Difference between revisions of "Rechnen mit komplexen Zahlen (Lernvideo)"
From LNTwww
m (Text replacement - "_seit" to "_since") |
|||
Line 20: | Line 20: | ||
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von | Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von | ||
− | [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28at_L.C3.9CT_since_2014.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können. | + | [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28at_L.C3.9CT_since_2014.29|»Tasnád Kernetzky«]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können. |
Revision as of 18:03, 15 March 2023
Inhalt
- Reelle Zahlenmengen und Zahlenstrahl: Ganze Zahlen, natürliche ... , reelle ... , rationale ... , irrationale ... (Dauer 3:14)
- Darstellung komplexer Zahlen und Komplexe Ebene: Realteil, Imaginärteil, Betrag, Phase, Satz von Euler (Dauer 2:00)
- Rechenregeln für komplexe Zahlen: Summe, Differenz, Produkt, Quotient, Konjugiert-komplexe, Quadrat, Quadratwurzel (Dauer 6:36)
- Gesamtdauer 11:50
Erkannte Fehler
- Bei (10:30) muss es heißen: $d = z - z^\star = 2 {\rm j} \cdot y$ , wenn $z = x + {\rm j} \cdot y$ ist. Im Video wurde die imaginäre Einheit ${\rm j}$ vergessen.
Dieses Lernvideo wurde 2006 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch und Regie: Norbert Hanik und Günter Söder, Sprecher: Norbert Hanik, Realisierung: Franz Kohl und Manfred Jürgens.
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von »Tasnád Kernetzky« und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können.