Difference between revisions of "Theory of Stochastic Signals/Creation of Predefined ACF Properties"

From LNTwww
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Filterung stochastischer Signale |Vorherige Seite=Digitale Filter |Nächste Seite=Matched-Filter }} ==AKF am Ausgang eines nichtrekursiv…“)
 
Line 37: Line 37:
 
{{end}}
 
{{end}}
  
 +
==Koeffizientenbestimmung (1)==
 +
Nun soll die Frage geklärt werden, wie die Koeffizienten $a_0, ... , a_M$ eines nichtrekursiven Filters $M$-ter Ordnung ermittelt werden können, wenn die gewünschten AKF-Werte $φ_y(0), ... , φ_y(M · T_{\rm A})$ gegeben sind. Außerhalb des Bereiches $–M · T_{\rm A} ... M · T_{\rm A}$ sollen alle AKF-Werte gleich 0 sein.
  
 +
Für $σ_x =$ 1 ergibt sich das folgende ''nichtlineare Gleichungssystem'', wobei zur Vereinfachung der Schreibweise $φ_k = φ_y(k · T_{\rm A})$ verwendet wird:
 +
$$\begin{align*}\varphi _0 & = \sum\limits_{\mu  = 0}^M {a_\mu^2  ,}\\ \varphi _1 &  = \sum\limits_{\mu  = 0}^{M - 1} {a_\mu  \cdot a_{\mu  + 1} ,} \\ & . & \\ & . &\\ & . &\\ \varphi _{M - 1} & = a_0  \cdot a_{M - 1}  + a_1  \cdot a_M , \\ \varphi _M  & =  a_0  \cdot a_M .\end{align*}$$
 +
Man erhält somit für die $M +$ 1 Koeffizienten auch $M +$ 1 unabhängige Gleichungen. Durch sukzessives Eliminieren der Koeffizienten $a_1, ... , a_M$ bleibt für $a_0$ eine nichtlineare Gleichung höherer Ordnung übrig.
 +
 +
 +
{{Beispiel}}
 +
Wir betrachten folgende Konstellation:
 +
*ein rekursives Filter erster Ordnung  ⇒  $M =$ 1,
 +
*eine zeitdiskrete Eingangsfolge $〈x_ν〉$ mit Mittelwert $m_x =$ 0 und Streuung $σ_x =$ 1,
 +
*gewünschte AKF-Werte der Folge $〈y_ν〉: φ_y(0) = φ_0 =$ 0.58 und $φ_y(±T_{\rm A}) = φ_1 =$ 0.21.
 +
 +
 +
Damit lautet das obige Gleichungssystem:
 +
$$\varphi _0  = a_0 ^2  + a_1 ^2  = 0.58,$$
 +
$$\varphi _1  = a_0  \cdot a_1  = 0.21.$$
 +
Dies führt zu einer Gleichung vom Grad 4, nämlich
 +
$$a_0 ^2  + \left( { { {0.21} }/{ {a_0 } } } \right)^2  = 0.58\quad  \Rightarrow \quad a_0 ^4  - 0.58 \cdot a_0 ^2  + 0.21^2  = 0.$$
 +
Eine Lösung stellt $a_0 =$ 0.7 dar. Durch Einsetzen in die zweite Gleichung findet man $a_1 =$ 0.3.
 +
{{end}}
 +
 +
 +
Man erkennt aus diesem Beispiel, dass sich schon im einfachsten Fall  ⇒  $M =$ 1 eine nichtlineare Bestimmungsgleichung für $a_0$ vom Grad 4 ergibt.
  
  

Revision as of 17:11, 8 June 2016

AKF am Ausgang eines nichtrekursiven Filters

Wir betrachten ein nichtrekursives Laufzeitfilter M-ter Ordnung gemäß der folgenden Grafik. Die zeitdiskrete Eingangsgröße $〈x_ν〉$ ist mittelwertfrei $(m_x =$ 0), gaußverteilt (mit Streuung $σ_x$) und statistisch unabhängig („Weißes Rauschen”).


Nichtrekursives Filter M-ter Ordnung


  • Somit gilt für die zeitdiskrete Autokorrelationsfunktion am Eingang:

$$\varphi _x ( {k \cdot T_{\rm A} } ) = \left\{ {\begin{array}{*{20}c} {\sigma _x ^2 } & {\rm{f\ddot{u}r}\quad {\it k} = 0,} \\ 0 & {\rm{f\ddot{u}r}\quad {\it k} \ne 0.} \\\end{array}} \right.$$

  • Die AKF der zeitdiskreten Ausgangsfolge $〈y_ν〉$ lautet:

$$\varphi _y ( {k \cdot T_{\rm A} } ) = \sigma _x ^2 \cdot \sum\limits_{\mu = 0}^{M - k} {a_\mu \cdot a_{\mu + k } } \quad {\rm{f\ddot{u}r}}\quad {\it k} = 0, 1,\,...\,,\,{\it M}.$$

  • Alle AKF–Werte mit $k > M$ sind 0, und alle AKF–Werte mit $k < M$ sind symmetrisch um 0:

$$\varphi _y ( { - k \cdot T_{\rm A} } ) = \varphi _y ( {k \cdot T_{\rm A} } ).$$


Liegt am Eingang eines nichtrekursiven Filters erster Ordnung (Filterkoeffizienten $a_0 =$ 0.6, $a_1 =$ 0.8) zeitdiskretes weißes Rauschen mit der Streuung $σ_x =$ 2 an, so lauten die diskreten AKF-Werte des Ausgangssignals (alle anderen AKF-Werte sind 0): $$\varphi _y (0) = \sigma _x ^2 \cdot ( {a_0 ^2 + a_1 ^2 }) = 4,\hspace{0.8cm} \varphi _y ( { - T_{\rm A} } ) = \varphi _y ( {T_{\rm A} } ) = \sigma _x ^2 \cdot a_0 \cdot a_1 = 1.92.$$


AKF am Ausgang eines Filters erster Ordnung


Die Grafik kann wie fiolgt interpretiert werden:

  • Wegen $a_0^2 + a_1^2 =$ 1 besitzt das Ausgangssignal $y(t)$ genau die gleiche Varianz $σ_y^2 = φ_y(0)$ wie das Eingangssignal: $σ_x^2 = φ_x(0) =$ 4.
  • Im Gegensatz zur Eingangsfolge $〈x_ν〉$ gibt es bei der Folge $〈y_ν〉$ am Filterausgang statistische Bindungen zwischen benachbarten Abtastwerten.


Koeffizientenbestimmung (1)

Nun soll die Frage geklärt werden, wie die Koeffizienten $a_0, ... , a_M$ eines nichtrekursiven Filters $M$-ter Ordnung ermittelt werden können, wenn die gewünschten AKF-Werte $φ_y(0), ... , φ_y(M · T_{\rm A})$ gegeben sind. Außerhalb des Bereiches $–M · T_{\rm A} ... M · T_{\rm A}$ sollen alle AKF-Werte gleich 0 sein.

Für $σ_x =$ 1 ergibt sich das folgende nichtlineare Gleichungssystem, wobei zur Vereinfachung der Schreibweise $φ_k = φ_y(k · T_{\rm A})$ verwendet wird: $$\begin{align*}\varphi _0 & = \sum\limits_{\mu = 0}^M {a_\mu^2 ,}\\ \varphi _1 & = \sum\limits_{\mu = 0}^{M - 1} {a_\mu \cdot a_{\mu + 1} ,} \\ & . & \\ & . &\\ & . &\\ \varphi _{M - 1} & = a_0 \cdot a_{M - 1} + a_1 \cdot a_M , \\ \varphi _M & = a_0 \cdot a_M .\end{align*}$$ Man erhält somit für die $M +$ 1 Koeffizienten auch $M +$ 1 unabhängige Gleichungen. Durch sukzessives Eliminieren der Koeffizienten $a_1, ... , a_M$ bleibt für $a_0$ eine nichtlineare Gleichung höherer Ordnung übrig.


Wir betrachten folgende Konstellation:

  • ein rekursives Filter erster Ordnung ⇒ $M =$ 1,
  • eine zeitdiskrete Eingangsfolge $〈x_ν〉$ mit Mittelwert $m_x =$ 0 und Streuung $σ_x =$ 1,
  • gewünschte AKF-Werte der Folge $〈y_ν〉: φ_y(0) = φ_0 =$ 0.58 und $φ_y(±T_{\rm A}) = φ_1 =$ 0.21.


Damit lautet das obige Gleichungssystem: $$\varphi _0 = a_0 ^2 + a_1 ^2 = 0.58,$$ $$\varphi _1 = a_0 \cdot a_1 = 0.21.$$ Dies führt zu einer Gleichung vom Grad 4, nämlich $$a_0 ^2 + \left( { { {0.21} }/{ {a_0 } } } \right)^2 = 0.58\quad \Rightarrow \quad a_0 ^4 - 0.58 \cdot a_0 ^2 + 0.21^2 = 0.$$ Eine Lösung stellt $a_0 =$ 0.7 dar. Durch Einsetzen in die zweite Gleichung findet man $a_1 =$ 0.3.


Man erkennt aus diesem Beispiel, dass sich schon im einfachsten Fall ⇒ $M =$ 1 eine nichtlineare Bestimmungsgleichung für $a_0$ vom Grad 4 ergibt.