Difference between revisions of "Aufgaben:Exercise 1.17Z: BPSK Channel Capacity"

From LNTwww
 
(16 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Informationstheoretische Grenzen der Kanalcodierung}}
+
{{quiz-Header|Buchseite=Channel_Coding/Information_Theoretical_Limits_of_Channel_Coding}}
  
[[File:P_ID2413__KC_Z_1_16.png|right|frame|Zur Verdeutlichung der BPSK–Kanalkapazität]]
+
[[File:EN_KC_Z_1_17.png|right|frame|For clarification of the BPSK channel capacity]]
  
Gemäß dem [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung#Kanalcodierungstheorem_und_Kanalkapazit.C3.A4t|Kanalcodierungstheorem]] lassen sich Binärsignale über den [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang|AWGN–Kanal]] dann und nur dann fehlerfrei übertragen, wenn
+
Binary signals can be transmitted error-free over the  [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_Binary_Input|"AWGN channel"]]  according to the  [[Channel_Coding/Information_Theoretical_Limits_of_Channel_Coding#Channel_coding_theorem_and_channel_capacity|"channel coding theorem"]]   if and only if
  
*man einen Kanalcode der Rate $R = k/n$ verwendet,
+
*one uses a channel code of rate  $R = k/n$,
*die Blocklänge $n$ dieses Codes sehr groß gewählt wird  $⇒  n → ∞,$
 
*die Rate $R$ kleiner ist als die für binären Eingang gültige Kanalkapazität $C_{2}$,
 
*wobei die BPSK–Kanalkapazität $C_{2}$ vom AWGN–Quotienten $E_{\rm B}/N_{0}$ abhängt.
 
  
 +
*the block length  $n$  of this code is chosen very large   ⇒   $n → ∞$,
  
Der zulässige Bereich für die Coderate $R$ ist in der Grafik grün hinterlegt. Die Grenzkurve $C_{2}$, gültig für binäre Eingangssignale (daher der Index 2) und manchmal auch als BPSK–Kanalkapazität bezeichnet (steht für ''Binary Phase Shift Keying), ist allerdings nicht in mathematisch–geschlossener Form angebbar, sondern das Ergebnis eines Integrals, das nur numerisch ausgewertet werden kann.
+
*the rate  $R$  is smaller than the channel capacity valid for binary input  $C_{2}$,
  
Als blaue Kurve ist die Kanalkapazität $C$ eingetragen, wenn man beliebige reelle Eingangssignale zulässt. Bei mehrstufigen Signalen kann die Rate durchaus auch Werte $R > 1$ annehmen. Für eine Gaußverteilung ergibt sich für eine gegebene Rate $R$ das kleinstmögliche $(E_{\rm B}/N_{0})_{\rm min}$ gemäß der Gleichung
+
*where the BPSK channel capacity  $C_{2}$  depends on the AWGN quotient  $E_{\rm B}/N_{0}$ .
 +
 
 +
 
 +
<u>Note:</u>
 +
#The permissible range for the code rate&nbsp; $R$&nbsp; is highlighted in green in the graph.&nbsp; 
 +
#The limit curve&nbsp; $C_{2}$,&nbsp; valid for binary input signals&nbsp; $($therefore the index &nbsp;$2)$&nbsp; and sometimes also referred to as BPSK channel capacity&nbsp; (stands for&nbsp; "Binary Phase Shift Keying").&nbsp;
 +
#However,&nbsp; this curve cannot be specified in mathematically closed form,&nbsp; but is the result of an integral that can only be evaluated numerically.
 +
#As blue curve the channel capacity&nbsp; $C$&nbsp; is entered,&nbsp; if arbitrary real input signals are allowed.  
 +
#For multilevel signals the rate may well assume values&nbsp; $R > 1$.  
 +
#For a Gaussian distribution the rate&nbsp; $R$&nbsp; is the smallest possible&nbsp; $(E_{\rm B}/N_{0})_{\rm min}$&nbsp; according to the equation
 
   
 
   
:$$\left (E_{\rm B}/N_0 \right)_{\rm min} = \frac{2^{2R}-1}{2R}\hspace{0.05cm}.$$
+
::$$\left (E_{\rm B}/N_0 \right)_{\rm min} = \frac{2^{2R}-1}{2R}\hspace{0.05cm}.$$
  
Im Umkehrschluss ist die Rate $R$ für den gegebenen AWGN–Quotienten $E_{\rm B}/N_{0}$ nach oben begrenzt:  
+
Conversely,&nbsp; the rate&nbsp; $R$&nbsp; for the given AWGN quotient&nbsp; $E_{\rm B}/N_{0}$&nbsp; is upper bounded:  
*Die gerade noch zulässige Coderate $R_{\rm max}$ bei gegebenem Kanal $(E_{\rm B}/N_{0} = \rm const.)$ bezeichnen wir als die Kanalkapazität $C$.  
+
*The just allowable code rate&nbsp; $R_{\rm max}$&nbsp; for a given channel&nbsp; $(E_{\rm B}/N_{0} = \rm const.)$&nbsp; we refer to as the channel capacity&nbsp; $C$.
*Für $E_{\rm B}/N_{0} = 1     10 · \ \lg {E_{\rm B}/N_0} = 0 {\rm dB}$ erhält man beispielsweise $C = 0.5$. Das heißt: Auch bei bestmöglicher Amplitudenverteilung des reellen Eingangssignals darf die Coderate den Wert $R = 0.5$ nicht überschreiten.  
+
*Bei binärem Eingang ergibt sich ein etwas kleinerer Wert gemäß $C_{2}.$
+
*For&nbsp; $E_{\rm B}/N_{0} = 1 ⇒ 10 &nbsp; \ \lg {E_{\rm B}/N_0} = 0\ {\rm dB}$&nbsp; we obtain,&nbsp; for example&nbsp; $C = 0.5$.
 +
 +
*This means: &nbsp; Even with the best possible amplitude distribution of the real input signal, the code rate must not exceed&nbsp; $R = 0.5$.
 +
 +
*For binary input,&nbsp; a slightly smaller value results according to&nbsp; $C_{2}.$
  
  
In dieser Aufgabe soll versucht werden, den grafisch vorgegebenen Verlauf der Kanalkapazität  $C_{2}$ durch eine Exponentialfunktion anzunähern:
+
In this exercise,&nbsp; try to approximate the graphically given channel capacitance&nbsp; $C_{2}$&nbsp; by an exponential function:
  
*Verwenden Sie für die Abszisse die Hilfsvariable (siehe Grafik)
+
*For the abscissa,&nbsp; use the auxiliary variable&nbsp; (see graph)
  
 
:$$x = \frac {x_0 + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}\hspace{0.05cm}.$$  
 
:$$x = \frac {x_0 + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}\hspace{0.05cm}.$$  
  
:Das heißt: $x$ ist ohne Einheit; auf die Pseudo–Einheit „$\rm dB$” wird verzichtet.
+
:That is, &nbsp; $x$&nbsp; is without unit;&nbsp; the pseudo unit&nbsp; "$\rm dB$"&nbsp; is omitted.
  
*Berücksichtigen Sie, dass für ein kleines $E_{\rm B}/N_{0}$ die Näherung $C_{2} \approx C$ gültig ist (siehe Grafik), woraus der Parameter $x_{0}$ bestimmt werden kann.
+
*Consider that for a small&nbsp; $E_{\rm B}/N_{0}$&nbsp; the approximation&nbsp; $C_{2} \approx C$&nbsp; is valid&nbsp; (see graph),&nbsp; from which the parameter&nbsp; $x_{0}$&nbsp; can be determined.
  
*Setzen Sie für $C_{2}' = 1 - {\rm e}^{–a\hspace{0.05cm} · \hspace{0.05cm}x}$ an und bestimmen Sie den Parameter $a$ aus der gestrichelt eingezeichneten Tangente derart, dass $C_{2} ' \approx C$ gilt.
+
*Set for&nbsp; $C_{2}\hspace{0.01cm}' = 1 - {\rm e}^{-a\hspace{0.05cm} · \hspace{0.05cm}x}$&nbsp; and determine the parameter&nbsp; $a$&nbsp; from the red dashed tangent such that&nbsp; $C_{2}\hspace{0.01cm} ' \approx C$&nbsp; holds.
  
  
  
  
''Hinweise:''
 
* Die Aufgabe behandelt gehört zum Kapitel [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung|Informationstheoretische Grenzen der Kanalcodierung]].
 
*Sie ergänzt die [[Aufgaben:Aufgabe_1.17:_Zum_Kanalcodierungstheorem|Aufgabe 1.17]].
 
* Auf die Pseudo–Einheit „bit/Kanalzugriff” der Kanalkapazität wird in diesen Aufgaben verzichtet.
 
* Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
  
  
  
 +
Hints:
 +
* The exercise belongs to the chapter&nbsp; [[Channel_Coding/Information_Theoretical_Limits_of_Channel_Coding|"Information Theoretical Limits of Channel Coding"]]. It complements the&nbsp; [[Aufgaben:Exercise_1.17:_About_the_Channel_Coding_Theorem|"Exercise 1.17"]].
 +
 +
* The&nbsp; "bit/channel use"&nbsp; pseudo-unit of channel capacity is omitted in these exercises.
 +
  
===Fragebogen===
+
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie aus dem Grenzwert für $C → 0$ den Kurvenparameter $x_{0}$?
+
{Calculate from the limit for&nbsp; $C → 0$&nbsp; the curve parameter&nbsp; $x_{0}$?
 
|type="{}"}
 
|type="{}"}
 
$x_{0} \ = \ $ { 1.6 3% }$\ \rm dB$
 
$x_{0} \ = \ $ { 1.6 3% }$\ \rm dB$
  
{Approximieren Sie $C_{2}(x)$ durch $C_{2}'(x) = 1 -\exp {(–a · x)}$. Wie groß ist $a$?
+
{Approximate&nbsp; $C_{2}(x)$&nbsp; by&nbsp; $C_{2}\hspace{0.01cm}'(x) = 1 -{\rm e}^{-a\hspace{0.05cm} · \hspace{0.05cm}x}$.&nbsp; What is the value of&nbsp; $a$?
 
|type="{}"}
 
|type="{}"}
 
$a \ = \ $ { 0.4 3% }
 
$a \ = \ $ { 0.4 3% }
  
{Welche Kanalkapazität $C_{2}'$ ergibt sich nach dieser Näherung für $E_{\rm B} = N_{0}$?
+
{What channel capacity&nbsp; $C_{2}\hspace{0.01cm}'$&nbsp; results from this approximation for&nbsp; $E_{\rm B} = N_{0}$ &nbsp; &rArr; &nbsp; $10 · \lg {E_{\rm B} / N_0} = 0 \ {\rm dB}$?
 
|type="{}"}
 
|type="{}"}
$E_{\rm B} = N_{0} \text{:} \hspace{0.2cm} \ C_{2}' \ = \ $ { 0.47 3% }
+
$10  ·  \lg {E_{\rm B} / N_0} = 0 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $ { 0.47 3% }
  
{Berechnen Sie auch die Kanalkapazitätsnäherung für folgende Werte:
+
{Calculate also the channel capacity approximation for the following values:
 
|type="{}"}
 
|type="{}"}
$10  ·  \lg {E_{\rm B} / N_0} = 2 \ {\rm dB} \text{:} \hspace{0.2cm} \ C_{2}' \ = \ $ { 0.76 3% }
+
$10  ·  \lg {E_{\rm B} / N_0} = 2 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $ { 0.76 3% }
$10  ·  \lg {E_{\rm B} / N_0} = 4 \ {\rm dB} \text{:} \hspace{0.2cm} \ C_{2}' \ = \ $ { 0.89 3% }
+
$10  ·  \lg {E_{\rm B} / N_0} = 4 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $ { 0.89 3% }
$10  ·  \lg {E_{\rm B} / N_0} = 6 \ {\rm dB} \text{:} \hspace{0.2cm} \ C_{2}' \ = \ $ { 0.95 3% }
+
$10  ·  \lg {E_{\rm B} / N_0} = 6 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $ { 0.95 3% }
 
</quiz>
 
</quiz>
  
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Im unteren $E_{\rm B} = N_{0}$–Bereich laufen die Kapazitätskurven
+
'''(1)'''&nbsp; In the lower&nbsp; $E_{\rm B} /N_{0}$&nbsp; range,&nbsp; the capacity curves
*$C_{2}$ (gültig für binären Eingang, z.B. BPSK) und
+
*$C_{2}$&nbsp; $($valid for binary input,&nbsp; for example BPSK$)$&nbsp; and
*$C$ (gültig für analogen reellwertigen Eingang)
+
*$C$&nbsp; $($valid for analog real-valued input$)$
 +
 
  
 +
converge.&nbsp; For a given rate&nbsp; $R$ &nbsp; &rArr; &nbsp; $E_{\rm B}/N_{0}$&nbsp; must be greater than&nbsp; $(2^{2R} - 1)/2R.$
  
zusammen. Für eine gegebene Rate $R$ muss $E_{\rm B} = N_{0}$ größer sein als $(2^{2R} – 1)/2R.$ Der Grenzübergang für $R → 0$ liefert die absolute Shannon–Grenze, ab der eine fehlerfreie Übertragung nicht mehr möglich ist:
+
The limit transition for&nbsp; $R → 0$&nbsp; provides the absolute Shannon limit above which error-free transmission is no longer possible:
  
:$${\rm Min}\hspace{0.1cm}\left [E_{\rm B}/N_0 \right] = \lim_{R \rightarrow 0}\hspace{0.1cm} \frac{2^{2R}-1}{2R} = {\rm ln}\hspace{0.1cm}2 \approx 0.693$$
+
:$${\rm Min}\hspace{0.1cm}\left [E_{\rm B}/N_0 \right] = \lim_{R \rightarrow 0}\hspace{0.1cm} \frac{2^{2R}-1}{2R} = {\rm ln}\hspace{0.1cm}2 \approx 0.693\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
+
10 \cdot {\rm lg} \hspace{0.1cm} {\rm Min}\hspace{0.1cm}\left [E_{\rm B}/N_0 \right] \approx -1.6 \,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_0 \hspace{0.15cm} \underline{= 1.6 \,{\rm dB}}\hspace{0.05cm}.$$
:$$10 \cdot {\rm lg} \hspace{0.1cm} {\rm Min}\hspace{0.1cm}\left [E_{\rm B}/N_0 \right] \approx -1.6 \,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_0 \hspace{0.15cm} \underline{= 1.6 \,{\rm dB}}\hspace{0.05cm}.$$
 
  
  
'''(2)'''&nbsp; Aus der Grafik auf der Angabenseite lässt sich die Tangentensteigerung im Nullpunkt abschätzen:
+
'''(2)'''&nbsp; The tangent increase at the zero point can be estimated from the graph in the data section:
 
   
 
   
 
:$$\frac{{\rm d}C_2}{{\rm d}x} (x=0) = \frac{1.6 + 1.5}{1.25} =2.48 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} a = \frac{1}{2.48} \hspace{0.15cm} \underline{\approx 0.4}\hspace{0.05cm}.$$
 
:$$\frac{{\rm d}C_2}{{\rm d}x} (x=0) = \frac{1.6 + 1.5}{1.25} =2.48 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} a = \frac{1}{2.48} \hspace{0.15cm} \underline{\approx 0.4}\hspace{0.05cm}.$$
  
Damit lautet die Näherung für die BPSK–Kanalkapazität in Abhängigkeit des Abszissenwertes $x$:
+
Thus, the approximation for the BPSK channel capacity as a function of the abscissa value&nbsp; $x$&nbsp; is:
 
   
 
   
:$$C_2' = \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm exp}(- 0.4 \cdot x) \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm}} x > 0, \\{\rm f\ddot{u}r\hspace{0.15cm}} x < 0. \end{array}$$
+
:$$C_2' = \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}x} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm for\hspace{0.15cm}} x > 0, \\{\rm for\hspace{0.15cm}} x < 0. \end{array}$$
  
  
'''(3)'''&nbsp; Aus $E_{\rm B} = N_{0}$ folgt $\ 10  ·  \lg {(E_{\rm B} = N_0)} = 0 \ {\rm dB}$ sowie $x = 1.6$:
+
'''(3)'''&nbsp; From&nbsp; $E_{\rm B} = N_{0}$&nbsp; follows&nbsp; $\ 10  ·  \lg {(E_{\rm B} = N_0)} = 0 \ {\rm dB}$&nbsp; and&nbsp; $x = 1.6$:
 
   
 
   
:$$C_2' = 1 - {\rm exp}(- 0.4 \cdot 1.6)\hspace{0.15cm}\underline{\approx 0.47}\hspace{0.05cm}.$$
+
:$$C_2\hspace{0.01cm}' = 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}1.6}\hspace{0.15cm}\underline{\approx 0.47}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Die entsprechenden Zahlenwerte lauten:
+
'''(4)'''&nbsp; The corresponding numerical values are:
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 2\,{\rm dB:} \hspace{0.3cm} C_2' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm exp}(- 0.4 \cdot 3.6)\hspace{0.15cm}\underline{\approx 0.76}$$
+
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{2 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}3.6}\hspace{0.15cm}\underline{\approx 0.76}$$
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 4\,{\rm dB:} \hspace{0.3cm} C_2' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm exp}(- 0.4 \cdot 5.6)\hspace{0.15cm}\underline{\approx 0.89}$$
+
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{4 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}5.6}\hspace{0.15cm}\underline{\approx 0.89}$$
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 6\,{\rm dB:} \hspace{0.3cm} C_2' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm exp}(- 0.4 \cdot 7.6)\hspace{0.15cm}\underline{\approx 0.95}.$$
+
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{6 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}7.6}\hspace{0.15cm}\underline{\approx 0.95}.$$
  
Die so angenäherten Werte $C_{2}'$ der Kanalkapazität für binären Eingang sind etwas zu klein. Aus der Grafik können die genaueren Werte $C_{2}$ abgelesen werden:
+
The values&nbsp; $C_{2}\hspace{0.01cm}'$&nbsp; of the channel capacity for binary input approximated in this way are somewhat too small.  
 +
 
 +
From the graph in the information section the exact values&nbsp; $C_{2}$&nbsp; can be estimated:
 
   
 
   
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 2\,{\rm dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.78}\hspace{0.05cm},$$
+
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 =\text{2 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.78}\hspace{0.05cm},$$
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 4\,{\rm dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.94}\hspace{0.05cm},$$
+
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{4 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.94}\hspace{0.05cm},$$
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 6\,{\rm dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.99}\hspace{0.05cm}.$$
+
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{6 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.99}\hspace{0.05cm}.$$
 +
 
 +
From about&nbsp; $\ 10 \cdot \lg {(E_{\rm B} / N_0)} = 8 \ {\rm dB}$&nbsp; applies within character accuracy:&nbsp; $C_{2}\hspace{0.01cm}'= C_{2} = 1$&nbsp; $($bit/channel use$)$.
  
Ab etwa $\ 10  ·  \lg {(E_{\rm B} / N_0)} = 8 \ {\rm dB}$  gilt innerhalb der Zeichengenauigkeit $C_{2}'= C_{2} = 1$ (bit/Kanalzugriff).
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.7 Informationstheoretische Grenzen^]]
+
[[Category:Channel Coding: Exercises|^1.7 Channel Capacity^]]

Latest revision as of 17:04, 23 January 2023

For clarification of the BPSK channel capacity

Binary signals can be transmitted error-free over the  "AWGN channel"  according to the  "channel coding theorem"  if and only if

  • one uses a channel code of rate  $R = k/n$,
  • the block length  $n$  of this code is chosen very large   ⇒   $n → ∞$,
  • the rate  $R$  is smaller than the channel capacity valid for binary input  $C_{2}$,
  • where the BPSK channel capacity  $C_{2}$  depends on the AWGN quotient  $E_{\rm B}/N_{0}$ .


Note:

  1. The permissible range for the code rate  $R$  is highlighted in green in the graph. 
  2. The limit curve  $C_{2}$,  valid for binary input signals  $($therefore the index  $2)$  and sometimes also referred to as BPSK channel capacity  (stands for  "Binary Phase Shift Keying"). 
  3. However,  this curve cannot be specified in mathematically closed form,  but is the result of an integral that can only be evaluated numerically.
  4. As blue curve the channel capacity  $C$  is entered,  if arbitrary real input signals are allowed.
  5. For multilevel signals the rate may well assume values  $R > 1$.
  6. For a Gaussian distribution the rate  $R$  is the smallest possible  $(E_{\rm B}/N_{0})_{\rm min}$  according to the equation
$$\left (E_{\rm B}/N_0 \right)_{\rm min} = \frac{2^{2R}-1}{2R}\hspace{0.05cm}.$$

Conversely,  the rate  $R$  for the given AWGN quotient  $E_{\rm B}/N_{0}$  is upper bounded:

  • The just allowable code rate  $R_{\rm max}$  for a given channel  $(E_{\rm B}/N_{0} = \rm const.)$  we refer to as the channel capacity  $C$.
  • For  $E_{\rm B}/N_{0} = 1 ⇒ 10   \ \lg {E_{\rm B}/N_0} = 0\ {\rm dB}$  we obtain,  for example  $C = 0.5$.
  • This means:   Even with the best possible amplitude distribution of the real input signal, the code rate must not exceed  $R = 0.5$.
  • For binary input,  a slightly smaller value results according to  $C_{2}.$


In this exercise,  try to approximate the graphically given channel capacitance  $C_{2}$  by an exponential function:

  • For the abscissa,  use the auxiliary variable  (see graph)
$$x = \frac {x_0 + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}\hspace{0.05cm}.$$
That is,   $x$  is without unit;  the pseudo unit  "$\rm dB$"  is omitted.
  • Consider that for a small  $E_{\rm B}/N_{0}$  the approximation  $C_{2} \approx C$  is valid  (see graph),  from which the parameter  $x_{0}$  can be determined.
  • Set for  $C_{2}\hspace{0.01cm}' = 1 - {\rm e}^{-a\hspace{0.05cm} · \hspace{0.05cm}x}$  and determine the parameter  $a$  from the red dashed tangent such that  $C_{2}\hspace{0.01cm} ' \approx C$  holds.




Hints:

  • The  "bit/channel use"  pseudo-unit of channel capacity is omitted in these exercises.



Questions

1

Calculate from the limit for  $C → 0$  the curve parameter  $x_{0}$?

$x_{0} \ = \ $

$\ \rm dB$

2

Approximate  $C_{2}(x)$  by  $C_{2}\hspace{0.01cm}'(x) = 1 -{\rm e}^{-a\hspace{0.05cm} · \hspace{0.05cm}x}$.  What is the value of  $a$?

$a \ = \ $

3

What channel capacity  $C_{2}\hspace{0.01cm}'$  results from this approximation for  $E_{\rm B} = N_{0}$   ⇒   $10 · \lg {E_{\rm B} / N_0} = 0 \ {\rm dB}$?

$10 · \lg {E_{\rm B} / N_0} = 0 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $

4

Calculate also the channel capacity approximation for the following values:

$10 · \lg {E_{\rm B} / N_0} = 2 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $

$10 · \lg {E_{\rm B} / N_0} = 4 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $

$10 · \lg {E_{\rm B} / N_0} = 6 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $


Solution

(1)  In the lower  $E_{\rm B} /N_{0}$  range,  the capacity curves

  • $C_{2}$  $($valid for binary input,  for example BPSK$)$  and
  • $C$  $($valid for analog real-valued input$)$


converge.  For a given rate  $R$   ⇒   $E_{\rm B}/N_{0}$  must be greater than  $(2^{2R} - 1)/2R.$

The limit transition for  $R → 0$  provides the absolute Shannon limit above which error-free transmission is no longer possible:

$${\rm Min}\hspace{0.1cm}\left [E_{\rm B}/N_0 \right] = \lim_{R \rightarrow 0}\hspace{0.1cm} \frac{2^{2R}-1}{2R} = {\rm ln}\hspace{0.1cm}2 \approx 0.693\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} {\rm Min}\hspace{0.1cm}\left [E_{\rm B}/N_0 \right] \approx -1.6 \,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_0 \hspace{0.15cm} \underline{= 1.6 \,{\rm dB}}\hspace{0.05cm}.$$


(2)  The tangent increase at the zero point can be estimated from the graph in the data section:

$$\frac{{\rm d}C_2}{{\rm d}x} (x=0) = \frac{1.6 + 1.5}{1.25} =2.48 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} a = \frac{1}{2.48} \hspace{0.15cm} \underline{\approx 0.4}\hspace{0.05cm}.$$

Thus, the approximation for the BPSK channel capacity as a function of the abscissa value  $x$  is:

$$C_2' = \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}x} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm for\hspace{0.15cm}} x > 0, \\{\rm for\hspace{0.15cm}} x < 0. \end{array}$$


(3)  From  $E_{\rm B} = N_{0}$  follows  $\ 10 · \lg {(E_{\rm B} = N_0)} = 0 \ {\rm dB}$  and  $x = 1.6$:

$$C_2\hspace{0.01cm}' = 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}1.6}\hspace{0.15cm}\underline{\approx 0.47}\hspace{0.05cm}.$$


(4)  The corresponding numerical values are:

$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{2 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}3.6}\hspace{0.15cm}\underline{\approx 0.76}$$
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{4 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}5.6}\hspace{0.15cm}\underline{\approx 0.89}$$
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{6 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}7.6}\hspace{0.15cm}\underline{\approx 0.95}.$$

The values  $C_{2}\hspace{0.01cm}'$  of the channel capacity for binary input approximated in this way are somewhat too small.

From the graph in the information section the exact values  $C_{2}$  can be estimated:

$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 =\text{2 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.78}\hspace{0.05cm},$$
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{4 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.94}\hspace{0.05cm},$$
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{6 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.99}\hspace{0.05cm}.$$

From about  $\ 10 \cdot \lg {(E_{\rm B} / N_0)} = 8 \ {\rm dB}$  applies within character accuracy:  $C_{2}\hspace{0.01cm}'= C_{2} = 1$  $($bit/channel use$)$.