Difference between revisions of "Aufgaben:Exercise 1.16Z: Bounds for the Gaussian Error Function"

From LNTwww
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Limits_for_Block_Error_Probability}}
 
{{quiz-Header|Buchseite=Channel_Coding/Limits_for_Block_Error_Probability}}
  
[[File:P_ID2415__KC_A_1_15.png|right|frame|${\rm Q}(x)$  and related functions]]
+
[[File:P_ID2415__KC_A_1_15.png|right|frame|Function&nbsp; ${\rm Q}(x)$&nbsp; and approximations;<br>it holds:&nbsp; ${\rm Q_u}(x)\le{\rm Q}(x)\le{\rm Q_o}(x)$]]
  
The probability that a zero mean Gaussian random variable&nbsp; $n$&nbsp; with standard deviation&nbsp; $\sigma$ &nbsp; &rArr; &nbsp; variance&nbsp; $\sigma^2$&nbsp; is greater in amount than a given value&nbsp; $A$ is equal to
+
The probability that a zero-mean Gaussian random variable&nbsp; $n$&nbsp; with standard deviation&nbsp; $\sigma$ &nbsp; &rArr; &nbsp; variance&nbsp; $\sigma^2$&nbsp; is greater in magnitude than a given value&nbsp; $A$&nbsp; is equal to
  
 
:$${\rm Pr}(n > A) = {\rm Pr}(n < -A) ={\rm Q}(A/\sigma) \hspace{0.05cm}.$$
 
:$${\rm Pr}(n > A) = {\rm Pr}(n < -A) ={\rm Q}(A/\sigma) \hspace{0.05cm}.$$
 
   
 
   
Here is used one of the most important functions for communications engineering (drawn in red in the diagram): &nbsp;<br>the&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error function"]]
+
Here is used one of the most important functions for Communications Engineering&nbsp; (drawn in red in the diagram): &nbsp;<br>the&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error function"]]
  
 
:$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$
 
:$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$
 
   
 
   
${\rm Q}(x)$ is a monotonically decreasing function with ${\rm Q}(0) = 0.5$. For very large values of $x$, ${\rm Q}(x) tends \to 0$.
+
${\rm Q}(x)$&nbsp; is a monotonically decreasing function with&nbsp; ${\rm Q}(0) = 0.5$.&nbsp; For very large values of&nbsp; $x$ &nbsp; &rArr; &nbsp;  ${\rm Q}(x)$ tends $\to 0$.
  
  
The integral of the ${\rm Q}$ function is not analytically solvable and is usually given in tabular form. From the literature, however, manageable approximations or bounds for positive $x$ values are known:
+
The integral of the ${\rm Q}$&ndash;function is not analytically solvable and is usually given in tabular form.&nbsp; From the literature,&nbsp; however,&nbsp; manageable approximations or bounds for positive&nbsp; $x$&nbsp; values are known:
  
*the upper bound $($upper blue curve in adjacent graph, only valid for&nbsp; $x > 0)$:
+
*the&nbsp;  "upper bound" &nbsp; &rArr; &nbsp; upper &nbsp; $($German:&nbsp; "obere" &nbsp; &rArr; &nbsp; subscript: "o"$)$&nbsp; blue curve in adjacent graph,&nbsp; valid for&nbsp; $x > 0$:
 
   
 
   
 
:$$ {\rm Q_o}(x)=\frac{\rm 1}{\sqrt{\rm 2\pi}\cdot x}\cdot {\rm e}^{-x^{\rm 2}/\rm 2}\hspace{0.15cm} \ge \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm},$$
 
:$$ {\rm Q_o}(x)=\frac{\rm 1}{\sqrt{\rm 2\pi}\cdot x}\cdot {\rm e}^{-x^{\rm 2}/\rm 2}\hspace{0.15cm} \ge \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm},$$
  
*the lower bound $($lower blue curve in the graph, only valid for&nbsp; $x > 1)$:
+
*the&nbsp;  "lower bound" &nbsp; &rArr; &nbsp; upper &nbsp; $($German:&nbsp; "untere" &nbsp; &rArr; &nbsp; subscript: "u"$)$&nbsp; blue curve in adjacent graph,&nbsp; valid for&nbsp; $x > 1$:  
 
 
:$$ {\rm Q_u}(x)=\frac{\rm 1-{\rm 1}/{\it x^{\rm 2}}}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-x^{\rm 2}/\rm 2} \hspace{0.15cm} \le \hspace{0.15cm}  {\rm Q} (x) \hspace{0.05cm},$$
 
:$$ {\rm Q_u}(x)=\frac{\rm 1-{\rm 1}/{\it x^{\rm 2}}}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-x^{\rm 2}/\rm 2} \hspace{0.15cm} \le \hspace{0.15cm}  {\rm Q} (x) \hspace{0.05cm},$$
  
*the Chernoff-Rubin bound $($green curve in the graph, drawn for&nbsp; $K = 1)$:
+
*the&nbsp; "Chernoff-Rubin bound"&nbsp; $($green curve in the graph, drawn for&nbsp; $K = 1)$:
 
   
 
   
 
:$${\rm Q_{CR}}(x)=K \cdot {\rm e}^{-x^{\rm 2}/\rm 2} \hspace{0.15cm} \ge \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm}.$$
 
:$${\rm Q_{CR}}(x)=K \cdot {\rm e}^{-x^{\rm 2}/\rm 2} \hspace{0.15cm} \ge \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm}.$$
Line 33: Line 32:
  
  
 +
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Bounds_for_Block_Error_Probability|"Bounds for block error probability"]].
  
 +
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|"Gaussian distributed random variables"]]&nbsp; in the book&nbsp; "Stochastic Signal Theory".
 +
 +
*The exercise provides some important hints for solving&nbsp; [[Aufgaben:Exercise_1.16:_Block_Error_Probability_Bounds_for_AWGN|"Exercise 1.16"]],&nbsp; in which&nbsp; ${\rm Q}_{\rm CR}(x)$&nbsp; is used to derive the &nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#The_upper_bound_according_to_Bhattacharyya|"Bhattacharyya Bound"]]&nbsp; for the AWGN channel.
 +
 +
* Further we refer to the interactive HTML5/JavaScript applet&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen| "Complementary Gaussian error functions"]].
  
 
Hints:
 
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability|block error probability bounds]].
 
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|Gaussian distributed random variables]]&nbsp; in the book "Stochastic Signal Theory".
 
*The exercise also provides some important hints for solving&nbsp; [[Aufgaben:Exercise_1.16:_Block_Error_Probability_Bounds_for_AWGN|Exercise 1.16]], in which the function&nbsp; ${\rm Q}_{\rm CR}(x)$&nbsp; is used to derive&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#The_upper_bound_according_to_Bhattacharyya|Bhattacharyya barrier]]&nbsp; is required for the AWGN channel.
 
*Further we refer to the interactive applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|Complementary Gaussian Error Functions]].
 
 
   
 
   
  
Line 50: Line 50:
 
<quiz display=simple>
 
<quiz display=simple>
  
{What values do the upper and lower bounds for&nbsp; $x = 4$ provide?
+
{What values do the upper and lower bounds for&nbsp; $x = 4$&nbsp; provide?
 
|type="{}"}
 
|type="{}"}
 
${\rm Q_{o}}(x = 4) \ = \ $ { 3.346 3% }$\ \cdot 10^{-5} $
 
${\rm Q_{o}}(x = 4) \ = \ $ { 3.346 3% }$\ \cdot 10^{-5} $
Line 57: Line 57:
 
{What statements hold for the functions&nbsp; ${\rm Q_{o}}(x)$&nbsp; and&nbsp; ${\rm Q_{u}}(x)$?
 
{What statements hold for the functions&nbsp; ${\rm Q_{o}}(x)$&nbsp; and&nbsp; ${\rm Q_{u}}(x)$?
 
|type="[]"}
 
|type="[]"}
+ For&nbsp; $x ≥ 2$&nbsp; the two bounds are usable.
+
+ For&nbsp; $x ≥ 2$:&nbsp; Both bounds are usable.
+ For&nbsp; $x < 1$&nbsp; is&nbsp; ${\rm Q_{u}}(x)$&nbsp; unusable&nbsp; $($because&nbsp; ${\rm Q_{u}}(x)< 0)$.
+
+ For&nbsp; $x < 1$:&nbsp; ${\rm Q_{u}}(x)$&nbsp; is unusable &nbsp; $($because&nbsp; ${\rm Q_{u}}(x)< 0)$.
- For&nbsp; $x < 1$&nbsp; is&nbsp; ${\rm Q_{o}}(x)$&nbsp; unusable&nbsp; $($because&nbsp; ${\rm Q_{o}}(x)> 1)$.
+
- For&nbsp; $x < 1$:&nbsp; ${\rm Q_{o}}(x)$&nbsp; is unusable&nbsp; $($because&nbsp; ${\rm Q_{o}}(x)> 1)$.
  
  
{By what factor is the Chernoff-Rubin bound above&nbsp; ${\rm Q_{o}}(x)$?
+
{By what factor is the Chernoff-Rubin Bound above&nbsp; ${\rm Q_{o}}(x)$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Q}_{\rm CR}(x = 2)/{\rm Q_{o}}(x = 2 )  \ = \ $ { 5 3% }
 
${\rm Q}_{\rm CR}(x = 2)/{\rm Q_{o}}(x = 2 )  \ = \ $ { 5 3% }
Line 68: Line 68:
 
${\rm Q}_{\rm CR}(x = 6)/{\rm Q_{o}}(x = 6 )  \ = \  $ { 15 3% }
 
${\rm Q}_{\rm CR}(x = 6)/{\rm Q_{o}}(x = 6 )  \ = \  $ { 15 3% }
  
{Determine&nbsp; $K$&nbsp; such that&nbsp; $K \cdot {\rm Q}_{\rm CR}(x)$&nbsp; as close as possible to&nbsp; ${\rm Q}(x)$&nbsp; and at the same time&nbsp; ${\rm Q}(x) ≤ K · {\rm Q}_{\rm CR}(x)$&nbsp; is observed for all &nbsp;$x > 0$&nbsp;.
+
{Determine&nbsp; $K$&nbsp; such that&nbsp; $K \cdot {\rm Q}_{\rm CR}(x)$&nbsp; is as close as possible to&nbsp; ${\rm Q}(x)$&nbsp; and at the same time&nbsp; ${\rm Q}(x) ≤ K · {\rm Q}_{\rm CR}(x)$&nbsp; is observed for all &nbsp;$x > 0$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $ { 0.5 3% }
 
$K \ = \ $ { 0.5 3% }
Line 79: Line 79:
 
:$${\rm Q_o}(x)=\frac{1}{\sqrt{\rm 2\pi}\cdot x}\cdot {\rm e}^{-x^{\rm 2}/\rm 2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q_o}(4 )=\frac{1}{\sqrt{\rm 2\pi}\cdot 4}\cdot {\rm e}^{-8 }\hspace{0.15cm}\underline{\approx 3.346 \cdot 10^{-5}}\hspace{0.05cm}.$$
 
:$${\rm Q_o}(x)=\frac{1}{\sqrt{\rm 2\pi}\cdot x}\cdot {\rm e}^{-x^{\rm 2}/\rm 2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q_o}(4 )=\frac{1}{\sqrt{\rm 2\pi}\cdot 4}\cdot {\rm e}^{-8 }\hspace{0.15cm}\underline{\approx 3.346 \cdot 10^{-5}}\hspace{0.05cm}.$$
 
   
 
   
The lower bound can be converted as follows:
+
*The lower bound can be converted as follows:
 
   
 
   
 
:$${\rm Q_u}( x)=(1-1/x^2) \cdot {\rm Q_o}(x) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q_u}(4 ) \hspace{0.15cm}\underline{\approx 3.137 \cdot 10^{-5}} \hspace{0.05cm}.$$
 
:$${\rm Q_u}( x)=(1-1/x^2) \cdot {\rm Q_o}(x) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q_u}(4 ) \hspace{0.15cm}\underline{\approx 3.137 \cdot 10^{-5}} \hspace{0.05cm}.$$
  
*The relative deviations from the "real" value ${\rm Q}(4) = 3.167 · 10^{–5}$ sind $+5\%$ bzw. $–1\%$.
+
*The relative deviations from the&nbsp; actual&nbsp; value&nbsp; ${\rm Q}(4) = 3.167 · 10^{–5}$&nbsp; are&nbsp; $+5\%$&nbsp; resp.&nbsp; $–1\%$.
  
  
  
'''(2)'''&nbsp; Correct are the <u>solutions 1 and 2</u>:  
+
'''(2)'''&nbsp; Correct are the&nbsp; <u>solutions 1 and 2</u>:  
*For $x = 2$, the actual function value ${\rm Q}(x) = 2.275 - 10^{-2}$ is bounded by ${\rm Q_{o}}(x) = 2.7 - 10^{-2}$ and ${\rm Q_u}(x) = 2.025 - 10^{-2}$, respectively.  
+
*For&nbsp; $x = 2$,&nbsp; the actual function value&nbsp; ${\rm Q}(x) = 2.275 \cdot 10^{-2}$&nbsp; is bounded by&nbsp; ${\rm Q_{o}}(x) = 2.7 \cdot 10^{-2}$&nbsp; and&nbsp; ${\rm Q_u}(x) = 2.025 \cdot 10^{-2}$, respectively.
*The relative deviations are therefore $18.7\%$ and $-11\%,$ respectively.
+
*The last statement is wrong: &nbsp; Only for $x < 0.37$ ${\rm Q_o}(x) > 1$ is valid.
+
*The relative deviations are therefore&nbsp; $18.7\%$&nbsp;resp.&nbsp; $-11\%,$.
  
 +
*The last statement is wrong: &nbsp; Only for&nbsp; $x < 0.37$ &nbsp; &rArr; &nbsp;  ${\rm Q_o}(x) > 1$&nbsp; is valid.
  
  
  
'''(3)'''&nbsp; For the quotient of ${\rm Q}_{\rm CR}(x)$ and ${\rm Q_o}(x)$, according to the given equations:
+
 
 +
'''(3)'''&nbsp; For the quotient of&nbsp; ${\rm Q}_{\rm CR}(x)$&nbsp; and&nbsp; ${\rm Q_o}(x)$,&nbsp; according to the given equations:
  
 
:$$q(x) = \frac{{\rm Q_{CR}}(x)}{{\rm Q_{o}}(x)} = \frac{{\rm exp}(-x^2/2)}{{\rm exp}(-x^2/2)/({\sqrt{2\pi} \cdot x})} = {\sqrt{2\pi} \cdot x}$$
 
:$$q(x) = \frac{{\rm Q_{CR}}(x)}{{\rm Q_{o}}(x)} = \frac{{\rm exp}(-x^2/2)}{{\rm exp}(-x^2/2)/({\sqrt{2\pi} \cdot x})} = {\sqrt{2\pi} \cdot x}$$
Line 101: Line 103:
 
:$$\Rightarrow \hspace{0.3cm} q(x) \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} q(x =2) \hspace{0.15cm}\underline{=5}\hspace{0.05cm}, \hspace{0.2cm}q(x =4)\hspace{0.15cm}\underline{=10}\hspace{0.05cm}, \hspace{0.2cm}q(x =6) \hspace{0.15cm}\underline{=15}\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} q(x) \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} q(x =2) \hspace{0.15cm}\underline{=5}\hspace{0.05cm}, \hspace{0.2cm}q(x =4)\hspace{0.15cm}\underline{=10}\hspace{0.05cm}, \hspace{0.2cm}q(x =6) \hspace{0.15cm}\underline{=15}\hspace{0.05cm}.$$
  
*The larger the abscissa value $x$ is, the more inaccurately ${\rm Q}(x)$ is approximated by ${\rm Q}_{\rm CR}(x)$.  
+
*The larger the abscissa value&nbsp; $x$&nbsp; is,&nbsp; the more inaccurately&nbsp; ${\rm Q}(x)$&nbsp; is approximated by&nbsp; ${\rm Q}_{\rm CR}(x)$.
*When looking at the graph on the information page, one has (I had) the impression that ${\rm Q}_{\rm CR}(x)$ results from ${\rm Q}(x)$ by shifting down or shifting up. But this is only an optical illusion and does not correspond to the facts.
+
 +
*When looking at the graph in the information section,&nbsp; I first had the impression that&nbsp; ${\rm Q}_{\rm CR}(x)$&nbsp; results from&nbsp; ${\rm Q}(x)$&nbsp; by shifting to the right or shifting up.&nbsp;
 +
 
 +
*But this is only an optical illusion and does not correspond to the facts.
  
  
  
  
'''(4)'''&nbsp; With $\underline{K = 0.5}$ the new bound $0.5 - {\rm Q}_{\rm CR}(x)$ for $x = 0$ agrees exactly with ${\rm Q}(x=0) = 0.500$.  
+
'''(4)'''&nbsp; With&nbsp; $\underline{K = 0.5}$&nbsp; the new bound&nbsp; $0.5 \cdot {\rm Q}_{\rm CR}(x)$&nbsp; for&nbsp; $x = 0$&nbsp; agrees exactly with ${\rm Q}(x=0) = 0.500$.  
*For larger abscissa values, the corruption $q \approx 1.25 - x$ thus also becomes only half as large.
+
*For larger abscissa values,&nbsp; the falsification&nbsp; $q \approx 1.25 \cdot x$&nbsp; thus also becomes only half as large.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 17:03, 23 January 2023

Function  ${\rm Q}(x)$  and approximations;
it holds:  ${\rm Q_u}(x)\le{\rm Q}(x)\le{\rm Q_o}(x)$

The probability that a zero-mean Gaussian random variable  $n$  with standard deviation  $\sigma$   ⇒   variance  $\sigma^2$  is greater in magnitude than a given value  $A$  is equal to

$${\rm Pr}(n > A) = {\rm Pr}(n < -A) ={\rm Q}(A/\sigma) \hspace{0.05cm}.$$

Here is used one of the most important functions for Communications Engineering  (drawn in red in the diagram):  
the  "complementary Gaussian error function"

$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$

${\rm Q}(x)$  is a monotonically decreasing function with  ${\rm Q}(0) = 0.5$.  For very large values of  $x$   ⇒   ${\rm Q}(x)$ tends $\to 0$.


The integral of the ${\rm Q}$–function is not analytically solvable and is usually given in tabular form.  From the literature,  however,  manageable approximations or bounds for positive  $x$  values are known:

  • the  "upper bound"   ⇒   upper   $($German:  "obere"   ⇒   subscript: "o"$)$  blue curve in adjacent graph,  valid for  $x > 0$:
$$ {\rm Q_o}(x)=\frac{\rm 1}{\sqrt{\rm 2\pi}\cdot x}\cdot {\rm e}^{-x^{\rm 2}/\rm 2}\hspace{0.15cm} \ge \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm},$$
  • the  "lower bound"   ⇒   upper   $($German:  "untere"   ⇒   subscript: "u"$)$  blue curve in adjacent graph,  valid for  $x > 1$:
$$ {\rm Q_u}(x)=\frac{\rm 1-{\rm 1}/{\it x^{\rm 2}}}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-x^{\rm 2}/\rm 2} \hspace{0.15cm} \le \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm},$$
  • the  "Chernoff-Rubin bound"  $($green curve in the graph, drawn for  $K = 1)$:
$${\rm Q_{CR}}(x)=K \cdot {\rm e}^{-x^{\rm 2}/\rm 2} \hspace{0.15cm} \ge \hspace{0.15cm} {\rm Q} (x) \hspace{0.05cm}.$$

In the exercise it is to be investigated to what extent these bounds can be used as approximations for  ${\rm Q}(x)$  and what corruptions result.



Hints:

  • The exercise provides some important hints for solving  "Exercise 1.16",  in which  ${\rm Q}_{\rm CR}(x)$  is used to derive the   "Bhattacharyya Bound"  for the AWGN channel.




Questions

1

What values do the upper and lower bounds for  $x = 4$  provide?

${\rm Q_{o}}(x = 4) \ = \ $

$\ \cdot 10^{-5} $
${\rm Q_{u}}(x = 4) \ = \ $

$\ \cdot 10^{-5} $

2

What statements hold for the functions  ${\rm Q_{o}}(x)$  and  ${\rm Q_{u}}(x)$?

For  $x ≥ 2$:  Both bounds are usable.
For  $x < 1$:  ${\rm Q_{u}}(x)$  is unusable   $($because  ${\rm Q_{u}}(x)< 0)$.
For  $x < 1$:  ${\rm Q_{o}}(x)$  is unusable  $($because  ${\rm Q_{o}}(x)> 1)$.

3

By what factor is the Chernoff-Rubin Bound above  ${\rm Q_{o}}(x)$?

${\rm Q}_{\rm CR}(x = 2)/{\rm Q_{o}}(x = 2 ) \ = \ $

${\rm Q}_{\rm CR}(x = 4)/{\rm Q_{o}}(x = 4 ) \ = \ $

${\rm Q}_{\rm CR}(x = 6)/{\rm Q_{o}}(x = 6 ) \ = \ $

4

Determine  $K$  such that  $K \cdot {\rm Q}_{\rm CR}(x)$  is as close as possible to  ${\rm Q}(x)$  and at the same time  ${\rm Q}(x) ≤ K · {\rm Q}_{\rm CR}(x)$  is observed for all  $x > 0$ .

$K \ = \ $


Solution

(1)  The upper bound is:

$${\rm Q_o}(x)=\frac{1}{\sqrt{\rm 2\pi}\cdot x}\cdot {\rm e}^{-x^{\rm 2}/\rm 2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q_o}(4 )=\frac{1}{\sqrt{\rm 2\pi}\cdot 4}\cdot {\rm e}^{-8 }\hspace{0.15cm}\underline{\approx 3.346 \cdot 10^{-5}}\hspace{0.05cm}.$$
  • The lower bound can be converted as follows:
$${\rm Q_u}( x)=(1-1/x^2) \cdot {\rm Q_o}(x) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q_u}(4 ) \hspace{0.15cm}\underline{\approx 3.137 \cdot 10^{-5}} \hspace{0.05cm}.$$
  • The relative deviations from the  actual  value  ${\rm Q}(4) = 3.167 · 10^{–5}$  are  $+5\%$  resp.  $–1\%$.


(2)  Correct are the  solutions 1 and 2:

  • For  $x = 2$,  the actual function value  ${\rm Q}(x) = 2.275 \cdot 10^{-2}$  is bounded by  ${\rm Q_{o}}(x) = 2.7 \cdot 10^{-2}$  and  ${\rm Q_u}(x) = 2.025 \cdot 10^{-2}$, respectively.
  • The relative deviations are therefore  $18.7\%$ resp.  $-11\%,$.
  • The last statement is wrong:   Only for  $x < 0.37$   ⇒   ${\rm Q_o}(x) > 1$  is valid.



(3)  For the quotient of  ${\rm Q}_{\rm CR}(x)$  and  ${\rm Q_o}(x)$,  according to the given equations:

$$q(x) = \frac{{\rm Q_{CR}}(x)}{{\rm Q_{o}}(x)} = \frac{{\rm exp}(-x^2/2)}{{\rm exp}(-x^2/2)/({\sqrt{2\pi} \cdot x})} = {\sqrt{2\pi} \cdot x}$$
$$\Rightarrow \hspace{0.3cm} q(x) \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} q(x =2) \hspace{0.15cm}\underline{=5}\hspace{0.05cm}, \hspace{0.2cm}q(x =4)\hspace{0.15cm}\underline{=10}\hspace{0.05cm}, \hspace{0.2cm}q(x =6) \hspace{0.15cm}\underline{=15}\hspace{0.05cm}.$$
  • The larger the abscissa value  $x$  is,  the more inaccurately  ${\rm Q}(x)$  is approximated by  ${\rm Q}_{\rm CR}(x)$.
  • When looking at the graph in the information section,  I first had the impression that  ${\rm Q}_{\rm CR}(x)$  results from  ${\rm Q}(x)$  by shifting to the right or shifting up. 
  • But this is only an optical illusion and does not correspond to the facts.



(4)  With  $\underline{K = 0.5}$  the new bound  $0.5 \cdot {\rm Q}_{\rm CR}(x)$  for  $x = 0$  agrees exactly with ${\rm Q}(x=0) = 0.500$.

  • For larger abscissa values,  the falsification  $q \approx 1.25 \cdot x$  thus also becomes only half as large.