)\hspace{0.15cm}\underline{=10}\hspace{0.05cm}, \hspace{0.2cm}q(x =6) \hspace{0.15cm}\underline{=15}\hspace{0.05cm}.$$
  • The larger the abscissa value  $x$  is,  the more inaccurately  ${\rm Q}(x)$  is approximated by  ${\rm Q}_{\rm CR}(x)$.
  • When looking at the graph in the information section,  I first had the impression that  ${\rm Q}_{\rm CR}(x)$  results from  ${\rm Q}(x)$  by shifting to the right or shifting up. 
  • But this is only an optical illusion and does not correspond to the facts.



(4)  With  $\underline{K = 0.5}$  the new bound  $0.5 \cdot {\rm Q}_{\rm CR}(x)$  for  $x = 0$  agrees exactly with ${\rm Q}(x=0) = 0.500$.

  • For larger abscissa values,  the falsification  $q \approx 1.25 \cdot x$  thus also becomes only half as large.