Difference between revisions of "Applets:The Doppler Effect"

From LNTwww
 
(41 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{LntAppletLink|korrelation}}  
+
{{LntAppletLinkEnDe|dopplereffect_en|dopplereffect}}
 
 
  
 
==Applet Description==
 
==Applet Description==
 
<br>
 
<br>
The applet is intended to illustrate the &bdquo;Doppler effect&rdquo;, named after the Austrian mathematician, physicist and astronomer Christian Andreas Doppler. This predicts the change in the perceived frequency of waves of any kind, which occurs when the source (transmitter) and observer (receiver) move relative to each other.&nbsp; Because of this, the reception frequency $f_{\rm E}$&nbsp; differs from the transmission frequency $f_{\rm S}$.&nbsp; The Doppler frequency $f_{\rm D}=f_{\rm E}-f_{\rm S}$&nbsp; is positive if the observer and the source approach each other, otherwise the observer perceives a lower frequency than which was actually transmitted.
+
The applet is intended to illustrate the "Doppler effect", named after the Austrian mathematician, physicist and astronomer Christian Andreas Doppler.&nbsp; This predicts the change in the perceived frequency of waves of any kind, which occurs when the source (transmitter) and observer (receiver) move relative to each other.&nbsp; Because of this, the reception frequency $f_{\rm E}$&nbsp; differs from the transmission frequency $f_{\rm S}$.&nbsp; The Doppler frequency $f_{\rm D}=f_{\rm E}-f_{\rm S}$&nbsp; is positive if the observer and the source approach each other, otherwise the observer perceives a lower frequency than which was actually transmitted.
  
 
The exact equation for the reception frequency $f_{\rm E}$&nbsp; considering the theory of relativity is:
 
The exact equation for the reception frequency $f_{\rm E}$&nbsp; considering the theory of relativity is:
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 - v/c \cdot \cos(\alpha)}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}  {\text{ exact equation}}.$$
+
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 - v/c \cdot \cos(\alpha)}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}  {\text{ Exact equation}}.$$
 
*Here is&nbsp; $v$&nbsp; the relative speed between transmitter and receiver, while&nbsp; $c = 3 \cdot 10^8 \, {\rm m/s}$&nbsp; indicates the speed of light.
 
*Here is&nbsp; $v$&nbsp; the relative speed between transmitter and receiver, while&nbsp; $c = 3 \cdot 10^8 \, {\rm m/s}$&nbsp; indicates the speed of light.
 
*$\alpha$&nbsp; is the angle between the direction of movement and the connecting line between transmitter and receiver.
 
*$\alpha$&nbsp; is the angle between the direction of movement and the connecting line between transmitter and receiver.
Line 14: Line 13:
  
 
At realistic speeds&nbsp; $(v/c \ll 1)$&nbsp; the following approximation is sufficient, ignoring the effects of relativity:
 
At realistic speeds&nbsp; $(v/c \ll 1)$&nbsp; the following approximation is sufficient, ignoring the effects of relativity:
:$$f_{\rm E} \approx f_{\rm S} \cdot \big [1 +{v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\text{ approximation}}\hspace{0.05cm}.$$
+
:$$f_{\rm E} \approx f_{\rm S} \cdot \big [1 +{v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\text{ Approximation}}\hspace{0.05cm}.$$
For example, in the case of mobile communications, the deviations between&nbsp; $f_{\rm E}$&nbsp; and&nbsp; $f_{\rm S}$&nbsp; &ndash; the Doppler frequency $f_{\rm D}$&nbsp; &ndash; only a fraction of the transmission frequency.&nbsp;  
+
For example, in the case of mobile communications, the deviations between&nbsp; $f_{\rm E}$&nbsp; and&nbsp; $f_{\rm S}$&nbsp; &ndash; the Doppler frequency $f_{\rm D}$&nbsp; &ndash; is only a fraction of the transmission frequency.&nbsp;  
  
  
Line 23: Line 22:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; As&nbsp; $\rm Doppler effect$&nbsp; is the change in the perceived frequency of waves of any kind that occurs when the source (transmitter) and observer (receiver) move relative to each other. This was invented by the Austrian mathematician, physicist and astronomer &nbsp;[https://en.wikipedia.org/wiki/Christian_Doppler Christian Andreas Doppler]&nbsp; in the middle of the 19th century theoretically predicted and named after him.}}
+
$\text{Definition:}$&nbsp; The&nbsp; $\rm Doppler\:effect$&nbsp; is the change in the perceived frequency of waves of any kind that occurs when the source (transmitter) and observer (receiver) move relative to each other. This was theoretically predicted  by the Austrian mathematician, physicist and astronomer &nbsp;[https://en.wikipedia.org/wiki/Christian_Doppler "Christian Andreas Doppler"]&nbsp; in the middle of the 19th century and named after him.}}
  
  
The Doppler impact can be described qualitatively as follows:
+
Qualitatively, the Doppler effect can be described as follows:
 
*If the observer and the source approach each other, the frequency increases from the observer's point of view, regardless of whether the observer is moving or the source or both.<br>
 
*If the observer and the source approach each other, the frequency increases from the observer's point of view, regardless of whether the observer is moving or the source or both.<br>
  
Line 32: Line 31:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; We look at the change in pitch of the "Martinhorn" of an ambulance. As long as the vehicle is approaching, the observer hears a higher tone than when the vehicle is stationary. If the ambulance moves away, a lower tone is perceived.<br>
+
$\text{Example 1:}$&nbsp; We look at the change in pitch of the "Martinhorn" of an ambulance. As long as the vehicle is approaching, the observer hears a higher tone than when the vehicle is stationary.&nbsp; If the ambulance moves away, a lower tone is perceived.<br>
  
The same effect can be seen in a car race. The faster the cars drive, the clearer the frequency changes and the “sound”.}}<br>
+
The same effect can be seen in a car race.&nbsp; The frequency changes and the "sound" are all the clearer the faster the cars go. }}<br>
  
[[File:P ID2113 Mob T 1 3 S2a v1.png|right|frame|Ausgangslage:&nbsp; $\rm (S)$&nbsp; und&nbsp; $\rm (E)$&nbsp; bewegen sich nicht|class=fit]]
+
[[File:P ID2113 Mob T 1 3 S2a v1.png|right|frame|Starting position: $\rm (S)$ and $\rm (E)$ do not move|class=fit]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;  
+
$\text{Example 2:}$&nbsp;  
Some properties of this effect, which is still known from physics lessons, are now to be shown on the basis of screen shots from an earlier version of the present applet, with the dynamic program properties of course being lost.<br>
+
Some properties of this effect, which may be still known from physics lessons, are now to be shown on the basis of screen shots from an earlier version of the present applet, with the dynamic program properties of course being lost.<br>
  
 
The first graphic shows the initial situation:
 
The first graphic shows the initial situation:
 
*The stationary transmitter&nbsp; $\rm (S)$&nbsp; emits the constant frequency $f_{\rm S}$.  
 
*The stationary transmitter&nbsp; $\rm (S)$&nbsp; emits the constant frequency $f_{\rm S}$.  
*The wave propagation is illustrated in the graphic by concentric circles around&nbsp; $\rm (S)$&nbsp; illustrated.
+
*The wave propagation is illustrated in the graphic by concentric circles around&nbsp; $\rm (S)$.
*The receiver &nbsp; $\rm (E)$&nbsp;, which is also at rest, receives the frequency $f_{\rm E} = f_{\rm S}$.}}
+
*The receiver &nbsp; $\rm (E)$&nbsp;, which is also at rest, receives naturally the frequency $f_{\rm E} = f_{\rm S}$.}}
 
<br>
 
<br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; In this snapshot, the transmitter&nbsp; $\rm (S)$&nbsp; has moved from its starting point $\rm (S_0)$&nbsp; to the receiver $\rm (E)$ at a constant speed.
+
$\text{Example 3:}$&nbsp; In this snapshot, the transmitter&nbsp; $\rm (S)$&nbsp; has moved from its starting point&nbsp; $\rm (S_0)$&nbsp; to the receiver&nbsp; $\rm (E)$&nbsp; at a constant speed.
  
[[File:P ID2114 Mob T 1 3 S2b v2.png|right|frame|Dopplereffekt: $\rm (S)$ bewegt sich auf ruhenden $\rm (E)$ zu]]
+
[[File:P ID2114 Mob T 1 3 S2b v2.png|right|frame|Doppler effect: $\rm (S)$ moves towards the resting $\rm (E)$]]
  
*Das rechte Diagramm zeigt, dass die vom Empfänger wahrgenommene Frequenz $f_{\rm E}$&nbsp; (blaue Schwingung) um etwa&nbsp; $20\%$&nbsp; größer ist als die Frequenz $f_{\rm S}$&nbsp; am Sender (rote Schwingung).  
+
*The diagram on the right shows that the frequency $f_{\rm E}$ perceived by the receiver (blue oscillation) is about $20\%$ greater than the frequency $f_{\rm S}$ at the transmitter (red oscillation).  
*Aufgrund der Bewegung des Senders sind nun die Kreise nicht mehr konzentrisch.
+
*Due to the movement of the transmitter, the circles are no longer concentric.
  
[[File:P ID2115 Mob T 1 3 S2c v2.png|left|frame|Dopplereffekt: $\rm (S)$ entfernt sich vom ruhenden $\rm (E)$ ]]
+
[[File:P ID2115 Mob T 1 3 S2c v2.png|left|frame|Doppler effect: $\rm (S)$ moves away from resting $\rm (E)$ ]]
 
<br><br><br><br><br><br><br><br><br>
 
<br><br><br><br><br><br><br><br><br>
* Das linke Szenerio ergibt sich, wenn sich der Sender&nbsp; $\rm (S)$&nbsp; vom Empfänger&nbsp; $\rm (E)$&nbsp; entfernt: &nbsp;
+
* The left scenario is the result when the transmitter moves away from the receiver:
* Dann ist die Empfangsfrequenz $f_{\rm E}$&nbsp; (blaue Schwingung) um etwa&nbsp; $20\%$&nbsp; kleiner als die Sendefrequenz $f_{\rm S}$.<br>}}
+
* Then the reception frequency $f_{\rm E}$&nbsp; (blue oscillation)&nbsp; is about&nbsp; $20\%$&nbsp; lower than the transmission frequency $f_{\rm S}$.<br>}}
<br clear=all>
+
<br><br>
===Dopplerfrequenz als Funktion von Geschwindigkeit und Winkel der Verbindungslinie===
+
 
 +
===Doppler frequency as a function of speed and angle of the connecting line===
  
Wir vereinbaren:&nbsp; Gesendet wird die Frequenz $f_{\rm S}$&nbsp; und empfangen die Frequenz $f_{\rm E}$.&nbsp; Als Dopplerfrequenz bezeichnet man die Differenz $f_{\rm D} =  f_{\rm E} - f_{\rm S}$&nbsp; aufgrund der Relativbewegung zwischen Sender (Quelle) und Empfänger (Beobachter).  
+
We agree:&nbsp; The frequency $f_{\rm S}$&nbsp; is sent and the frequency $f_{\rm E}$&nbsp; is received.&nbsp; The Doppler frequency is the difference $f_{\rm D} =  f_{\rm E} - f_{\rm S}$&nbsp; due to the relative movement between the transmitter (source) and receiver (observer).
  
*Eine positive Dopplerfrequenz&nbsp; $(f_{\rm E} > f_{\rm S})$&nbsp; ergibt sich dann, wenn sich Sender und Empfänger&nbsp; (relativ)&nbsp; aufeinander zu bewegen.&nbsp;
+
*A positive Doppler frequency&nbsp; $(f_{\rm E} > f_{\rm S})$&nbsp; arises when transmitter and receiver move (relatively) towards each other.
*Eine negative Dopplerfrequenz&nbsp; $(f_{\rm E} < f_{\rm S})$&nbsp; bedeutet, dass sich Sender und Empfänger&nbsp; (direkt oder unter einem Winkel)&nbsp; voneinander entfernen.<br>
+
*A negative Doppler frequency&nbsp; $(f_{\rm E} < f_{\rm S})$&nbsp; means that transmitter and receiver are moving apart&nbsp; (directly or at an angle).<br>
  
  
Die exakte Gleichung für die Empfangsfrequenz $f_{\rm E}$&nbsp; unter Einbeziehung eines Winkels&nbsp; $\alpha$&nbsp; zwischen Bewegungsrichtung und der Verbindungslinie Sender&ndash;Empfänger lautet:
+
The exact equation for the reception frequency $f_{\rm E}$&nbsp; including an angle&nbsp; $\alpha$&nbsp; between the direction of movement and the connecting line between transmitter and receiver is:
::<math>f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 - v/c \cdot \cos(\alpha)}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}  {\text{ Exakte Gleichung}}.</math>
+
::<math>f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 - v/c \cdot \cos(\alpha)}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}  {\text{ Exact equation}}.</math>
Hierbei bezeichnet&nbsp; $v$&nbsp; die Relativgeschwindigkeit zwischen Sender und Empfänger, während&nbsp; $c = 3 \cdot 10^8 \, {\rm m/s}$&nbsp; die Lichtgeschwindigkeit angibt.&nbsp;
+
Here&nbsp; $v$&nbsp; denotes the relative speed between transmitter and receiver, while&nbsp; $c = 3 \cdot 10^8 \, {\rm m/s}$&nbsp; indicates the velocity of light.
  
*Die Grafiken im&nbsp; $\text{Beispiel 3}$&nbsp; gelten für die unrealistisch große Geschwindigkeit&nbsp; $v = c/5 = 60000\, {\rm km/s}$, die zu den Dopplerfrequenzen $f_{\rm D} = \pm 0.2\cdot f_{\rm S}$&nbsp; führen.
+
*The graphics in&nbsp; $\text{Example 3}$&nbsp; apply to the unrealistically high speed&nbsp; $v = c/5 = 60000\, {\rm km/s}$, which lead to the Doppler frequencies $f_{\rm D} = \pm 0.2\cdot f_{\rm S}$.
  
*Beim Mobilfunk sind die Abweichungen zwischen $f_{\rm S}$&nbsp; und $f_{\rm E}$&nbsp; dagegen meist nur ein Bruchteil der Sendefrequenz.&nbsp; Bei solchen realistischen Geschwindigkeiten&nbsp; $(v \ll c)$&nbsp; kann man von der folgenden Näherung ausgehen, bei der die durch die&nbsp; [https://de.wikipedia.org/wiki/Relativit%C3%A4tstheorie Relativitätstheorie]&nbsp; beschriebenen Effekte unberücksichtigt bleiben:
+
*In the case of mobile communications, the deviations between $f_{\rm S}$&nbsp; and $f_{\rm E}$&nbsp; are usually only a fraction of the transmission frequency.&nbsp; At such realistic velocities&nbsp; $(v \ll c)$&nbsp; one can start from the following approximation, which  does not take into account the effects described by the [https://en.wikipedia.org/wiki/Theory_of_relativity "theory of Relativity"]:
::<math>f_{\rm E} \approx f_{\rm S} \cdot \big [1 +{v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\text{ Näherung}}\hspace{0.05cm}.</math>   
+
::<math>f_{\rm E} \approx f_{\rm S} \cdot \big [1 +{v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\text{ Approach}}\hspace{0.05cm}.</math>   
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp; Wir gehen hier von einem festen Sender aus.&nbsp; Der Empfänger nähert sich dem Sender unter dem Winkel&nbsp; $\alpha = 0$.&nbsp;  
+
$\text{Example 4:}$&nbsp; We are assuming a fixed station here.&nbsp; The receiver approaches the transmitter at an angle $\alpha = 0$.&nbsp;  
  
Untersucht werden sollen verschiedene Geschwindigkeiten:
+
Different speeds are to be examined:
* eine unrealistisch große Geschwindigkeit&nbsp; $v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$ $\hspace{0.3cm}\Rightarrow\hspace{0.3cm}v_1/c = 0.6$,
+
* an unrealistically high speed&nbsp; $v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$ $\hspace{0.3cm}\Rightarrow\hspace{0.3cm}v_1/c = 0.6$,
* die Maximalgeschwindigkeit&nbsp; $v_2 = 3 \ {\rm km/s} \ \ (10800 \ {\rm km/h})$&nbsp; bei unbemanntem Testflug&nbsp; $\hspace{0.3cm}\Rightarrow\hspace{0.3cm}v_2/c = 10^{-5}$,
+
* the maximum speed&nbsp; $v_2 = 3 \ {\rm km/s} \ \ (10800 \ {\rm km/h})$&nbsp; for an unmanned space flight&nbsp; $\hspace{0.3cm}\Rightarrow\hspace{0.3cm}v_2/c = 10^{-5}$,
* etwa die Höchstgeschwindigkeit&nbsp; $v_3 = 30 \ {\rm m/s} = 108 \ \rm km/h$&nbsp; auf Bundesstraßen&nbsp; $\hspace{0.3cm}\Rightarrow\hspace{0.3cm}v_3/c = 10^{-7}$.
+
* approximately the top speed&nbsp; $v_3 = 30 \ {\rm m/s} = 108 \ \rm km/h$&nbsp; on federal roads&nbsp; $\hspace{0.3cm}\Rightarrow\hspace{0.3cm}v_3/c = 10^{-7}$.
  
  
'''(1)'''&nbsp; Nach der exakten, relativistischen ersten Gleichung gilt:
+
'''(1)'''&nbsp; According to the exact, relativistic first equation:
 
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 - v/c }   
 
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 - v/c }   
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S}  = f_{\rm S} \cdot \left [  \frac{\sqrt{1 - (v/c)^2} }{1 - v/c } - 1 \right ]$$
+
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S}  = f_{\rm S} \cdot \left [  \frac{\sqrt{1 - (v/c)^2} }{1 - v/c } - 1 \right ]\hspace{0.3cm}
:$$\hspace{4.8cm}
 
 
\Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - (v/c)^2} }{1 - v/c } - 1 \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - (v/c)^2} }{1 - v/c } - 1 \hspace{0.05cm}.$$
  
:$$\Rightarrow\hspace{0.3cm}v_1/c = 0.6\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - 0.6^2} }{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1}$$
+
:$$\Rightarrow\hspace{0.3cm}v_1/c = 0.6\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - 0.6^2} }{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 = 1
:$$
+
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 2
\hspace{2.6cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 2
 
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
:$$\Rightarrow\hspace{0.3cm}v_2/c = 10^{\rm -5}\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - (10^{-5})^2} }{1 - (10^{-5}) } - 1  \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5} }$$
+
:$$\Rightarrow\hspace{0.3cm}v_2/c = 10^{\rm -5}\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - (10^{-5})^2} }{1 - (10^{-5}) } - 1  \approx 1 + 10^{-5} - 1 = 10^{-5} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 1.00001
:$$\hspace{2.85cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 1.00001
 
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
:$$\Rightarrow\hspace{0.3cm}v_3/c = 10^{\rm -7}\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - (10^{-7})^2} }{1 - (10^{-7}) } - 1  \approx 1 + 10^{-7} - 1 \hspace{0.15cm} \underline{ = 10^{-7} }$$
+
:$$\Rightarrow\hspace{0.3cm}v_3/c = 10^{\rm -7}\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - (10^{-7})^2} }{1 - (10^{-7}) } - 1  \approx 1 + 10^{-7} - 1 = 10^{-7} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 1.0000001
:$$\hspace{2.85cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 1.0000001
 
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(2)'''&nbsp; Dagegen gilt nach der Näherung, also ohne Berücksichtigung  der Relativitätstheorie:
+
'''(2)'''&nbsp; On the other hand, according to the approximation, i.e. without taking into account the theory of relativity:
 
:$$f_{\rm E} =  f_{\rm S} \cdot \big [ 1 + {v}/{c}  \big ]
 
:$$f_{\rm E} =  f_{\rm S} \cdot \big [ 1 + {v}/{c}  \big ]
 
  \Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } = {v}/{c}  \hspace{0.05cm}.$$
 
  \Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } = {v}/{c}  \hspace{0.05cm}.$$
Line 115: Line 111:
  
 
{{BlaueBox|TEXT=  
 
{{BlaueBox|TEXT=  
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
#&nbsp; Für &bdquo;kleine&rdquo; Geschwindigkeiten  liefert die Näherung bis hin zur Genauigkeit eines Taschenrechners das gleiche Ergebnis wie die relativistische Gleichung.
+
#&nbsp; For "low speeds", the approximation to the accuracy of a calculator gives the same result as the relativistic equation.
#&nbsp; Die Zahlenwerte zeigen, dass wir auch die Geschwindigkeit&nbsp; $v_2 = \ 10800 \ {\rm km/h}$&nbsp; in dieser Hinsicht noch als &bdquo;klein&rdquo; bewerten können.}}
+
#&nbsp; The numerical values ​​show that we can also rate the speed&nbsp; $v_2 = \ 10800 \ {\rm km/h}$&nbsp; as "low" in this respect.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 5:}$&nbsp; Es gelten die gleichen Voraussetzungen wie im letzten Beispiel mit dem Unterschied:&nbsp; Nun entfernt sich der Empfänger vom Sender&nbsp; $(\alpha = 180^\circ)$.
+
$\text{Example 5:}$&nbsp; The same requirements apply as in the last example with the difference: Now the receiver moves away from the transmitter $(\alpha = 180^\circ)$.
  
'''(1)'''&nbsp; Nach der exakten, relativistischen ersten Gleichung gilt mit&nbsp; ${\rm cos}(\alpha) = -1$:  
+
'''(1)'''&nbsp; According to the exact, relativistic first equation with&nbsp; ${\rm cos}(\alpha) = -1$:  
  
 
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 + v/c }   
 
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 + v/c }   
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S}  = f_{\rm S} \cdot \left [  \frac{\sqrt{1 - (v/c)^2} }{1 + v/c } - 1 \right ]\hspace{0.3cm}$$
+
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S}  = f_{\rm S} \cdot \left [  \frac{\sqrt{1 - (v/c)^2} }{1 + v/c } - 1 \right ] \hspace{0.3cm}  \Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - (v/c)^2} }{1 + v/c } - 1 \hspace{0.05cm}.$$
:$$\hspace{4.8cm}   
 
\Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - (v/c)^2} }{1 + v/c } - 1 \hspace{0.05cm}.$$
 
  
 
:$$\Rightarrow\hspace{0.3cm}v_1/c = 0.6\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - 0.6^2} }{1 + 0.6 } - 1 = \frac{0.8}{1.6 } - 1 =-0.5
 
:$$\Rightarrow\hspace{0.3cm}v_1/c = 0.6\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } =  \frac{\sqrt{1 - 0.6^2} }{1 + 0.6 } - 1 = \frac{0.8}{1.6 } - 1 =-0.5
Line 137: Line 131:
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 0.99999
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 0.99999
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
'''(2)'''&nbsp; Dagegen gilt nach der Näherung, also ohne Berücksichtigung  der Relativitätstheorie:
+
'''(2)'''&nbsp; On the other hand, according to the approximation, i.e. without taking into account the theory of relativity:
:$$f_{\rm E} =  f_{\rm S} \cdot \big [ 1 - {v}/{c}  \big ]   
+
:$$f_{\rm E} =  f_{\rm S} \cdot \big [ 1 - {v}/{c}  \big ] \hspace{0.3cm}  
 
  \Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } = - {v}/{c}  \hspace{0.05cm}.$$
 
  \Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } = - {v}/{c}  \hspace{0.05cm}.$$
  
Line 146: Line 140:
  
 
{{BlaueBox|TEXT=  
 
{{BlaueBox|TEXT=  
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
#&nbsp; Die Empfangsfrequenz&nbsp; $f_{\rm E}$&nbsp; ist nun kleiner als die Sendefrequenz&nbsp; $f_{\rm S}$&nbsp; und die Dopplerfrequenz&nbsp; $f_{\rm D}$&nbsp; ist negativ.&nbsp;
+
#&nbsp; The reception frequency&nbsp; $f_{\rm E}$&nbsp; is now lower than the transmission frequency&nbsp; $f_{\rm S}$&nbsp; and the Doppler frequency &nbsp; $f_{\rm D}$&nbsp; is negative.  
#&nbsp; Bei der Näherung unterscheiden sich die Dopplerfrequenzen für die beiden Bewegungsrichtungen nur im Vorzeichen &nbsp; &rArr; &nbsp; $f_{\rm E} = f_{\rm S} \pm f_{\rm D}$.  
+
#&nbsp; Using the approximation, the Doppler frequencies for the two directions of movement differ only in the sign &nbsp; &rArr; &nbsp; $f_{\rm E} = f_{\rm S} \pm f_{\rm D}$.  
#&nbsp; Bei der exakten, relativistischen Gleichung ist diese Symmetrie nicht gegeben. }}
+
#&nbsp; This symmetry does not exist with the exact, relativistic equation. }}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 6:}$&nbsp; Nun betrachten wir die auch für den Mobilfunk realistische Geschwindigkeit&nbsp; $v = 30 \ {\rm m/s} = 108 \ \rm km/h$ &nbsp; &rArr; &nbsp; $v/c=10^{-7}$.&nbsp;
+
$\text{Example 6:}$&nbsp; Now let's look at the speed that is also realistic for mobile communications&nbsp; $v = 30 \ {\rm m/s} = 108 \ \rm km/h$ &nbsp; &rArr; &nbsp; $v/c=10^{-7}$.&nbsp;
  
[[File:P_ID2118__Mob_Z_1_4.png|right|frame|Richtungen &nbsp;$\rm (A)$, &nbsp;$\rm (B)$,&nbsp;$\rm (C)$,&nbsp;$\rm (D)$]]
+
[[File:P_ID2118__Mob_Z_1_4.png|right|frame|Directions &nbsp;$\rm (A)$, &nbsp;$\rm (B)$,&nbsp;$\rm (C)$,&nbsp;$\rm (D)$]]
  
*Damit können wir uns auf die nichtrelativistische Näherung beschränken: &nbsp; $f_{\rm D} =  f_{\rm E} -  f_{\rm S} = f_{\rm S} \cdot  {v}/{c} \cdot  \cos(\alpha) \hspace{0.05cm}.$
+
*This allows us to limit ourselves to the non-relativistic approximation: &nbsp; $f_{\rm D} =  f_{\rm E} -  f_{\rm S} = f_{\rm S} \cdot  {v}/{c} \cdot  \cos(\alpha) \hspace{0.05cm}.$
*Wie in den vorherigen Beispielen sei der Sender fest.&nbsp; Die Sendefrequenz betrage&nbsp; $f_{\rm S} = 2 \ {\rm GHz}$.  
+
*As in the previous examples, the transmitter is fixed. The transmission frequency is&nbsp; $f_{\rm S} = 2 \ {\rm GHz}$.  
  
  
Die Grafik zeigt mögliche Bewegungsrichtungen des Empfängers.&nbsp;  
+
The graphic shows possible directions of movement of the receiver.&nbsp;  
* Die Richtung &nbsp;$\rm (A)$&nbsp; wurde im&nbsp; $\text{Beispiel 4}$&nbsp; betrachtet.&nbsp; Mit den aktuellen Parameterwerten ergibt sich
+
* The direction &nbsp;$\rm (A)$&nbsp; was used in $\text{Example 4}$&nbsp;.&nbsp; With the current parameter values
  
 
:$$f_{\rm D} =  2 \cdot 10^{9}\,\,{\rm Hz} \cdot  \frac{30\,\,{\rm m/s} }{3 \cdot 10^{8}\,\,{\rm m/s} } = 200\,{\rm Hz}.$$
 
:$$f_{\rm D} =  2 \cdot 10^{9}\,\,{\rm Hz} \cdot  \frac{30\,\,{\rm m/s} }{3 \cdot 10^{8}\,\,{\rm m/s} } = 200\,{\rm Hz}.$$
  
* Für die Richtung &nbsp;$\rm (B)$&nbsp; erhält man gemäß&nbsp; $\text{Beispiel 5}$&nbsp; den gleichen Zahlenwert mit negativem Vorzeichen: &nbsp;  
+
* For the direction &nbsp;$\rm (B)$&nbsp; you get the same numerical value with negative sign according to&nbsp; $\text{Example 5}$: &nbsp;  
 
:$$f_{\rm D}    = -200\,{\rm Hz}.$$
 
:$$f_{\rm D}    = -200\,{\rm Hz}.$$
  
* Die Fahrtrichtung&nbsp; $\rm (C)$&nbsp; verläuft senkrecht&nbsp; $(\alpha = 90^\circ)$&nbsp; zur Verbindungslinie Sender&ndash;Empfänger.&nbsp; In diesem Fall tritt keine Dopplerverschiebung auf:  
+
* The direction of travel&nbsp; $\rm (C)$&nbsp; is perpendicular&nbsp; $(\alpha = 90^\circ)$&nbsp; to the connecting line between transmitter and receiver.&nbsp; In this case there is no Doppler shift:  
 
:$$f_{\rm D} = 0.$$  
 
:$$f_{\rm D} = 0.$$  
* Die Bewegungsrichtung&nbsp; $\rm (D)$&nbsp; ist durch&nbsp; $\alpha = \ -135^\circ$ charakterisiert.&nbsp; Daraus resultiert:
+
* The direction of movement&nbsp; $\rm (D)$&nbsp; is characterized by&nbsp; $\alpha = \ -135^\circ$.&nbsp; This results:
 
:$$f_{\rm D} =  200 \,{\rm Hz} \cdot  \cos(-135^{\circ})  \approx -141\,\,{\rm Hz}  \hspace{0.05cm}.$$
 
:$$f_{\rm D} =  200 \,{\rm Hz} \cdot  \cos(-135^{\circ})  \approx -141\,\,{\rm Hz}  \hspace{0.05cm}.$$
 
}}
 
}}
 +
<br><br>
  
 +
=== Doppler frequency and its distribution===
  
=== Dopplerfrequenz und deren Verteilung===
+
We briefly summarize the statements in the last section, while we proceed with the second, the non – relativistic equation:
 
+
*A relative movement between transmitter (source) and receiver (observer) results in a shift by the Doppler frequency&nbsp; $f_{\rm D} =  f_{\rm E} - f_{\rm S}$.  
Wir fassen die Aussagen der letzten Seite nochmals kurz zusammen, wobei wir von der zweiten, also der nicht&ndash;relativistischen Gleichung ausgehen:
 
*Bei einer Relativbewegung zwischen Sender (Quelle) und Empfänger (Beobachter) kommt es zu einer Verschiebung um die Dopplerfrequenz&nbsp; $f_{\rm D} =  f_{\rm E} - f_{\rm S}$.  
 
  
*Eine positive Dopplerfrequenz&nbsp; $(f_{\rm E} > f_{\rm S})$&nbsp; ergibt sich dann, wenn sich Sender und Empfänger&nbsp; (relativ)&nbsp; aufeinander zu bewegen.&nbsp; Eine negative Dopplerfrequenz&nbsp; $(f_{\rm E} < f_{\rm S})$&nbsp; bedeutet, dass sich Sender und Empfänger&nbsp; (direkt oder unter einem Winkel)&nbsp; voneinander entfernen.<br>
+
*A positive Doppler frequency&nbsp; $(f_{\rm E} > f_{\rm S})$&nbsp; results when the transmitter and receiver move (relatively) towards each other.  
 +
*A negative Doppler frequency&nbsp; $(f_{\rm E} < f_{\rm S})$&nbsp; means, that the sender and receiver are moving apart (directly or at an angle).<br>
  
*Die maximale Frequenzverschiebung tritt auf, wenn sich Sender und Empfänger direkt aufeinander zu bewegen &nbsp; &#8658; &nbsp; Winkel&nbsp; $\alpha = 0^\circ$.&nbsp; Dieser Maximalwert hängt in erster Näherung von der Sendefrequenz&nbsp; $ f_{\rm S}$&nbsp; und der Geschwindigkeit&nbsp; $v$&nbsp; ab &nbsp; $(c = 3 \cdot 10^8 \, {\rm m/s}$&nbsp; gibt die Lichtgeschwindigkeit an$)$:&nbsp; $f_{\rm D, \hspace{0.05cm} max} = f_{\rm S} \cdot  {v}/{c}  \hspace{0.05cm}.$
+
*The maximum frequency shift occurs when the transmitter and receiver move directly towards each other &nbsp; &#8658; &nbsp; angle&nbsp; $\alpha = 0^\circ$.&nbsp; This maximum value depends in the first approximation on the transmission frequency&nbsp; $ f_{\rm S}$&nbsp; and the speed&nbsp; $v$&nbsp; $(c = 3 \cdot 10^8 \, {\rm m/s}$&nbsp; indicates the velocity of light$)$:&nbsp; $f_{\rm D, \hspace{0.05cm} max} = f_{\rm S} \cdot  {v}/{c}  \hspace{0.05cm}.$
  
*Erfolgt die Relativbewegung unter einem beliebigen Winkel&nbsp; $\alpha$&nbsp; zur Verbindungslinie Sender&ndash;Empfänger, so entsteht eine Dopplerverschiebung um
+
*If the relative movement occurs at any angle&nbsp; $\alpha$&nbsp; to  the transmitter-receiver connection line, the Doppler shift is
  
 
::<math>f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm D, \hspace{0.05cm} max}  \cdot  \cos(\alpha)   
 
::<math>f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm D, \hspace{0.05cm} max}  \cdot  \cos(\alpha)   
Line 192: Line 187:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Unter der Annahme gleichwahrscheinlicher Bewegungsrichtungen&nbsp; $($Gleichverteilung für den Winkel&nbsp; $\alpha$&nbsp; im Bereich&nbsp; $- \pi \le \alpha \le +\pi)$&nbsp; ergibt sich für die Wahrscheinlichkeitsdichtefunktion&nbsp; $($hier mit &bdquo;wdf&rdquo; bezeichnet$)$&nbsp; der Dopplerfrequenz im Bereich&nbsp; $- f_\text{D, max} \le f_{\rm D} \le + f_\text{D, max}$:
+
$\text{Conclusion:}$&nbsp; Assuming equally probable directions of movement &nbsp; $($uniform distribution for the angle&nbsp; $\alpha$&nbsp; in the area&nbsp; $- \pi \le \alpha \le +\pi)$&nbsp; results for the probability density function&nbsp; $($referred to here as "pdf"$)$&nbsp; the Doppler frequency in the range&nbsp; $- f_\text{D, max} \le f_{\rm D} \le + f_\text{D, max}$:
  
::<math>{\rm wdf}(f_{\rm D}) = \frac{1}{2\pi \cdot f_{\rm D, \hspace{0.05cm} max}  \cdot \sqrt {1 - (f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2 }  }
+
::<math>{\rm pdf}(f_{\rm D}) = \frac{1}{2\pi \cdot f_{\rm D, \hspace{0.05cm} max}  \cdot \sqrt {1 - (f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2 }  }
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Außerhalb des Bereichs  zwischen&nbsp; $-f_{\rm D}$&nbsp; und&nbsp; $+f_{\rm D}$&nbsp; hat die Wahrscheinlichkeitsdichtefunktion stets den Wert Null.
+
Outside the range between&nbsp; $-f_{\rm D}$&nbsp; and&nbsp; $+f_{\rm D}$&nbsp;, the probability density function is always zero.
  
[[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh-Prozesses#Dopplerfrequenz_und_deren_Verteilung|$\text{Herleitung}$]]&nbsp; über die  &bdquo;Nichtlineare Transformation von Zufallsgrößen&rdquo;}}<br>
+
[[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#Doppler_frequency_and_its_distribution|$\text{"Derivation"}$]]&nbsp; about the “nonlinear transformation of random quantities”.}}<br>
  
  
  
=== Leistungsdichtespektrum bei Rayleigh–Fading ===
+
=== Power density spectrum in Rayleigh fading ===
  
Wir setzen nun eine in alle Richtungen gleich abstrahlende Antenne voraus.&nbsp; Dann ist das Doppler&ndash;$\rm LDS$&nbsp; (Leistungsdichtespektrum)&nbsp; formgleich mit der&nbsp; $\rm WDF$&nbsp; (Wahrscheinlichkeitsdichtefunktion)&nbsp; der Dopplerfrequenzen.  
+
We now presuppose an antenna radiating equally in all directions.&nbsp; Then the Doppler&ndash; $ \rm PDS $&nbsp; $($Power Density Spectrum$)$&nbsp; has the same shape as the&nbsp; $ \rm PDF $&nbsp; $($Probability Density Function$)$&nbsp; of the Doppler frequencies.
  
*Für die Inphasekomponente&nbsp; ${\it \Phi}_x(f_{\rm D})$&nbsp; des LDS muss die WDF noch mit der Leistung&nbsp; $\sigma^2$&nbsp; des Gaußprozesses multipliziert werden.  
+
*For the in-phase component&nbsp; ${\it \Phi}_x(f_{\rm D})$&nbsp; of the PDS, the PDF must still be multiplied by the variance&nbsp; $\sigma^2$&nbsp; of the Gaussian process.  
*Für das resultierende LDS&nbsp; ${\it \Phi}_z(f_{\rm D})$&nbsp; des komplexen Faktors&nbsp; $z(t) =  x(t) + {\rm j} \cdot y(t) $&nbsp; gilt nach Verdoppelung:
+
*For the resulting PDS&nbsp; ${\it \Phi}_z(f_{\rm D})$&nbsp; of the complex factor&nbsp; $z(t) =  x(t) + {\rm j} \cdot y(t) $&nbsp; applies after doubling:
  
 
::<math>{\it \Phi}_z(f_{\rm D}) =
 
::<math>{\it \Phi}_z(f_{\rm D}) =
Line 214: Line 209:
 
0  \end{array} \right.\quad
 
0  \end{array} \right.\quad
 
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} |f_{\rm D}| \le f_{\rm D, \hspace{0.05cm} max}
 
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} |f_{\rm D}| \le f_{\rm D, \hspace{0.05cm} max}
\\  {\rm sonst} \\ \end{array}
+
\\  {\rm other} \\ \end{array}
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Man nennt diesen Verlauf nach&nbsp; [http://ethw.org/William_C._Jakes,_Jr. William C. Jakes Jr.]&nbsp; das&nbsp; '''Jakes&ndash;Spektrum'''.&nbsp; Die Verdoppelung ist notwendig, da bisher nur der Beitrag des Realteils&nbsp; $x(t)$&nbsp; betrachtet wurde. <br>
+
This course is called&nbsp; '''Jakes spectrum'''&nbsp; named after&nbsp; [http://ethw.org/William_C._Jakes,_Jr. "William C. Jakes Jr."].&nbsp; The doubling is necessary, because so far only the contribution of the real part&nbsp; $x(t)$&nbsp; has been considered.<br>
  
[[File:P_ID2117__Mob_T_1_3_S4_v2.png|right|frame|Doppler–LDS und Zeitfunktion (Betrag in dB) bei Rayleigh-Fading mit Dopplereffekt]]
+
[[File:P_ID2117__Mob_T_1_3_S4_v2.png|right|frame|Doppler PDS and time function (magnitude in dB) for Rayleigh fading with Doppler effect]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 7:}$&nbsp; Links dargestellt ist das Jakes&ndash;Spektrum 
+
$\text{Example 7:}$&nbsp; The Jakes spectrum is shown on the left 
*für&nbsp; $f_{\rm D, \hspace{0.05cm} max} = 50 \ \rm Hz$&nbsp; (blaue Kurve) bzw.  
+
*for $f_{\rm D, \hspace{0.05cm} max} = 50 \ \rm Hz$&nbsp; (blue curve) bzw.  
*für&nbsp;  $f_{\rm D, \hspace{0.05cm} max} = 100 \ \rm Hz$&nbsp; (rote Kurve).
+
*for $f_{\rm D, \hspace{0.05cm} max} = 100 \ \rm Hz$&nbsp; (red curve).
 
   
 
   
  
Beim&nbsp; [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_GSM#Zellularstruktur_von_GSM|GSM&ndash;D&ndash;Netz]]&nbsp; $(f_{\rm S} = 900 \ \rm MHz)$&nbsp; entsprechen diese Werte den Geschwindigkeiten&nbsp; $v = 60 \ \rm  km/h$&nbsp; bzw.&nbsp; $v = 120 \ \rm  km/h$.  
+
In the&nbsp; [[Examples_of_Communication_Systems/General_Description_of_GSM#Cellular_structure_of_GSM|"GSM&ndash;D network"]]&nbsp; $(f_{\rm S} = 900 \ \rm MHz)$&nbsp; these values ​​correspond to the speeds&nbsp; $v = 60 \ \rm  km/h$&nbsp; and&nbsp; $v = 120 \ \rm  km/h$&nbsp; respectively.  
  
Beim E&ndash;Netz&nbsp; $(f_{\rm S} = 1.8 \ \rm GHz)$&nbsp; gelten diese Werte für halb so große Geschwindigkeiten: &nbsp; $v = 30 \ \rm  km/h$&nbsp; bzw.&nbsp; $v = 60 \ \rm  km/h$.  
+
For the GSM&ndash;E network $(f_{\rm S} = 1.8 \ \rm GHz)$&nbsp; these values ​​apply to speeds that are half as high: &nbsp; $v = 30 \ \rm  km/h$&nbsp; and&nbsp; $v = 60 \ \rm  km/h$&nbsp; respectively.  
  
Das rechte Bild zeigt den logarithmierten Betrag von&nbsp; $z(t)$:  
+
The right picture shows the logarithmic magnitude of&nbsp; $z(t)$:  
*Man erkennt das doppelt so schnelle Fading des roten Kurvenverlaufs.  
+
*You can see that the red curve is fading twice as fast as the blue one.
*Die Rayleigh&ndash;WDF (Amplitudenverteilung) ist unabhängig von&nbsp; $f_{\rm D, \hspace{0.05cm} max}$&nbsp; und deshalb für beide Fälle gleich.}}<br>
+
*The Rayleigh – PDF (amplitude distribution) is independent of&nbsp; $f_{\rm D, \hspace{0.05cm} max}$&nbsp; and is therefore the same for both cases.}}<br>
  
  
 
==Exercises==
 
==Exercises==
  
[[File:Exercises_binomial_fertig.png|right]]
+
* First select the number&nbsp; $(1, 2, \text{...})$&nbsp; of the exercise.&nbsp; The number&nbsp; $0$&nbsp; corresponds to a "Reset":&nbsp; Same setting as at program start.
*Wählen Sie zunächst die Nummer&nbsp; '''1'''&nbsp; ...&nbsp; '''9'''&nbsp; der zu bearbeitenden Aufgabe.
+
*A task description is displayed.&nbsp; The parameter values ​​are adjusted.&nbsp; Solution after pressing "Show solution". <br>
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
+
*In the following descriptions, $f_{\rm S}$, $f_{\rm E}$&nbsp; and$f_{\rm D}$&nbsp; are each normalized to the reference frequency $f_{\rm 0}$.
*Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
 
*Die Nummer&nbsp; '''0'''&nbsp; entspricht einem &bdquo;Reset&rdquo;:&nbsp; Gleiche Einstellung wie beim Programmstart.
 
*In den folgenden Beschreibungen sind $f_{\rm S}$, $f_{\rm E}$&nbsp; und $f_{\rm D}$&nbsp; jeweils auf die Bezugsfrequenz $f_{\rm 0}$&nbsp; normiert.
 
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(1)'''&nbsp; Zunächst betrachten wir die relativistische Einstellung &bdquo;Exakt&rdquo;.&nbsp; Der Sender bewegt sich mit&nbsp; $v/c = 0.8$,&nbsp; die Sendefrequenz sei&nbsp; $f_{\rm S}= 1$.<br>&nbsp; &nbsp; &nbsp; &nbsp; Welche Empfangsfrequenzen&nbsp; $f_{\rm E}$&nbsp; ergeben sich bei beiden Bewegungsrichtungen?&nbsp; Wie groß ist jeweils die Dopplerfrequenz&nbsp; $f_{\rm D}$?}}
+
'''(1)'''&nbsp; First we consider the relativistic setting "Exact".&nbsp; The transmitter moves with&nbsp; $v/c = 0.8$,&nbsp; the transmission frequency is $f_{\rm S}= 1$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Which reception frequencies&nbsp; $f_{\rm E}$&nbsp; result in both directions of movement?&nbsp; What is the Doppler frequency $f_{\rm D}$?}}
  
:*&nbsp;Nähert sich der Sender unter dem Winkel&nbsp; $\varphi=0^\circ$&nbsp; dem Empfänger an, ergibt sich die Empfangsfrequenz&nbsp; $f_{\rm E}= 3$ &nbsp; &rArr; &nbsp; $f_{\rm D}= f_{\rm E} - f_{\rm S}= 2$.  
+
:*&nbsp; If the transmitter approaches the receiver under the angle&nbsp; $\varphi=0^\circ$&nbsp;, the reception frequency is $f_{\rm E}= 3$ &nbsp; &rArr; &nbsp; $f_{\rm D}= f_{\rm E} - f_{\rm S}= 2$.  
:*&nbsp;Entfernt sich der Sender vom Empfänger&nbsp; $($für&nbsp; $\varphi=0^\circ$,&nbsp;wenn er diesen überholt, oder&nbsp; $\varphi=180^\circ)$, dann:&nbsp; $f_{\rm E}= 0.333$ &nbsp; &rArr; &nbsp;  $f_{\rm D}=  -0.667$.  
+
:*&nbsp; If the transmitter moves away from the receiver&nbsp; $($for&nbsp; $\varphi=0^\circ$,&nbsp;if it overtakes it, or&nbsp; $\varphi=180^\circ)$, then:&nbsp; $f_{\rm E}= 0.333$ &nbsp; &rArr; &nbsp;  $f_{\rm D}=  -0.667$.  
:*&nbsp;Gleiches Ergebnis bei ruhendem Sender und sich bewegendem Empfänger:&nbsp; Kommen sich beide näher, dann gilt&nbsp; $f_{\rm D}= 2$,&nbsp; sonst&nbsp; $f_{\rm D}= -0.667$.     
+
:*&nbsp;The same result with the transmitter at rest and the receiver moving:&nbsp; If both come closer, then&nbsp; $f_{\rm D}= 2$&nbsp; applies, otherwise&nbsp; $f_{\rm D}= -0.667$.     
 
   
 
   
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(2)'''&nbsp; Die Einstellungen bleiben weitgehend erhalten.&nbsp; Wie ändern sich sich die Ergebnisse gegenüber&nbsp; '''(1)'''&nbsp; mit der Sendefrequenz&nbsp; $f_{\rm S}= 1.5$?<br>&nbsp; &nbsp; &nbsp; &nbsp;   Tipp für eine möglichst zeitsparende Versuchsdurchführung:&nbsp; Schalten Sie abwechselnd zwischen &bdquo;Rechts&rdquo; und &bdquo;Links&rdquo; hin und her.}}
+
'''(2)'''&nbsp; The settings are largely retained.&nbsp; How do the results change compared to&nbsp; $(1)$&nbsp; with the transmission frequency $f_{\rm S}= 1.5$?<br>&nbsp; &nbsp; &nbsp; &nbsp; Tip for a time-saving experiment:&nbsp; Switch alternately between "right" and "left".}}
  
:*&nbsp;Bewegungsrichtung&nbsp; $\varphi=0^\circ$:&nbsp;  $f_{\rm E}= 4.5$ &nbsp; &rArr; &nbsp;  $f_{\rm D}= f_{\rm E} - f_{\rm S}=  3$. &nbsp; Somit:&nbsp; $f_{\rm E}/f_{\rm S}= 3$,&nbsp; $f_{\rm D}/f_{\rm S}= 2$ &nbsp; &rArr; &nbsp; Beides wie in&nbsp; '''(1)'''.  
+
:*&nbsp;Direction of movement $\varphi=0^\circ$: $f_{\rm E}= 4.5$ &rArr; &nbsp;  $f_{\rm D}= f_{\rm E} - f_{\rm S}=  3$.&nbsp; Thus: $f_{\rm E}/f_{\rm S}= 3$, $f_{\rm D}/f_{\rm S}= 2$ &nbsp; &rArr; &nbsp; Both as in&nbsp; $(1)$.  
:*&nbsp;Bewegungsrichtung&nbsp; $\varphi=180^\circ$:&nbsp; $f_{\rm E}= 0.5$ &nbsp; &rArr; &nbsp; $f_{\rm D}=  -1$. &nbsp; Somit:&nbsp; $f_{\rm E}/f_{\rm S}= 0.333$,&nbsp; $f_{\rm D}/f_{\rm S}= -0.667$&nbsp; &rArr; &nbsp; Beides wie in&nbsp; '''(1)'''.
+
:*&nbsp;Direction of movement $\varphi=180^\circ$:&nbsp; $f_{\rm E}= 0.5$ &nbsp; &rArr; &nbsp; $f_{\rm D}=  -1$.&nbsp; Thus: $f_{\rm E}/f_{\rm S}= 0.333$,&nbsp; $f_{\rm D}/f_{\rm S}= -0.667$&nbsp; &rArr; &nbsp; Both as in&nbsp; $(1)$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(3)'''&nbsp; Weiterhin relativistische Einstellung &bdquo;Exakt&rdquo;.&nbsp; Der Sender bewegt sich nun mit Geschwindigkeit&nbsp; $v/c = 0.4$&nbsp; und die Sendefrequenz sei&nbsp; $f_{\rm S}= 2$.<br>&nbsp; &nbsp; &nbsp; &nbsp; Welche Frequenzen&nbsp; $f_{\rm D}$&nbsp; und&nbsp; $f_{\rm E}$&nbsp; ergeben sich bei beiden Bewegungsrichtungen?&nbsp; Wählen Sie wieder abwechselnd  &bdquo;Rechts&rdquo; bzw. &bdquo;Links&rdquo;.}}
+
'''(3)'''&nbsp; Still relativistic setting "Exact".&nbsp; The transmitter is now moving at a speed of&nbsp; $v/c = 0.4$&nbsp; and the transmission frequency is $f_{\rm S}= 2$.<br>&nbsp; &nbsp; &nbsp; &nbsp; Which frequencies $f_{\rm D}$&nbsp; and&nbsp; $f_{\rm E}$&nbsp; result in both directions of movement?&nbsp; Alternately select "Right" or "Left" again.}}
  
:*&nbsp;Bewegungsrichtung&nbsp; $\varphi=0^\circ$:&nbsp; Empfangsfrequenz&nbsp; $f_{\rm E}= 3.055$ &nbsp; &rArr; &nbsp; Dopplerfrequenz&nbsp; $f_{\rm D}=  1.055$. &nbsp; &rArr; &nbsp; $f_{\rm E}/f_{\rm S}= 1.528$,&nbsp; $f_{\rm D}/f_{\rm S}= 0.528$.  
+
:*&nbsp;Direction of movement $\varphi=0^\circ$:&nbsp; Reception frequency&nbsp; $f_{\rm E}= 3.055$ &nbsp; &rArr; &nbsp; Doppler frequency&nbsp; $f_{\rm D}=  1.055$. &nbsp; &rArr; &nbsp; $f_{\rm E}/f_{\rm S}= 1.528$,&nbsp; $f_{\rm D}/f_{\rm S}= 0.528$.
:*&nbsp;Bewegungsrichtung&nbsp; $\varphi=180^\circ$:&nbsp; Empfangsfrequenz&nbsp; $f_{\rm E}= 1.309$ &nbsp; &rArr; &nbsp; Dopplerfrequenz&nbsp; $f_{\rm D}=  -0.691$. &nbsp; &rArr; &nbsp; $f_{\rm E}/f_{\rm S}= 0.655$,&nbsp; $f_{\rm D}/f_{\rm S}= -0.346$.  
+
:*&nbsp;Direction of movement $\varphi=180^\circ$:&nbsp; Reception frequency $f_{\rm E}= 1.309$ &nbsp; &rArr; &nbsp; Doppler frequency&nbsp; $f_{\rm D}=  -0.691$. &nbsp; &rArr; &nbsp; $f_{\rm E}/f_{\rm S}= 0.655$,&nbsp; $f_{\rm D}/f_{\rm S}= -0.346$.  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(4)'''&nbsp; Es gelten weiter die  bisherigen Voraussetzungen, aber nun die Einstellung &bdquo;Näherung&rdquo;.&nbsp; Welche Unterschiede ergeben sich gegenüber&nbsp; '''(3)'''?}}
+
'''(4)'''&nbsp; The previous conditions still apply, but now the "Approximation" setting.&nbsp; What are the differences compared to $(3)$?}}
  
:*&nbsp;Bewegungsrichtung&nbsp; $\varphi=0^\circ$:&nbsp; Empfangsfrequenz&nbsp; $f_{\rm E}= 2.8$ &nbsp; &rArr; &nbsp; Dopplerfrequenz&nbsp; $f_{\rm D}= f_{\rm E} - f_{\rm S}=  0.8$ &nbsp; &rArr; &nbsp; $f_{\rm E}/f_{\rm S}= 1.4$,&nbsp; $f_{\rm D}/f_{\rm S}= 0.4$.  
+
:*&nbsp;Direction of movement $\varphi=0^\circ$:&nbsp; Reception frequency&nbsp; $f_{\rm E}= 2.8$ &nbsp; &rArr; &nbsp; Doppler frequency&nbsp; $f_{\rm D}= f_{\rm E} - f_{\rm S}=  0.8$ &nbsp; &rArr; &nbsp; $f_{\rm E}/f_{\rm S}= 1.4$,&nbsp; $f_{\rm D}/f_{\rm S}= 0.4$.  
:*&nbsp;Bewegungsrichtung&nbsp; $\varphi=180^\circ$:&nbsp; Empfangsfrequenz&nbsp; $f_{\rm E}= 1.2$ &nbsp; &rArr; &nbsp; Dopplerfrequenz&nbsp; $f_{\rm D}=  -0.8$. &nbsp; &rArr; &nbsp; $f_{\rm E}/f_{\rm S}= 0.6$,&nbsp; $f_{\rm D}/f_{\rm S}= -0.4$.
+
:*&nbsp;Direction of movement $\varphi=180^\circ$:&nbsp; Reception frequency&nbsp; $f_{\rm E}= 1.2$ &nbsp; &rArr; &nbsp; Doppler frequency&nbsp; $f_{\rm D}=  -0.8$. &nbsp; &rArr; &nbsp; $f_{\rm E}/f_{\rm S}= 0.6$,&nbsp; $f_{\rm D}/f_{\rm S}= -0.4$.
:*&nbsp;Mit &bdquo;Näherung&rdquo;:&nbsp; Für beide&nbsp; $f_{\rm D}$&nbsp; gleiche Zahlenwerte mit verschiedenen Vorzeichen.&nbsp; Bei &bdquo;Exakt&rdquo; ist diese Symmetrie nicht gegeben.
+
:*&nbsp;With “Approximation”:&nbsp; For both,&nbsp; $f_{\rm D}$&nbsp; has the same numerical values ​​with different signs.&nbsp; This symmetry does not exist with "Exact".
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(5)'''&nbsp; Es gelte weiterhin&nbsp; $f_{\rm S}= 2$.&nbsp;   Bis zu welcher Geschwingkeit&nbsp; $(v/c)$&nbsp; ist der relative Fehler zwischen &bdquo;Näherung&rdquo; und &bdquo;Exakt&rdquo; betragsmäßig&nbsp; $<5\%$?}}
+
'''(5)'''&nbsp; $f_{\rm S}= 2$ still apply.&nbsp; Up to what speed&nbsp; $(v/c)$&nbsp; is the relative error between "Approximation" and "Exact" less than $\pm5\%$?}}
  
:*&nbsp;Mit&nbsp; $v/c  =0.08$&nbsp; und &bdquo;Exakt&rdquo; erhält man für die Dopplerfrequenzen&nbsp; $f_{\rm D}= 0.167$&nbsp; bzw.&nbsp; $f_{\rm D}= -0.154$&nbsp; und mit &bdquo;Näherung&rdquo;&nbsp; $f_{\rm D}= \pm0.16$.
+
:*&nbsp;With&nbsp; $v/c  =0.08$&nbsp; and "Exact" one obtains for the Doppler frequencies&nbsp; $f_{\rm D}= 0.167$&nbsp; respectively&nbsp; $f_{\rm D}= -0.154$&nbsp; and with "Approximation" $f_{\rm D}= \pm0.16$.
:*&nbsp;Somit ist die relative Abweichung&nbsp; &bdquo;(Näherung &ndash; Exakt)/Exakt&rdquo;&nbsp; gleich&nbsp; $0.16/0.167-1=-4.2\%$&nbsp; bzw.&nbsp; $(-0.16)/(-0.154)-1=+3.9\%$.
+
:*&nbsp;Thus the relative deviation “(Approximation - Exact)/Exact” is equal to&nbsp; $0.16/0.167-1=-4.2\%$&nbsp; and &nbsp; $(-0.16)/(-0.154)-1=+3.9\%$ respectively.
:*&nbsp;Mit&nbsp; $v/c  =0.1$&nbsp; sind die Abweichungen betragsmäßig&nbsp; $>5\%$.&nbsp; Für &nbsp; $v < c/10 = 30\hspace{0.05cm}000$&nbsp; km/s ist die Dopplerfrequenz&ndash;Näherung ausreichend.
+
:*&nbsp;With&nbsp; $v/c  =0.1$&nbsp;, the deviations are greater than&nbsp; $\pm 5\%$.&nbsp; For&nbsp; $v < 0.08 \cdot c = 24\hspace{0.05cm}000$&nbsp; km/s&nbsp; the Doppler approximation is sufficient.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(6)'''&nbsp; Hier und in den nachfolgenden Aufgaben soll gelten:&nbsp; $f_{\rm S}= 1$,&nbsp; $v/c= 0.4$ &nbsp; &rArr; &nbsp; $f_{\rm D} = f_{\rm S} \cdot v/c \cdot \cos(\alpha)$.&nbsp; Mit&nbsp; $\cos(\alpha) = \pm 1$: &nbsp; &nbsp; $f_{\rm D}/f_{\rm S} =\pm 0.4$.<br>&nbsp; &nbsp; &nbsp; &nbsp; Welche normierten Dopplerfrequenzen ergeben sich mit dem eingestellten Startkoordinaten&nbsp; $(300,\ 50)$&nbsp; und  der Bewegungsrichtung&nbsp; $\varphi=-45^\circ$?}}  
+
'''(6)'''&nbsp; The following should apply here and in the following tasks: $f_{\rm S}= 1$,&nbsp; $v/c= 0.4$ &nbsp; &rArr; &nbsp; $f_{\rm D} = f_{\rm S} \cdot v/c \cdot \cos(\alpha)$.&nbsp; With&nbsp; $\cos(\alpha) = \pm 1$: &nbsp; &nbsp; $f_{\rm D}/f_{\rm S} =\pm 0.4$.<br>&nbsp; &nbsp; &nbsp; &nbsp; Which normalized Doppler frequencies result from the set start coordinates $(0,\ 150)$&nbsp; and the direction of movement $\varphi=-45^\circ$?}}
:*&nbsp;Hier bewegt sich der Sender direkt auf den Empfänger zu&nbsp; $(\alpha=0^\circ)$&nbsp; oder entfernt sich von ihm&nbsp; $(\alpha=180^\circ)$.
+
:*&nbsp;Gleiche Konstellation wie mit dem Startpunkt&nbsp; $(300,\ 200)$&nbsp; und&nbsp; $\varphi=0^\circ$.&nbsp; Deshalb gilt auch hier für die Dopplerfrequenz:&nbsp;$f_{\rm D}/f_{\rm S} =\pm 0.4$.
+
:*&nbsp;Here the transmitter moves directly to the receiver to $(\alpha=0^\circ)$&nbsp; or moves away from it $(\alpha=180^\circ)$.
:*&nbsp;Nachdem der Sender an einer Begrenzung &bdquo;reflektiert&rdquo; wurde, sind beliebige Winkel&nbsp; $\alpha$&nbsp; und entsprechend mehr Dopplerfrequenzen möglich.  
+
:*&nbsp;Same constellation as with the starting point $(0,\ 0)$ and&nbsp; $\varphi=0^\circ$.&nbsp; Therefore, the following also applies to the Doppler frequency:&nbsp; $f_{\rm D}/f_{\rm S} =\pm 0.4$.
 +
:*&nbsp;After the transmitter has been “reflected” on a boundary, any angles&nbsp; $\alpha$&nbsp; and correspondingly more Doppler frequencies are possible.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(7)'''&nbsp; Der Sender liegt fest bei&nbsp; $(S_x = 0,\ S_y =10),$&nbsp; der Empfänger bewegt sich horizontal nach links  bzw. rechts&nbsp; $(v/c = 0.4, \hspace{0.3cm}\varphi=0^\circ)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; Beobachten und interpretieren Sie die zeitliche Änderung der Dopplerfrequenz&nbsp; $f_{\rm D}$. }}
+
'''(7)'''&nbsp; The transmitter is fixed at $(S_x = 0,\ S_y =10),$ the receiver moves horizontally left and right $(v/c = 0.4, \hspace{0.3cm}\varphi=0^\circ)$.<br>&nbsp; &nbsp; &nbsp; &nbsp;   Observe and interpret the temporal change in the Doppler frequency&nbsp; $f_{\rm D}$. }}
:*&nbsp;Wie in&nbsp; '''(6)'''&nbsp; sind auch hier nur Werte zwischen&nbsp; $f_{\rm D}=0.4$&nbsp; und&nbsp; $f_{\rm D}=-0.4$&nbsp; möglich,&nbsp; aber nun alle Zwischenwerte&nbsp; $(-0.4 \le f_{\rm D} \le +0.4)$.
+
 
:*&nbsp;Mit &bdquo;Step&rdquo; erkennen Sie:&nbsp; $f_{\rm D}\equiv0$&nbsp; tritt nur auf, wenn der Empfänger genau unter dem Sender liegt&nbsp; $(\alpha=\pm 90^\circ$,&nbsp; je nach Fahrtrichtung$)$.
+
:*&nbsp;As in&nbsp; $(6)$, only values ​​between $f_{\rm D}=0.4$&nbsp; and&nbsp; $f_{\rm D}=-0.4$&nbsp; are possible, but now all intermediate values $(-0.4 \le f_{\rm D} \le +0.4)$.
:*&nbsp;Dopplerfrequenzen an den Rändern  sind sehr viel häufiger:&nbsp; $|f_{\rm D}| = 0.4 -\varepsilon$,&nbsp; wobei&nbsp; $\varepsilon$&nbsp; eine kleine positive Größe angibt.&nbsp;
+
:*&nbsp;With "Step" you can see:&nbsp; $f_{\rm D}\equiv0$&nbsp; only occurs if the receiver is exactly below the transmitter $(\alpha=\pm 90^\circ$, depending on the direction of travel$)$.
:*&nbsp;Schon aus diesem Versuch wird der prinzipielle Verlauf von Doppler&ndash;WDF und Doppler&ndash;LDS &nbsp; &rArr; &nbsp; &bdquo;Jakes&ndash;Spektrum&rdquo; erklärbar.
+
:*&nbsp;Doppler frequencies at the edges are much more common:&nbsp; $|f_{\rm D}| = 0.4 -\varepsilon$, where&nbsp; $\varepsilon$&nbsp; indicates a small positive size.
 +
:*&nbsp;The basic course of Doppler – PDF and Doppler – PDS &nbsp; &rArr; &nbsp; "Jakes spectrum" can be explained from this experiment alone.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(8)'''&nbsp; Was ändert sich, wenn der Sender bei sonst gleichen Einstellungen fest am oberen Rand der Grafikfläche in der Mitte liegt&nbsp; $(0,\ 200) $? }}
+
'''(8)'''&nbsp; What changes if the transmitter is fixed at the top of the graphic area in the middle with the same settings $(0,\ 200) $? }}
:*&nbsp;Die Dopplerwerte&nbsp; $f_{\rm D} \approx0$&nbsp; werden häufiger, solche an den Rändern seltener.&nbsp; keine Werte&nbsp; $|f_{\rm D}| > 0.325$&nbsp; aufgrund der begrenzten Zeichenfläche.  
+
 
 +
:*&nbsp;The Doppler values&nbsp; $f_{\rm D} \approx0$&nbsp; become more frequent, those at the edges less frequent.&nbsp; No values&nbsp; $|f_{\rm D}| > 0.325$&nbsp; due to limited drawing space.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(9)'''&nbsp; Der Sender liegt bei&nbsp; $S_x = 300,\ S_y =200)$,&nbsp; der Empfänger bewegt sich mit&nbsp; $v/c = 0.4$&nbsp; unter dem Winkel&nbsp; $\varphi=60^\circ$.<br>&nbsp; &nbsp; &nbsp; &nbsp; Überlegen Sie sich den Zusammenhang zwischen&nbsp; $\varphi$&nbsp; und&nbsp; $\alpha$. }}
+
'''(9)'''&nbsp; The transmitter is $S_x = 300,\ S_y =200)$, the receiver moves with $v/c = 0.4$&nbsp; under the angle $\varphi=60^\circ$.<br>&nbsp; &nbsp; &nbsp; &nbsp;   Think about the relationship between $\varphi$ and $\alpha$.}}
:*&nbsp;Musterlösungen fehlen noch   
+
 
 +
:*&nbsp;Model solutions are still missing
  
  
  
 
==Applet Manual==
 
==Applet Manual==
[[File:Handhabung_binomial.png|left|600px]]
+
[[File:Anleitung_Doppler.png|right|600px|frame|Screenshot]]
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Vorauswahl für blauen Parametersatz
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Theme (changeable graphical user interface design)
 +
:* Dark: &nbsp; dark background&nbsp; (recommended by the authors)
 +
:*  Bright: &nbsp; white background&nbsp; (recommended for beamers and printouts)
 +
:*  Deuteranopia: &nbsp; for users with pronounced green visual impairment
 +
:*  Protanopia: &nbsp; for users with pronounced red visual impairment
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parametereingabe $I$ und $p$ per Slider
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Start position of the transmitter &nbsp; &rArr; &nbsp; $(S_x,\ S_Y)$
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Vorauswahl für roten Parametersatz
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Input parameters
 +
:* Direction&nbsp; $\varphi$&nbsp; of movement of transmitter/receiver
 +
:* (Normalized) velocity&nbsp; $(v/c)$&nbsp; of transmitter/receiver
 +
:* (Normalized)  transmission frequency&nbsp; $(f_{\rm S}/f_0)$&nbsp;
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parametereingabe $\lambda$ per Slider
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Equation used for the reception frequency
 +
:* Exact&nbsp; (considering the Relativity Theory)
 +
:* Approximation&nbsp; (sufficient for mobile radio)
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Graphische Darstellung der Verteilungen
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Graphic field: Motion and wave propagation
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Momentenausgabe für blauen Parametersatz
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Graphic field:&nbsp; Transmission & reception frequency (time domain)
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Momentenausgabe für roten Parametersatz
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Graphic field:&nbsp; Transmission & reception frequency (frequency domain)
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Variation der grafischen Darstellung
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Control panel 1
 +
:* Transmitter (or receiver) is moving
 +
:* Movement to the right or left&nbsp; (movement up or down)
  
 +
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Control panel 2&nbsp; (Start, Stop, Step, Continue, Reset)
  
$\hspace{1.5cm}$&bdquo;$+$&rdquo; (Vergrößern),
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Output parameters
 +
:* Angle&nbsp; $\alpha$&nbsp; between movement and transmitter/receiver connecting line
 +
:* (Normalized)  Doppler frequency&nbsp; $(f_{\rm D}/f_0)$&nbsp;
 +
:* (Normalized)  reception frequency&nbsp; $(f_{\rm E}/f_0)$&nbsp;
  
$\hspace{1.5cm}$ &bdquo;$-$&rdquo; (Verkleinern)
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Selection of the exercise according to the numbers
  
$\hspace{1.5cm}$ &bdquo;$\rm o$&rdquo; (Zurücksetzen)
+
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Task description and questions
  
$\hspace{1.5cm}$ &bdquo;$\leftarrow$&rdquo; (Verschieben nach links),  usw.
+
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Show and hide sample solution
  
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Ausgabe von ${\rm Pr} (z = \mu)$ und ${\rm Pr} (z  \le \mu)$
 
 
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung
 
<br clear=all>
 
<br>'''Andere Möglichkeiten zur Variation der grafischen Darstellung''':
 
*Gedrückte Shifttaste und Scrollen:  Zoomen im Koordinatensystem,
 
*Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
 
  
 
==About the Authors==
 
==About the Authors==
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.  
+
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].  
*Die erste Version wurde 2009 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Alexander_Happach_.28Diplomarbeit_EI_2009.29|Alexander Happach]] im Rahmen seiner Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt&nbsp; (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
+
*The first version was created in 2009 by [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Alexander_Happach_.28Diplomarbeit_EI_2009.29|Alexander Happach]] as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
*2020 wurde das Programm  von&nbsp; [[Andre Schulz]]&nbsp;  (Bachelorarbeit LB, Betreuer:&nbsp; [[Benedikt Leible]]&nbsp; und [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) unter  &bdquo;HTML5&rdquo; neu gestaltet.
+
*In 2020 the program was redesigned by [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Andr.C3.A9_Schulz_.28Bachelorarbeit_LB_2020.29|André Schulz]] (Bachelor thesis LB, Supervisors: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_Übertragungstechnik#Benedikt_Leible.2C_M.Sc._.28bei_L.C3.9CT_seit_2017.29|Benedikt Leible]] and [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) via "HTML5".
 
 
==Once again:  Open Applet in new Tab==
 
  
{{LntAppletLink|korrelation}}
+
==Once again: Open Applet in new Tab==
 +
{{LntAppletLinkEnDe|dopplereffect_en|dopplereffect}}

Latest revision as of 22:05, 26 March 2023

Open Applet in new Tab   Deutsche Version Öffnen

Applet Description


The applet is intended to illustrate the "Doppler effect", named after the Austrian mathematician, physicist and astronomer Christian Andreas Doppler.  This predicts the change in the perceived frequency of waves of any kind, which occurs when the source (transmitter) and observer (receiver) move relative to each other.  Because of this, the reception frequency $f_{\rm E}$  differs from the transmission frequency $f_{\rm S}$.  The Doppler frequency $f_{\rm D}=f_{\rm E}-f_{\rm S}$  is positive if the observer and the source approach each other, otherwise the observer perceives a lower frequency than which was actually transmitted.

The exact equation for the reception frequency $f_{\rm E}$  considering the theory of relativity is:

$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 - v/c \cdot \cos(\alpha)}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\text{ Exact equation}}.$$
  • Here is  $v$  the relative speed between transmitter and receiver, while  $c = 3 \cdot 10^8 \, {\rm m/s}$  indicates the speed of light.
  • $\alpha$  is the angle between the direction of movement and the connecting line between transmitter and receiver.
  • $\varphi$  denotes the angle between the direction of movement and the horizontal in the applet. In general,  $\alpha \ne \varphi$.


At realistic speeds  $(v/c \ll 1)$  the following approximation is sufficient, ignoring the effects of relativity:

$$f_{\rm E} \approx f_{\rm S} \cdot \big [1 +{v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\text{ Approximation}}\hspace{0.05cm}.$$

For example, in the case of mobile communications, the deviations between  $f_{\rm E}$  and  $f_{\rm S}$  – the Doppler frequency $f_{\rm D}$  – is only a fraction of the transmission frequency. 


Theoretical Background


Phenomenological description of the Doppler effect

$\text{Definition:}$  The  $\rm Doppler\:effect$  is the change in the perceived frequency of waves of any kind that occurs when the source (transmitter) and observer (receiver) move relative to each other. This was theoretically predicted by the Austrian mathematician, physicist and astronomer  "Christian Andreas Doppler"  in the middle of the 19th century and named after him.


Qualitatively, the Doppler effect can be described as follows:

  • If the observer and the source approach each other, the frequency increases from the observer's point of view, regardless of whether the observer is moving or the source or both.
  • If the source moves away from the observer or the observer moves away from the source, the observer perceives a lower frequency than was actually transmitted.

$\text{Example 1:}$  We look at the change in pitch of the "Martinhorn" of an ambulance. As long as the vehicle is approaching, the observer hears a higher tone than when the vehicle is stationary.  If the ambulance moves away, a lower tone is perceived.

The same effect can be seen in a car race.  The frequency changes and the "sound" are all the clearer the faster the cars go.


Starting position: $\rm (S)$ and $\rm (E)$ do not move

$\text{Example 2:}$  Some properties of this effect, which may be still known from physics lessons, are now to be shown on the basis of screen shots from an earlier version of the present applet, with the dynamic program properties of course being lost.

The first graphic shows the initial situation:

  • The stationary transmitter  $\rm (S)$  emits the constant frequency $f_{\rm S}$.
  • The wave propagation is illustrated in the graphic by concentric circles around  $\rm (S)$.
  • The receiver   $\rm (E)$ , which is also at rest, receives naturally the frequency $f_{\rm E} = f_{\rm S}$.


$\text{Example 3:}$  In this snapshot, the transmitter  $\rm (S)$  has moved from its starting point  $\rm (S_0)$  to the receiver  $\rm (E)$  at a constant speed.

Doppler effect: $\rm (S)$ moves towards the resting $\rm (E)$
  • The diagram on the right shows that the frequency $f_{\rm E}$ perceived by the receiver (blue oscillation) is about $20\%$ greater than the frequency $f_{\rm S}$ at the transmitter (red oscillation).
  • Due to the movement of the transmitter, the circles are no longer concentric.
Doppler effect: $\rm (S)$ moves away from resting $\rm (E)$










  • The left scenario is the result when the transmitter moves away from the receiver:
  • Then the reception frequency $f_{\rm E}$  (blue oscillation)  is about  $20\%$  lower than the transmission frequency $f_{\rm S}$.



Doppler frequency as a function of speed and angle of the connecting line

We agree:  The frequency $f_{\rm S}$  is sent and the frequency $f_{\rm E}$  is received.  The Doppler frequency is the difference $f_{\rm D} = f_{\rm E} - f_{\rm S}$  due to the relative movement between the transmitter (source) and receiver (observer).

  • A positive Doppler frequency  $(f_{\rm E} > f_{\rm S})$  arises when transmitter and receiver move (relatively) towards each other.
  • A negative Doppler frequency  $(f_{\rm E} < f_{\rm S})$  means that transmitter and receiver are moving apart  (directly or at an angle).


The exact equation for the reception frequency $f_{\rm E}$  including an angle  $\alpha$  between the direction of movement and the connecting line between transmitter and receiver is:

\[f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 - v/c \cdot \cos(\alpha)}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\text{ Exact equation}}.\]

Here  $v$  denotes the relative speed between transmitter and receiver, while  $c = 3 \cdot 10^8 \, {\rm m/s}$  indicates the velocity of light.

  • The graphics in  $\text{Example 3}$  apply to the unrealistically high speed  $v = c/5 = 60000\, {\rm km/s}$, which lead to the Doppler frequencies $f_{\rm D} = \pm 0.2\cdot f_{\rm S}$.
  • In the case of mobile communications, the deviations between $f_{\rm S}$  and $f_{\rm E}$  are usually only a fraction of the transmission frequency.  At such realistic velocities  $(v \ll c)$  one can start from the following approximation, which does not take into account the effects described by the "theory of Relativity":
\[f_{\rm E} \approx f_{\rm S} \cdot \big [1 +{v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\text{ Approach}}\hspace{0.05cm}.\]

$\text{Example 4:}$  We are assuming a fixed station here.  The receiver approaches the transmitter at an angle $\alpha = 0$. 

Different speeds are to be examined:

  • an unrealistically high speed  $v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$ $\hspace{0.3cm}\Rightarrow\hspace{0.3cm}v_1/c = 0.6$,
  • the maximum speed  $v_2 = 3 \ {\rm km/s} \ \ (10800 \ {\rm km/h})$  for an unmanned space flight  $\hspace{0.3cm}\Rightarrow\hspace{0.3cm}v_2/c = 10^{-5}$,
  • approximately the top speed  $v_3 = 30 \ {\rm m/s} = 108 \ \rm km/h$  on federal roads  $\hspace{0.3cm}\Rightarrow\hspace{0.3cm}v_3/c = 10^{-7}$.


(1)  According to the exact, relativistic first equation:

$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 - v/c } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2} }{1 - v/c } - 1 \right ]\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } = \frac{\sqrt{1 - (v/c)^2} }{1 - v/c } - 1 \hspace{0.05cm}.$$
$$\Rightarrow\hspace{0.3cm}v_1/c = 0.6\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } = \frac{\sqrt{1 - 0.6^2} }{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 = 1 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 2 \hspace{0.05cm}.$$
$$\Rightarrow\hspace{0.3cm}v_2/c = 10^{\rm -5}\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } = \frac{\sqrt{1 - (10^{-5})^2} }{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 = 10^{-5} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 1.00001 \hspace{0.05cm}.$$
$$\Rightarrow\hspace{0.3cm}v_3/c = 10^{\rm -7}\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } = \frac{\sqrt{1 - (10^{-7})^2} }{1 - (10^{-7}) } - 1 \approx 1 + 10^{-7} - 1 = 10^{-7} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 1.0000001 \hspace{0.05cm}.$$

(2)  On the other hand, according to the approximation, i.e. without taking into account the theory of relativity:

$$f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \big ] \Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } = {v}/{c} \hspace{0.05cm}.$$
$$\Rightarrow\hspace{0.3cm}v_1/c = 0.6\text{:}\hspace{0.7cm} f_{\rm D}/f_{\rm S} \ \ = \ 0.6 \hspace{0.5cm} ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,$$
$$\Rightarrow\hspace{0.3cm}v_2/c = 10^{-5}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ 10^{-5} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,$$
$$\Rightarrow\hspace{0.3cm}v_3/c = 10^{-7}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ 10^{-5} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.0000001.$$


$\text{Conclusion:}$ 

  1.   For "low speeds", the approximation to the accuracy of a calculator gives the same result as the relativistic equation.
  2.   The numerical values ​​show that we can also rate the speed  $v_2 = \ 10800 \ {\rm km/h}$  as "low" in this respect.


$\text{Example 5:}$  The same requirements apply as in the last example with the difference: Now the receiver moves away from the transmitter $(\alpha = 180^\circ)$.

(1)  According to the exact, relativistic first equation with  ${\rm cos}(\alpha) = -1$:

$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2} }{1 + v/c } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2} }{1 + v/c } - 1 \right ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } = \frac{\sqrt{1 - (v/c)^2} }{1 + v/c } - 1 \hspace{0.05cm}.$$
$$\Rightarrow\hspace{0.3cm}v_1/c = 0.6\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } = \frac{\sqrt{1 - 0.6^2} }{1 + 0.6 } - 1 = \frac{0.8}{1.6 } - 1 =-0.5 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 0.5 \hspace{0.05cm}.$$
$$\Rightarrow\hspace{0.3cm}v_2/c = 10^{\rm -5}\text{:}\hspace{0.5cm}{f_{\rm D} }/{f_{\rm S} } = \frac{\sqrt{1 - (10^{-5})^2} }{1 + (10^{-5}) } - 1 \approx - 10^{-5} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E} }/{f_{\rm S} } = 0.99999 \hspace{0.05cm}.$$

(2)  On the other hand, according to the approximation, i.e. without taking into account the theory of relativity:

$$f_{\rm E} = f_{\rm S} \cdot \big [ 1 - {v}/{c} \big ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{f_{\rm D} }/{f_{\rm S} } = - {v}/{c} \hspace{0.05cm}.$$
$$\Rightarrow\hspace{0.3cm}v_1/c = 0.6\text{:}\hspace{0.7cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,$$
$$\Rightarrow\hspace{0.3cm}v_2/c = 10^{-5}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ - 10^{-5} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.$$


$\text{Conclusion:}$ 

  1.   The reception frequency  $f_{\rm E}$  is now lower than the transmission frequency  $f_{\rm S}$  and the Doppler frequency   $f_{\rm D}$  is negative.
  2.   Using the approximation, the Doppler frequencies for the two directions of movement differ only in the sign   ⇒   $f_{\rm E} = f_{\rm S} \pm f_{\rm D}$.
  3.   This symmetry does not exist with the exact, relativistic equation.


$\text{Example 6:}$  Now let's look at the speed that is also realistic for mobile communications  $v = 30 \ {\rm m/s} = 108 \ \rm km/h$   ⇒   $v/c=10^{-7}$. 

Directions  $\rm (A)$,  $\rm (B)$, $\rm (C)$, $\rm (D)$
  • This allows us to limit ourselves to the non-relativistic approximation:   $f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$
  • As in the previous examples, the transmitter is fixed. The transmission frequency is  $f_{\rm S} = 2 \ {\rm GHz}$.


The graphic shows possible directions of movement of the receiver. 

  • The direction  $\rm (A)$  was used in $\text{Example 4}$ .  With the current parameter values
$$f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s} }{3 \cdot 10^{8}\,\,{\rm m/s} } = 200\,{\rm Hz}.$$
  • For the direction  $\rm (B)$  you get the same numerical value with negative sign according to  $\text{Example 5}$:  
$$f_{\rm D} = -200\,{\rm Hz}.$$
  • The direction of travel  $\rm (C)$  is perpendicular  $(\alpha = 90^\circ)$  to the connecting line between transmitter and receiver.  In this case there is no Doppler shift:
$$f_{\rm D} = 0.$$
  • The direction of movement  $\rm (D)$  is characterized by  $\alpha = \ -135^\circ$.  This results:
$$f_{\rm D} = 200 \,{\rm Hz} \cdot \cos(-135^{\circ}) \approx -141\,\,{\rm Hz} \hspace{0.05cm}.$$



Doppler frequency and its distribution

We briefly summarize the statements in the last section, while we proceed with the second, the non – relativistic equation:

  • A relative movement between transmitter (source) and receiver (observer) results in a shift by the Doppler frequency  $f_{\rm D} = f_{\rm E} - f_{\rm S}$.
  • A positive Doppler frequency  $(f_{\rm E} > f_{\rm S})$  results when the transmitter and receiver move (relatively) towards each other.
  • A negative Doppler frequency  $(f_{\rm E} < f_{\rm S})$  means, that the sender and receiver are moving apart (directly or at an angle).
  • The maximum frequency shift occurs when the transmitter and receiver move directly towards each other   ⇒   angle  $\alpha = 0^\circ$.  This maximum value depends in the first approximation on the transmission frequency  $ f_{\rm S}$  and the speed  $v$  $(c = 3 \cdot 10^8 \, {\rm m/s}$  indicates the velocity of light$)$:  $f_{\rm D, \hspace{0.05cm} max} = f_{\rm S} \cdot {v}/{c} \hspace{0.05cm}.$
  • If the relative movement occurs at any angle  $\alpha$  to the transmitter-receiver connection line, the Doppler shift is
\[f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm D, \hspace{0.05cm} max} \cdot \cos(\alpha) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} - \hspace{-0.05cm}f_{\rm D, \hspace{0.05cm} max} \le f_{\rm D} \le + \hspace{-0.05cm}f_{\rm D, \hspace{0.05cm} max} \hspace{0.05cm}.\]

$\text{Conclusion:}$  Assuming equally probable directions of movement   $($uniform distribution for the angle  $\alpha$  in the area  $- \pi \le \alpha \le +\pi)$  results for the probability density function  $($referred to here as "pdf"$)$  the Doppler frequency in the range  $- f_\text{D, max} \le f_{\rm D} \le + f_\text{D, max}$:

\[{\rm pdf}(f_{\rm D}) = \frac{1}{2\pi \cdot f_{\rm D, \hspace{0.05cm} max} \cdot \sqrt {1 - (f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2 } } \hspace{0.05cm}.\]

Outside the range between  $-f_{\rm D}$  and  $+f_{\rm D}$ , the probability density function is always zero.

$\text{"Derivation"}$  about the “nonlinear transformation of random quantities”.



Power density spectrum in Rayleigh fading

We now presuppose an antenna radiating equally in all directions.  Then the Doppler– $ \rm PDS $  $($Power Density Spectrum$)$  has the same shape as the  $ \rm PDF $  $($Probability Density Function$)$  of the Doppler frequencies.

  • For the in-phase component  ${\it \Phi}_x(f_{\rm D})$  of the PDS, the PDF must still be multiplied by the variance  $\sigma^2$  of the Gaussian process.
  • For the resulting PDS  ${\it \Phi}_z(f_{\rm D})$  of the complex factor  $z(t) = x(t) + {\rm j} \cdot y(t) $  applies after doubling:
\[{\it \Phi}_z(f_{\rm D}) = \left\{ \begin{array}{c} (2\sigma^2)/( \pi \cdot f_{\rm D, \hspace{0.05cm} max}) \cdot \left [ 1 - (f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2 \right ]^{-0.5} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} |f_{\rm D}| \le f_{\rm D, \hspace{0.05cm} max} \\ {\rm other} \\ \end{array} \hspace{0.05cm}.\]

This course is called  Jakes spectrum  named after  "William C. Jakes Jr.".  The doubling is necessary, because so far only the contribution of the real part  $x(t)$  has been considered.

Doppler PDS and time function (magnitude in dB) for Rayleigh fading with Doppler effect

$\text{Example 7:}$  The Jakes spectrum is shown on the left

  • for $f_{\rm D, \hspace{0.05cm} max} = 50 \ \rm Hz$  (blue curve) bzw.
  • for $f_{\rm D, \hspace{0.05cm} max} = 100 \ \rm Hz$  (red curve).


In the  "GSM–D network"  $(f_{\rm S} = 900 \ \rm MHz)$  these values ​​correspond to the speeds  $v = 60 \ \rm km/h$  and  $v = 120 \ \rm km/h$  respectively.

For the GSM–E network $(f_{\rm S} = 1.8 \ \rm GHz)$  these values ​​apply to speeds that are half as high:   $v = 30 \ \rm km/h$  and  $v = 60 \ \rm km/h$  respectively.

The right picture shows the logarithmic magnitude of  $z(t)$:

  • You can see that the red curve is fading twice as fast as the blue one.
  • The Rayleigh – PDF (amplitude distribution) is independent of  $f_{\rm D, \hspace{0.05cm} max}$  and is therefore the same for both cases.



Exercises

  • First select the number  $(1, 2, \text{...})$  of the exercise.  The number  $0$  corresponds to a "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values ​​are adjusted.  Solution after pressing "Show solution".
  • In the following descriptions, $f_{\rm S}$, $f_{\rm E}$  and$f_{\rm D}$  are each normalized to the reference frequency $f_{\rm 0}$.


(1)  First we consider the relativistic setting "Exact".  The transmitter moves with  $v/c = 0.8$,  the transmission frequency is $f_{\rm S}= 1$.
         Which reception frequencies  $f_{\rm E}$  result in both directions of movement?  What is the Doppler frequency $f_{\rm D}$?

  •   If the transmitter approaches the receiver under the angle  $\varphi=0^\circ$ , the reception frequency is $f_{\rm E}= 3$   ⇒   $f_{\rm D}= f_{\rm E} - f_{\rm S}= 2$.
  •   If the transmitter moves away from the receiver  $($for  $\varphi=0^\circ$, if it overtakes it, or  $\varphi=180^\circ)$, then:  $f_{\rm E}= 0.333$   ⇒   $f_{\rm D}= -0.667$.
  •  The same result with the transmitter at rest and the receiver moving:  If both come closer, then  $f_{\rm D}= 2$  applies, otherwise  $f_{\rm D}= -0.667$.

(2)  The settings are largely retained.  How do the results change compared to  $(1)$  with the transmission frequency $f_{\rm S}= 1.5$?
        Tip for a time-saving experiment:  Switch alternately between "right" and "left".

  •  Direction of movement $\varphi=0^\circ$: $f_{\rm E}= 4.5$ ⇒   $f_{\rm D}= f_{\rm E} - f_{\rm S}= 3$.  Thus: $f_{\rm E}/f_{\rm S}= 3$, $f_{\rm D}/f_{\rm S}= 2$   ⇒   Both as in  $(1)$.
  •  Direction of movement $\varphi=180^\circ$:  $f_{\rm E}= 0.5$   ⇒   $f_{\rm D}= -1$.  Thus: $f_{\rm E}/f_{\rm S}= 0.333$,  $f_{\rm D}/f_{\rm S}= -0.667$  ⇒   Both as in  $(1)$.

(3)  Still relativistic setting "Exact".  The transmitter is now moving at a speed of  $v/c = 0.4$  and the transmission frequency is $f_{\rm S}= 2$.
        Which frequencies $f_{\rm D}$  and  $f_{\rm E}$  result in both directions of movement?  Alternately select "Right" or "Left" again.

  •  Direction of movement $\varphi=0^\circ$:  Reception frequency  $f_{\rm E}= 3.055$   ⇒   Doppler frequency  $f_{\rm D}= 1.055$.   ⇒   $f_{\rm E}/f_{\rm S}= 1.528$,  $f_{\rm D}/f_{\rm S}= 0.528$.
  •  Direction of movement $\varphi=180^\circ$:  Reception frequency $f_{\rm E}= 1.309$   ⇒   Doppler frequency  $f_{\rm D}= -0.691$.   ⇒   $f_{\rm E}/f_{\rm S}= 0.655$,  $f_{\rm D}/f_{\rm S}= -0.346$.

(4)  The previous conditions still apply, but now the "Approximation" setting.  What are the differences compared to $(3)$?

  •  Direction of movement $\varphi=0^\circ$:  Reception frequency  $f_{\rm E}= 2.8$   ⇒   Doppler frequency  $f_{\rm D}= f_{\rm E} - f_{\rm S}= 0.8$   ⇒   $f_{\rm E}/f_{\rm S}= 1.4$,  $f_{\rm D}/f_{\rm S}= 0.4$.
  •  Direction of movement $\varphi=180^\circ$:  Reception frequency  $f_{\rm E}= 1.2$   ⇒   Doppler frequency  $f_{\rm D}= -0.8$.   ⇒   $f_{\rm E}/f_{\rm S}= 0.6$,  $f_{\rm D}/f_{\rm S}= -0.4$.
  •  With “Approximation”:  For both,  $f_{\rm D}$  has the same numerical values ​​with different signs.  This symmetry does not exist with "Exact".

(5)  $f_{\rm S}= 2$ still apply.  Up to what speed  $(v/c)$  is the relative error between "Approximation" and "Exact" less than $\pm5\%$?

  •  With  $v/c =0.08$  and "Exact" one obtains for the Doppler frequencies  $f_{\rm D}= 0.167$  respectively  $f_{\rm D}= -0.154$  and with "Approximation" $f_{\rm D}= \pm0.16$.
  •  Thus the relative deviation “(Approximation - Exact)/Exact” is equal to  $0.16/0.167-1=-4.2\%$  and   $(-0.16)/(-0.154)-1=+3.9\%$ respectively.
  •  With  $v/c =0.1$ , the deviations are greater than  $\pm 5\%$.  For  $v < 0.08 \cdot c = 24\hspace{0.05cm}000$  km/s  the Doppler approximation is sufficient.

(6)  The following should apply here and in the following tasks: $f_{\rm S}= 1$,  $v/c= 0.4$   ⇒   $f_{\rm D} = f_{\rm S} \cdot v/c \cdot \cos(\alpha)$.  With  $\cos(\alpha) = \pm 1$:     $f_{\rm D}/f_{\rm S} =\pm 0.4$.
        Which normalized Doppler frequencies result from the set start coordinates $(0,\ 150)$  and the direction of movement $\varphi=-45^\circ$?

  •  Here the transmitter moves directly to the receiver to $(\alpha=0^\circ)$  or moves away from it $(\alpha=180^\circ)$.
  •  Same constellation as with the starting point $(0,\ 0)$ and  $\varphi=0^\circ$.  Therefore, the following also applies to the Doppler frequency:  $f_{\rm D}/f_{\rm S} =\pm 0.4$.
  •  After the transmitter has been “reflected” on a boundary, any angles  $\alpha$  and correspondingly more Doppler frequencies are possible.

(7)  The transmitter is fixed at $(S_x = 0,\ S_y =10),$ the receiver moves horizontally left and right $(v/c = 0.4, \hspace{0.3cm}\varphi=0^\circ)$.
        Observe and interpret the temporal change in the Doppler frequency  $f_{\rm D}$.

  •  As in  $(6)$, only values ​​between $f_{\rm D}=0.4$  and  $f_{\rm D}=-0.4$  are possible, but now all intermediate values $(-0.4 \le f_{\rm D} \le +0.4)$.
  •  With "Step" you can see:  $f_{\rm D}\equiv0$  only occurs if the receiver is exactly below the transmitter $(\alpha=\pm 90^\circ$, depending on the direction of travel$)$.
  •  Doppler frequencies at the edges are much more common:  $|f_{\rm D}| = 0.4 -\varepsilon$, where  $\varepsilon$  indicates a small positive size.
  •  The basic course of Doppler – PDF and Doppler – PDS   ⇒   "Jakes spectrum" can be explained from this experiment alone.

(8)  What changes if the transmitter is fixed at the top of the graphic area in the middle with the same settings $(0,\ 200) $?

  •  The Doppler values  $f_{\rm D} \approx0$  become more frequent, those at the edges less frequent.  No values  $|f_{\rm D}| > 0.325$  due to limited drawing space.

(9)  The transmitter is $S_x = 300,\ S_y =200)$, the receiver moves with $v/c = 0.4$  under the angle $\varphi=60^\circ$.
        Think about the relationship between $\varphi$ and $\alpha$.

  •  Model solutions are still missing


Applet Manual

Screenshot

    (A)     Theme (changeable graphical user interface design)

  • Dark:   dark background  (recommended by the authors)
  • Bright:   white background  (recommended for beamers and printouts)
  • Deuteranopia:   for users with pronounced green visual impairment
  • Protanopia:   for users with pronounced red visual impairment

    (B)     Start position of the transmitter   ⇒   $(S_x,\ S_Y)$

    (C)     Input parameters

  • Direction  $\varphi$  of movement of transmitter/receiver
  • (Normalized) velocity  $(v/c)$  of transmitter/receiver
  • (Normalized) transmission frequency  $(f_{\rm S}/f_0)$ 

    (D)     Equation used for the reception frequency

  • Exact  (considering the Relativity Theory)
  • Approximation  (sufficient for mobile radio)

    (E)     Graphic field: Motion and wave propagation

    (F)     Graphic field:  Transmission & reception frequency (time domain)

    (G)     Graphic field:  Transmission & reception frequency (frequency domain)

    (H)     Control panel 1

  • Transmitter (or receiver) is moving
  • Movement to the right or left  (movement up or down)

    (I)     Control panel 2  (Start, Stop, Step, Continue, Reset)

    (J)     Output parameters

  • Angle  $\alpha$  between movement and transmitter/receiver connecting line
  • (Normalized) Doppler frequency  $(f_{\rm D}/f_0)$ 
  • (Normalized) reception frequency  $(f_{\rm E}/f_0)$ 

    (K)     Selection of the exercise according to the numbers

    (L)     Task description and questions

    (M)     Show and hide sample solution


About the Authors

This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen