Difference between revisions of "Aufgaben:Exercise 4.2: Triangle Area again"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/Zweidimensionale Zufallsgrößen }} right| :Wir betrachten die gleiche Z…“)
 
 
(20 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Zweidimensionale Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID226__Sto_A_4_2.png|right|]]
+
[[File:P_ID226__Sto_A_4_2.png|right|frame|Triangular 2D area and the two marginal probability densities]]
:Wir betrachten die gleiche Zufallsgr&ouml;&szlig;e (<i>x</i>, <i>y</i>) wie in Aufgabe A4.1. In einem durch die Eckpunkte (0,1), (4,3) und (4,5) definierten dreieckf&ouml;rmigen Gebiet <i>D</i> sei die 2D&ndash;WDF <i>f<sub>xy</sub></i>(<i>x</i>, <i>y</i>) = 0.25. Au&szlig;erhalb dieses Definitionsgebietes <i>D</i> (in der Grafik rot markiert) gibt es keine Werte.
+
We consider the same random variable&nbsp; $(x, \ y)$&nbsp; as in&nbsp; [[Aufgaben:Exercise_4.1:_Triangular_(x,_y)_Area|Exercise 4.1]]:
 +
*In a domain defined by vertices&nbsp; $(0,\ 1)$,&nbsp; $(4,\ 3)$,&nbsp; and $(4,\ 5)$&nbsp; let the 2D&ndash;PDF&nbsp; $f_{xy} (x, y) = 0.25$.  
 +
*There are no values outside this definition area&nbsp; $D$&nbsp; marked in red in the graph.
  
:Weiterhin sind im nebenstehenden Bild die beiden Randwahrscheinlichkeitsdichten bez&uuml;glich den Größen <i>x</i> und <i>y</i> eingezeichnet, die bereits in der Aufgabe A4.1 ermittelt wurden. Daraus lassen sich mit den Gleichungen von Kapitel 3.3 die Kenngrößen der beiden Zufallsgr&ouml;&szlig;en bestimmen:
 
:$$m_x=\rm 8/3 ,\hspace{0.5cm} \sigma_x=\rm \sqrt{8/9},$$
 
:$$ m_y=\rm 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$
 
  
:Aufgrund der Tatsache, dass das Definitionsgebiet <i>D</i> durch zwei Gerade <i>y</i><sub>1</sub>(<i>x</i>) und <i>y</i><sub>2</sub>(<i>x</i>) begrenzt ist, kann hier das gemeinsame Moment erster Ordnung wie folgt berechnet werden.
+
Furthermore,&nbsp; the two marginal probability densities with respect to the quantities&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are drawn in the graph,&nbsp; which have already been determined in Exercise 4.1.  
:$$m_{xy}=\rm E[\it x\cdot y]=\int\limits_{x_{\rm 1}}^{x_{\rm 2}}x\cdot \int\limits_{y_{\rm 1}(x)}^{y_{\rm 2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$
 
  
:<b>Hinweis</b>: Diese Aufgabe bezieht sich auf den gesamten Inhalt von Kapitel 4.1.
+
From this,&nbsp; the equations of chapter&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]]&nbsp; can be used to determine the characteristics of the two random variables:
 +
:$$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$
 +
:$$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$
  
 +
Due to the fact that the definition domain&nbsp; $D$&nbsp; is bounded by two straight lines&nbsp; $y_1(x)$&nbsp; and&nbsp; $y_2(x)$&nbsp;, the first order joint moment can be calculated here as follows.
 +
:$$m_{xy}={\rm E}\big[x\cdot y\big]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The Exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables|Two-Dimensional Random Variables]].
 +
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Grenzgeraden des inneren Integrals zur <i>m<sub>xy</sub></i>-Berechnung?
+
{What are the limit lines of the inner integral for the&nbsp; $m_{xy}$ calculation?
|type="[]"}
+
|type="()"}
- <i>y</i><sub>1</sub>(<i>x</i>) = <i>x</i> + 1;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>y</i><sub>2</sub>(<i>x</i>) = 2<i>x</i> + 1.
+
- $y_1(x) = x+1, $ &nbsp; &nbsp; $y_2(x) = 2x+1.$
+ <i>y</i><sub>1</sub>(<i>x</i>) = <i>x</i>/2 + 1;&nbsp;&nbsp;&nbsp;<i>y</i><sub>2</sub>(<i>x</i>) = <i>x</i> + 1.
+
+ $y_1(x) = x/2+1, $ &nbsp; &nbsp; $y_2(x) = x+1.$
- <i>y</i><sub>1</sub>(<i>x</i>) = <i>x</i> &ndash; 1;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>y</i><sub>2</sub>(<i>x</i>) = 2<i>x</i> + 1.
+
- $y_1(x) = x-1, $ &nbsp; &nbsp; $y_2(x) = 2x+1.$
  
  
{Berechnen Sie das gemeinsame Moment <i>m<sub>xy</sub></i> gem&auml;&szlig; dem Doppelintegral auf der Angabenseite. <i>Hinweis</i>: Setzen Sie <i>x</i><sub>1</sub> = 0 und <i>x</i><sub>2</sub> = 4.
+
{Calculate the joint moment&nbsp; $m_{xy}$&nbsp; according to the double integral on the statement page. &nbsp;<i>Note</i>: &nbsp;Set&nbsp; $x_1 = 0$&nbsp; and&nbsp; $x_2 = 4$.
 
|type="{}"}
 
|type="{}"}
$m_\text{xy}$ = { 8.667 3% }
+
$m_{xy} \ = \ $ { 8.667 3% }
  
  
{Welcher Wert ergibt sich f&uuml;r die Kovarianz?
+
{What is the covariance&nbsp; $\mu_{xy}$ ?
 
|type="{}"}
 
|type="{}"}
$\mu_\text{xy}$ = { 0.667 3% }
+
$\mu_{xy}\ = \ $ { 0.667 3% }
  
  
{Wie gro&szlig; ist der Korrelationskoeffizient?
+
{What is the correlation coefficient $\rho_{xy}$?
 
|type="{}"}
 
|type="{}"}
$\rho_\text{xy}$ = { 0.866 3% }
+
$\rho_{xy}\ = \ $ { 0.866 3% }
  
  
{Wie lautet die Gleichung der Korrelationsgeraden <i>y</i> = <i>K</i>(<i>x</i>)? An welcher Stelle <i>y</i><sub>0</sub> schneidet die Gerade die <i>y</i>-Achse? Zeigen Sie, dass die Korrelationsgerade auch durch den Punkt (<i>m<sub>x</sub></i>, <i>m<sub>y</sub></i>) geht.
+
{What is the equation of the regression line&nbsp; $y = K(x)$?&nbsp; At what point&nbsp; $y_0$&nbsp; does the straight line intersect the&nbsp; $y$&ndash;axis? <br>Show that the correlation line also passes through the point&nbsp; $(m_x, m_y)$.
 
|type="{}"}
 
|type="{}"}
$y_0$ = { 1 3% }
+
$y_0\ = \ $ { 1 3% }
  
  
Line 49: Line 65:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Richtig ist <u>der mittlere Vorschlag</u>: Sowohl <i>y</i><sub>1</sub>(<i>x</i>) als auch <i>y</i><sub>2</sub>(<i>x</i>) schneiden die <i>y</i>-Achse bei <i>y</i> = 1. Die untere Begrenzungslinie hat die Steigung 0.5, die obere die Steigung 1.
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>middle proposition</u>:  
 +
*Both&nbsp; $y_1(x)$&nbsp; and&nbsp; $y_2(x)$&nbsp; intersect the&nbsp; $y$-axis at&nbsp; $y= 1$.  
 +
*The lower boundary line has slope&nbsp; $0.5$,&nbsp; the upper has slope&nbsp; $1$.
  
:<b>2.</b>&nbsp;&nbsp;Entsprechend den Hinweisen erhalten wir:
 
:$$m_{xy}=\int_{\rm 0}^{\rm 4}\it x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1}\rm \frac{1}{4}\cdot \it y \, \,{\rm d}y\,\, \, {\rm d}x = \rm\frac{1}{8}\cdot \int_{\rm 0}^{\rm 4}\it x\cdot[(\it x+\rm 1)^{\rm 2}- (\frac{\it x}{2}+\rm 1)^{\rm 2} ] \it \,\, {\rm d}x.$$
 
  
:Dies f&uuml;hrt zum Integral bzw. Endergebnis:
 
:$$m_{xy}=\rm\frac{1}{8}\int_{\rm 0}^{\rm 4}(\rm\frac{3}{4}\it x^{\rm 3}+\it x^{\rm 2})\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$
 
  
:<b>3.</b>&nbsp;&nbsp;Da beide Zufallsgr&ouml;&szlig;en jeweils einen Mittelwert ungleich 0 besitzen, folgt f&uuml;r die Kovarianz:
+
'''(2)'''&nbsp; According to the clues we get:
 +
: $$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot y \, \,{\rm d}y\,\, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot \big[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} \big] \,\, {\rm d}x. $$
 +
 
 +
*This leads to the integral or final result:
 +
:$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$
 +
 
 +
'''(3)'''&nbsp; Since both random variables each have a nonzero mean,&nbsp; it follows for the covariance:
 +
[[File:EN_Sto_Z_4_2d.png|right|frame|Regression line]]
 
:$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$
 
:$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$
  
:<b>4.</b>&nbsp;&nbsp;Mit den angegebenen Streuungen erh&auml;lt man:
+
'''(4)'''&nbsp; With the given standard deviations we obtain:
 
:$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
 
:$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
[[File:P_ID223__Sto_A_4_2_d.png|right|]]
 
 
:<b>5.</b>&nbsp;&nbsp;F&uuml;r die Korrelationsgerade gilt allgemein:
 
:$$\it y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
 
 
:Mit den oben berechneten Zahlenwerten erh&auml;lt man
 
:$$y={\rm 3}/{\rm 4}\cdot \it x +\rm 1.$$
 
  
:Die Korrelationsgerade schneidet die <i>y</i>-Achse bei <u><i>y</i><sub>0</sub> = 1</u> und geht auch durch den Punkt (4, 4). Jedes andere Ergebnis w&auml;re auch nicht zu interpretieren, wenn man das Definitionsgebiet betrachtet. Setzt man <i>m<sub>x</sub></i> = 8/3 ein, so erh&auml;lt man <i>y</i> = <i>m<sub>y</sub></i> = 3. Das heißt: Die berechnete Korrelationsgerade geht tats&auml;chlich durch den Punkt (<i>m<sub>x</sub></i>, <i>m<sub>y</sub></i>), wie es die Theorie besagt.
+
'''(5)'''&nbsp; For the regression line ("RL"&nbsp; in the graph),&nbsp; in general:
 +
:$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
 +
*Using the numerical values calculated above,&nbsp; we obtain
 +
:$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$
 +
*The correlation line intersects the&nbsp; $y$-axis at&nbsp; $\underline{y=1}$&nbsp; and also passes through the point&nbsp; $(4, 4)$.&nbsp;  
 +
*Any other result would be impossible to interpret considering the definition area:
 +
::If one sets&nbsp; $m_x = 8/3$,&nbsp; one obtains&nbsp; $y = m_y = 3$.  
 +
*This means: &nbsp; The calculated correlation line actually passes through the point&nbsp; $(m_x, m_y)$,&nbsp; as the theory says.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.1 Zweidimensionale Zufallsgrößen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.1 Two-Dimensional Random Variables^]]

Latest revision as of 16:43, 13 March 2023

Triangular 2D area and the two marginal probability densities

We consider the same random variable  $(x, \ y)$  as in  Exercise 4.1:

  • In a domain defined by vertices  $(0,\ 1)$,  $(4,\ 3)$,  and $(4,\ 5)$  let the 2D–PDF  $f_{xy} (x, y) = 0.25$.
  • There are no values outside this definition area  $D$  marked in red in the graph.


Furthermore,  the two marginal probability densities with respect to the quantities  $x$  and  $y$  are drawn in the graph,  which have already been determined in Exercise 4.1.

From this,  the equations of chapter  Expected Values and Moments  can be used to determine the characteristics of the two random variables:

$$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$
$$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$

Due to the fact that the definition domain  $D$  is bounded by two straight lines  $y_1(x)$  and  $y_2(x)$ , the first order joint moment can be calculated here as follows.

$$m_{xy}={\rm E}\big[x\cdot y\big]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$





Hints:



Questions

1

What are the limit lines of the inner integral for the  $m_{xy}$ calculation?

$y_1(x) = x+1, $     $y_2(x) = 2x+1.$
$y_1(x) = x/2+1, $     $y_2(x) = x+1.$
$y_1(x) = x-1, $     $y_2(x) = 2x+1.$

2

Calculate the joint moment  $m_{xy}$  according to the double integral on the statement page.  Note:  Set  $x_1 = 0$  and  $x_2 = 4$.

$m_{xy} \ = \ $

3

What is the covariance  $\mu_{xy}$ ?

$\mu_{xy}\ = \ $

4

What is the correlation coefficient $\rho_{xy}$?

$\rho_{xy}\ = \ $

5

What is the equation of the regression line  $y = K(x)$?  At what point  $y_0$  does the straight line intersect the  $y$–axis?
Show that the correlation line also passes through the point  $(m_x, m_y)$.

$y_0\ = \ $


Solution

(1)  Correct is the  middle proposition:

  • Both  $y_1(x)$  and  $y_2(x)$  intersect the  $y$-axis at  $y= 1$.
  • The lower boundary line has slope  $0.5$,  the upper has slope  $1$.


(2)  According to the clues we get:

$$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot y \, \,{\rm d}y\,\, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot \big[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} \big] \,\, {\rm d}x. $$
  • This leads to the integral or final result:
$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$

(3)  Since both random variables each have a nonzero mean,  it follows for the covariance:

Regression line
$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$

(4)  With the given standard deviations we obtain:

$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$

(5)  For the regression line ("RL"  in the graph),  in general:

$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
  • Using the numerical values calculated above,  we obtain
$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$
  • The correlation line intersects the  $y$-axis at  $\underline{y=1}$  and also passes through the point  $(4, 4)$. 
  • Any other result would be impossible to interpret considering the definition area:
If one sets  $m_x = 8/3$,  one obtains  $y = m_y = 3$.
  • This means:   The calculated correlation line actually passes through the point  $(m_x, m_y)$,  as the theory says.