Difference between revisions of "Aufgaben:Exercise 1.7: System Efficiencies"

From LNTwww
 
(4 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
  
[[File:P_ID1294__Dig_A_1_7.png|right|frame|Basic transmission pulse "trapezoid" ]]
+
[[File:P_ID1294__Dig_A_1_7.png|right|frame|Transmission pulse  "Trapezoid" ]]
The receiver of a binary message transmission system with symbol duration  $T$  consists of an integrator, which is represented by the impulse response
+
The receiver of a binary transmission system with symbol duration  $T$  consists of an integrator,  which is represented by the impulse response
 
:$$h_{\rm E}(t)  =  \left\{ \begin{array}{c} 1/T  \\
 
:$$h_{\rm E}(t)  =  \left\{ \begin{array}{c} 1/T  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
Line 11: Line 11:
 
\\  {\rm{for}} \\ \end{array}\begin{array}{*{20}c}
 
\\  {\rm{for}} \\ \end{array}\begin{array}{*{20}c}
 
\hspace{0.05cm}|t| < T/2 \hspace{0.05cm}, \\
 
\hspace{0.05cm}|t| < T/2 \hspace{0.05cm}, \\
  |t| > T/2 \\
+
  |t| > T/2\hspace{0.05cm}. \\
 
\end{array}$$
 
\end{array}$$
 
This is followed by a threshold decision with optimal parameters.
 
This is followed by a threshold decision with optimal parameters.
  
 
The basic transmission pulse &nbsp;$g_{s}(t)$&nbsp; according to the diagram is generally trapezoidal and is parameterized by the time &nbsp;$T_{1}$:&nbsp;  
 
The basic transmission pulse &nbsp;$g_{s}(t)$&nbsp; according to the diagram is generally trapezoidal and is parameterized by the time &nbsp;$T_{1}$:&nbsp;  
*For &nbsp;$T_{1} = 0$&nbsp; the result is a triangular pulse, for &nbsp;$T_{1} = T$&nbsp; the NRZ rectangle.
+
*For &nbsp;$T_{1} = 0$&nbsp; the result is a triangular pulse,&nbsp; for &nbsp;$T_{1} = T$&nbsp; the NRZ rectangle.
*The absolute pulse duration &nbsp;$T_{\rm S}$&nbsp; is always equal to the symbol duration &nbsp;$T$, i.e. the distance between two transmission pulses.
+
*The absolute pulse duration &nbsp;$T_{\rm S}$&nbsp; is always equal to the symbol duration &nbsp;$T$,&nbsp; i.e. the spacing between two transmission pulses.
  
  
The signal-to-noise power ratio (SNR) before the threshold decision can be calculated as follows, assuming no intersymbol interfering:
+
The signal-to-noise power ratio&nbsp; $\rm (SNR)$&nbsp; before the threshold decision can be calculated as follows,&nbsp; assuming no intersymbol interfering:
 
:$$\rho_d = {g_0^2}/{\sigma_d^2}\hspace{0.05cm}.$$
 
:$$\rho_d = {g_0^2}/{\sigma_d^2}\hspace{0.05cm}.$$
Here, &nbsp;$g_{0} = g_{d}(t = 0)$&nbsp; is the maximum value of the basic transmitter pulse and
+
Here, &nbsp;$g_{0} = g_{d}(t = 0)$&nbsp; is the maximum value of the basic transmission pulse,&nbsp; and
 
:$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|h_{\rm E}(t)|^2 \,{\rm d} t = \frac{N_0}{2 \cdot T}$$
 
:$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|h_{\rm E}(t)|^2 \,{\rm d} t = \frac{N_0}{2 \cdot T}$$
 
the noise power after the receiver filter in the presence of AWGN noise at its input.
 
the noise power after the receiver filter in the presence of AWGN noise at its input.
  
In the course of this exercise, the following quantities will be used:
+
In the course of this exercise,&nbsp; the following quantities will be used:
*$\rho_{d,\rm\hspace{0.05cm} max | L}$&nbsp; is the maximum SNR under the constraint of power limitation.
+
*$\rho_{d,\rm\hspace{0.08cm} max \hspace{0.03cm}|\hspace{0.03cm} L}$&nbsp; is the maximum SNR under the constraint of&nbsp; "power limitation".
*$\rho_{d,\rm\hspace{0.05cm} max | A}$&nbsp; is the maximum SNR under peak limitation (amplitude limitation).
+
*$\rho_{d,\rm\hspace{0.08cm} max \hspace{0.03cm}|\hspace{0.03cm} A}$&nbsp; is the maximum SNR under the constraint of&nbsp; "peak limitation"&nbsp; (or&nbsp; "amplitude limitation").
  
  
 
These definitions can be used to specify the system efficiencies:
 
These definitions can be used to specify the system efficiencies:
:$$\eta_{\rm L}  = \ \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm}
+
:$$\eta_{\rm L}  = \ \frac{\rho_d}{\rho_{d, \hspace{0.08cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm}
 
  L}}}\hspace{0.05cm},$$
 
  L}}}\hspace{0.05cm},$$
:$$\eta_{\rm A} = \ \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max\hspace{0.05cm} |
+
:$$\eta_{\rm A} = \ \frac{\rho_d}{\rho_{d, \hspace{0.08cm}{\rm max\hspace{0.05cm} |
 
\hspace{0.05cm} A}}} = {1}/{C_{\rm S}^2}\cdot \eta_{\rm L} \hspace{0.05cm}.$$
 
\hspace{0.05cm} A}}} = {1}/{C_{\rm S}^2}\cdot \eta_{\rm L} \hspace{0.05cm}.$$
  
Here, the ''crest factor'' &nbsp;$C_{\rm S}$&nbsp; denotes the ratio between the maximum value and the rms value (root of power) of the transmitted signal &nbsp;$s(t)$.
+
Here,&nbsp; the&nbsp; "crest factor" &nbsp; $C_{\rm S}$&nbsp; denotes the ratio between the maximum value and the rms value&nbsp; (root of power)&nbsp; of the transmitted signal &nbsp;$s(t)$.
  
  
Line 43: Line 43:
  
  
 
+
Notes:  
''Notes:''
+
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems|"Optimization of Baseband Transmission Systems"]].
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems|Optimization of Baseband Transmission Systems]].
 
 
   
 
   
 
*Use the following numerical values to solve the exercise:
 
*Use the following numerical values to solve the exercise:
Line 56: Line 55:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Calculate the pulse energy &nbsp;$E_{\rm B}$&nbsp; as a function of &nbsp;$T_{1}$. What are the values for &nbsp;$T_{1} = 0$ , &nbsp;$T_{1} = T/2$&nbsp; and &nbsp;$T_{1} = T$?
+
{Calculate the pulse energy &nbsp;$E_{\rm B}$&nbsp; as a function of &nbsp;$T_{1}$.&nbsp; What are the values for &nbsp;$T_{1} = 0$,&nbsp; &nbsp;$T_{1} = T/2$&nbsp; and &nbsp;$T_{1} = T$?
 
|type="{}"}
 
|type="{}"}
 
$T_{1} = 0\text{:} \hspace{0.75cm}  E_{\rm B} \ = \ $ { 1 3% } $\ \cdot 10^{-8} \, \rm Ws$
 
$T_{1} = 0\text{:} \hspace{0.75cm}  E_{\rm B} \ = \ $ { 1 3% } $\ \cdot 10^{-8} \, \rm Ws$
Line 62: Line 61:
 
$T_{1} = T\text{:}\hspace{0.65cm} E_{\rm B} \ = \ $ { 3 3% } $\ \cdot 10^{-8} \, \rm Ws$
 
$T_{1} = T\text{:}\hspace{0.65cm} E_{\rm B} \ = \ $ { 3 3% } $\ \cdot 10^{-8} \, \rm Ws$
  
{What value &nbsp;$T_{1}$&nbsp; leads to the maximum possible SNR when power is limited?
+
{What value &nbsp;$T_{1}$&nbsp; leads to the maximum possible SNR when the power is limited?
 
|type="{}"}
 
|type="{}"}
 
$T_{1}/T \ = \ $ { 1 3% }
 
$T_{1}/T \ = \ $ { 1 3% }
  
{Therefore, what is the maximum SNR with power limitation?
+
{Therefore,&nbsp; what is the maximum SNR with power limitation?
 
|type="{}"}
 
|type="{}"}
$\rho_{d,\hspace{0.05cm}\rm max \hspace{0.05cm}|\hspace{0.05cm} L} \ = \ $ { 200 3% }  
+
$\rho_{d,\hspace{0.08cm}\rm max \hspace{0.05cm}|\hspace{0.05cm} L} \ = \ $ { 200 3% }  
  
 
{How large is the basic transmitter pulse &nbsp;$g_{d}(t)$&nbsp; in pulse center for &nbsp;$T_{1} = T/2$?
 
{How large is the basic transmitter pulse &nbsp;$g_{d}(t)$&nbsp; in pulse center for &nbsp;$T_{1} = T/2$?
Line 74: Line 73:
 
$g_{0} \ = \ $ { 0.075 3% } $\ \rm \sqrt{W}$
 
$g_{0} \ = \ $ { 0.075 3% } $\ \rm \sqrt{W}$
  
{Calculate the system efficiency &nbsp;$\eta_{\rm L}$&nbsp; when power is limited  &nbsp;$(T_{1} = T/2)$.
+
{Calculate the system efficiency &nbsp;$\eta_{\rm L}$&nbsp; when the power is limited  &nbsp;$(T_{1} = T/2)$.
 
|type="{}"}
 
|type="{}"}
 
$\eta_{\rm L} \ = \ $ { 0.5625 3% }  
 
$\eta_{\rm L} \ = \ $ { 0.5625 3% }  
Line 93: Line 92:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; To simplify the calculations, we set $T_1' = T_1/2$ and $T_2' = (T T_1)/2$.  
+
'''(1)'''&nbsp; To simplify the calculations,&nbsp; we set&nbsp; $T_1' = T_1/2$&nbsp; and&nbsp; $T_2' = (T - T_1)/2$.  
 
*This gives for the transmitted pulse energy:
 
*This gives for the transmitted pulse energy:
 
:$$E_{\rm B} =
 
:$$E_{\rm B} =
Line 100: Line 99:
 
  t\hspace{0.2cm}+ \hspace{0.2cm}2 \cdot \int_{T_1\hspace{0.0cm}'}^{T/2}g_s^2(t) \,{\rm d} t
 
  t\hspace{0.2cm}+ \hspace{0.2cm}2 \cdot \int_{T_1\hspace{0.0cm}'}^{T/2}g_s^2(t) \,{\rm d} t
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*According to this division, it can also be written:
+
*According to this division,&nbsp; it can also be written:
 
:$${E_{\rm B}}/{2} = s_0^2 \cdot T_1\hspace{0.0cm}' + E_2
 
:$${E_{\rm B}}/{2} = s_0^2 \cdot T_1\hspace{0.0cm}' + E_2
 
  \hspace{0.05cm},\hspace{0.3cm}{\rm with}\hspace{0.3cm}
 
  \hspace{0.05cm},\hspace{0.3cm}{\rm with}\hspace{0.3cm}
Line 118: Line 117:
 
  3}= s_0^2  \cdot \left [\frac{T}{6} + \frac{T_1}{3}\right ]\hspace{0.3cm}
 
  3}= s_0^2  \cdot \left [\frac{T}{6} + \frac{T_1}{3}\right ]\hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow E_{\rm B}  = {s_0^2}/{3}\cdot  \left (T + 2 \cdot T_1 \right )\hspace{0.05cm}.$$
 
\hspace{0.3cm}\Rightarrow E_{\rm B}  = {s_0^2}/{3}\cdot  \left (T + 2 \cdot T_1 \right )\hspace{0.05cm}.$$
*With the given values ${s_{0}}^{2} = 10 \ \rm mW$ and $T = 3\ \rm &micro; s$ we obtain:
+
*With the given values&nbsp; ${s_{0}}^{2} = 10 \ \rm mW$&nbsp; and&nbsp; $T = 3\ \rm &micro; s$&nbsp; we obtain:
 
:$$T_1 = 0\text{:} \hspace{0.75cm} {E_{\rm B}}  = \ 1/3 \cdot{s_0^2 \cdot T}= 1/3 \cdot {10^{-2}\,{\rm W} \cdot 3 \cdot 10^{-6}\,{\rm s}} \hspace{0.1cm}\underline {=  1 \cdot 10^{-8}\,{\rm
 
:$$T_1 = 0\text{:} \hspace{0.75cm} {E_{\rm B}}  = \ 1/3 \cdot{s_0^2 \cdot T}= 1/3 \cdot {10^{-2}\,{\rm W} \cdot 3 \cdot 10^{-6}\,{\rm s}} \hspace{0.1cm}\underline {=  1 \cdot 10^{-8}\,{\rm
 
  Ws}}\hspace{0.05cm},$$
 
  Ws}}\hspace{0.05cm},$$
Line 127: Line 126:
  
  
'''(2)'''&nbsp; The system efficiency under power limitation is maximum $(\eta_{\rm L} = 1)$, when the basic transmission pulse $g_{s}(t)$ has the same shape as the impulse response $h_{\rm E}(t)$. This is true here for the NRZ transmitted pulse: &nbsp;  $T_1/T \ \underline{= 1}$.
+
'''(2)'''&nbsp; The system efficiency under power limitation is maximum&nbsp; $(\eta_{\rm L} = 1)$,&nbsp; when the basic transmission pulse&nbsp; $g_{s}(t)$&nbsp; has the same shape as the impulse response $h_{\rm E}(t)$.&nbsp;
 +
*This is true here for the NRZ transmitted pulse: &nbsp;  $T_1/T \ \underline{= 1}$.
  
  
'''(3)'''&nbsp; Under the condition given in question '''(2)''', the maximum SNR is obtained:
+
 
 +
'''(3)'''&nbsp; Under the condition given in question&nbsp; '''(2)''',&nbsp; the maximum SNR is obtained:
 
:$$\rho_{d, \hspace{0.05cm}{\rm max  \hspace{0.05cm}|  \hspace{0.05cm}
 
:$$\rho_{d, \hspace{0.05cm}{\rm max  \hspace{0.05cm}|  \hspace{0.05cm}
 
  L}}= \frac{2 \cdot E_{\rm B}}{N_0} = \frac{2 \cdot 3 \cdot 10^{-8}\,{\rm Ws}}{3 \cdot 10^{-10}\,{\rm
 
  L}}= \frac{2 \cdot E_{\rm B}}{N_0} = \frac{2 \cdot 3 \cdot 10^{-8}\,{\rm Ws}}{3 \cdot 10^{-10}\,{\rm
Line 136: Line 137:
  
  
'''(4)'''&nbsp; In general, $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$. For $t = 0$, $T_1 = T/2$ gives the trapezoidal area for this:
+
'''(4)'''&nbsp; In general,&nbsp; $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$.&nbsp; For&nbsp; $t = 0$,&nbsp; $T_1 = T/2$&nbsp; gives the trapezoidal area for this:
 
:$$g_0 = g_d(t=0) = \frac{1}{T} \cdot \int_{-\infty}^{+\infty}g_s(t) \,{\rm d} t = \frac{T + T_1}{2} \cdot s_0 = 0.75 \cdot 0.1 \cdot \sqrt{\rm W} \hspace{0.1cm}\underline {= 0.075 \,\sqrt{\rm W}} \hspace{0.05cm}.$$
 
:$$g_0 = g_d(t=0) = \frac{1}{T} \cdot \int_{-\infty}^{+\infty}g_s(t) \,{\rm d} t = \frac{T + T_1}{2} \cdot s_0 = 0.75 \cdot 0.1 \cdot \sqrt{\rm W} \hspace{0.1cm}\underline {= 0.075 \,\sqrt{\rm W}} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; With $T_1 = T/2$ (trapezoidal transmitted pulses), we obtain for the signal-to-noise ratio:
+
'''(5)'''&nbsp; With&nbsp; $T_1 = T/2$&nbsp; (trapezoidal transmitted pulses),&nbsp; we obtain for the signal-to-noise ratio:
 
:$$\rho_d = \frac{g_0^2}{\sigma_d^2}\hspace{0.3cm}{\rm with}\hspace{0.3cm} g_0^2=0.075^2\, {\rm W},\hspace{0.1cm} \sigma_d^2 = \frac{N_0}{2 \cdot T} = 5 \cdot 10^{-5}\,{\rm W}\hspace{0.3cm}
 
:$$\rho_d = \frac{g_0^2}{\sigma_d^2}\hspace{0.3cm}{\rm with}\hspace{0.3cm} g_0^2=0.075^2\, {\rm W},\hspace{0.1cm} \sigma_d^2 = \frac{N_0}{2 \cdot T} = 5 \cdot 10^{-5}\,{\rm W}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}\rho_d = \frac{0.075^2\, {\rm W}}{5 \cdot 10^{-5}\,{\rm W}} = 112.5 \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}\rho_d = \frac{0.075^2\, {\rm W}}{5 \cdot 10^{-5}\,{\rm W}} = 112.5 \hspace{0.05cm}.$$
*Thus, the system efficiency under power limitation with the result of '''(3)''':
+
*Thus,&nbsp; the system efficiency under power limitation with the result of&nbsp; '''(3)''':
 
:$$\eta_{\rm L} = \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}= \frac{112.5}{200}\hspace{0.1cm}\underline {= 0.5625 }\hspace{0.05cm}.$$
 
:$$\eta_{\rm L} = \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}= \frac{112.5}{200}\hspace{0.1cm}\underline {= 0.5625 }\hspace{0.05cm}.$$
 
*Due to the mismatch, $\eta_{\rm L} < 1$.
 
*Due to the mismatch, $\eta_{\rm L} < 1$.
  
  
'''(6)'''&nbsp; With the maximum value $s_{0}$ and the result of question '''(1)''':
+
 
 +
'''(6)'''&nbsp; With the maximum value&nbsp; $s_{0}$&nbsp; and the result of&nbsp; '''(1)''':
 
:$$s_{\rm eff} = \sqrt{{ E_{\rm B}}/{T}}= \sqrt{{ 2/3 \cdot s_{0}^2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}C_{\rm S} ={ s_{\rm 0}}/{s_{\rm eff}}= \sqrt{{ 3}/{2}}\hspace{0.1cm}\underline { \approx 1.225}\hspace{0.05cm}.$$
 
:$$s_{\rm eff} = \sqrt{{ E_{\rm B}}/{T}}= \sqrt{{ 2/3 \cdot s_{0}^2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}C_{\rm S} ={ s_{\rm 0}}/{s_{\rm eff}}= \sqrt{{ 3}/{2}}\hspace{0.1cm}\underline { \approx 1.225}\hspace{0.05cm}.$$
  
  
'''(7)'''&nbsp; The system efficiency under peak limitation is smaller than that under power limitation, because the non-optimal transmitted signal (too small energy) plays a role here in addition to the mismatch:
+
'''(7)'''&nbsp; The system efficiency under peak limitation is smaller than that under power limitation,&nbsp; <br>because the non-optimal transmitted signal&nbsp; (too small energy)&nbsp; plays a role here in addition to the mismatch:
 
:$$\eta_{\rm A} = \frac{1}{C_{\rm S}^2}\cdot \eta_{\rm L} = \frac{ 2}{3} \cdot 0.5625 =\hspace{0.1cm}\underline {  0.375} \hspace{0.05cm}.$$
 
:$$\eta_{\rm A} = \frac{1}{C_{\rm S}^2}\cdot \eta_{\rm L} = \frac{ 2}{3} \cdot 0.5625 =\hspace{0.1cm}\underline {  0.375} \hspace{0.05cm}.$$
  
Line 159: Line 161:
  
  
[[Category:Digital Signal Transmission: Exercises|^1.4 Optimierung der Basisbandsysteme^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.4 Optimization of Baseband Systems^]]

Latest revision as of 17:01, 9 April 2023


Transmission pulse  "Trapezoid"

The receiver of a binary transmission system with symbol duration  $T$  consists of an integrator,  which is represented by the impulse response

$$h_{\rm E}(t) = \left\{ \begin{array}{c} 1/T \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} \hspace{0.05cm}|t| < T/2 \hspace{0.05cm}, \\ |t| > T/2\hspace{0.05cm}. \\ \end{array}$$

This is followed by a threshold decision with optimal parameters.

The basic transmission pulse  $g_{s}(t)$  according to the diagram is generally trapezoidal and is parameterized by the time  $T_{1}$: 

  • For  $T_{1} = 0$  the result is a triangular pulse,  for  $T_{1} = T$  the NRZ rectangle.
  • The absolute pulse duration  $T_{\rm S}$  is always equal to the symbol duration  $T$,  i.e. the spacing between two transmission pulses.


The signal-to-noise power ratio  $\rm (SNR)$  before the threshold decision can be calculated as follows,  assuming no intersymbol interfering:

$$\rho_d = {g_0^2}/{\sigma_d^2}\hspace{0.05cm}.$$

Here,  $g_{0} = g_{d}(t = 0)$  is the maximum value of the basic transmission pulse,  and

$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|h_{\rm E}(t)|^2 \,{\rm d} t = \frac{N_0}{2 \cdot T}$$

the noise power after the receiver filter in the presence of AWGN noise at its input.

In the course of this exercise,  the following quantities will be used:

  • $\rho_{d,\rm\hspace{0.08cm} max \hspace{0.03cm}|\hspace{0.03cm} L}$  is the maximum SNR under the constraint of  "power limitation".
  • $\rho_{d,\rm\hspace{0.08cm} max \hspace{0.03cm}|\hspace{0.03cm} A}$  is the maximum SNR under the constraint of  "peak limitation"  (or  "amplitude limitation").


These definitions can be used to specify the system efficiencies:

$$\eta_{\rm L} = \ \frac{\rho_d}{\rho_{d, \hspace{0.08cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm} L}}}\hspace{0.05cm},$$
$$\eta_{\rm A} = \ \frac{\rho_d}{\rho_{d, \hspace{0.08cm}{\rm max\hspace{0.05cm} | \hspace{0.05cm} A}}} = {1}/{C_{\rm S}^2}\cdot \eta_{\rm L} \hspace{0.05cm}.$$

Here,  the  "crest factor"   $C_{\rm S}$  denotes the ratio between the maximum value and the rms value  (root of power)  of the transmitted signal  $s(t)$.



Notes:

  • Use the following numerical values to solve the exercise:
$$s_0^2 = 10\,{\rm mW},\hspace{0.2cm}T = 3\,{\rm{ µ s}}, \hspace{0.2cm}N_0 = 3 \cdot 10^{-10}\,{\rm W/Hz}\hspace{0.05cm}.$$


Questions

1

Calculate the pulse energy  $E_{\rm B}$  as a function of  $T_{1}$.  What are the values for  $T_{1} = 0$,   $T_{1} = T/2$  and  $T_{1} = T$?

$T_{1} = 0\text{:} \hspace{0.75cm} E_{\rm B} \ = \ $

$\ \cdot 10^{-8} \, \rm Ws$
$T_{1} = T/2\text{:}\hspace{0.2cm} E_{\rm B} \ = \ $

$\ \cdot 10^{-8} \, \rm Ws$
$T_{1} = T\text{:}\hspace{0.65cm} E_{\rm B} \ = \ $

$\ \cdot 10^{-8} \, \rm Ws$

2

What value  $T_{1}$  leads to the maximum possible SNR when the power is limited?

$T_{1}/T \ = \ $

3

Therefore,  what is the maximum SNR with power limitation?

$\rho_{d,\hspace{0.08cm}\rm max \hspace{0.05cm}|\hspace{0.05cm} L} \ = \ $

4

How large is the basic transmitter pulse  $g_{d}(t)$  in pulse center for  $T_{1} = T/2$?

$g_{0} \ = \ $

$\ \rm \sqrt{W}$

5

Calculate the system efficiency  $\eta_{\rm L}$  when the power is limited  $(T_{1} = T/2)$.

$\eta_{\rm L} \ = \ $

6

Calculate the crest factor  $(T_{1} = T/2)$.

$C_{\rm S} \ = \ $

7

Calculate the system efficiency at peak limitation  $(T_{1} = T/2)$.

$\eta_{\rm A} \ = \ $


Solution

(1)  To simplify the calculations,  we set  $T_1' = T_1/2$  and  $T_2' = (T - T_1)/2$.

  • This gives for the transmitted pulse energy:
$$E_{\rm B} = \int_{-\infty}^{+\infty}g_s^2(t) \,{\rm d} t = 2 \cdot \int_{0}^{T_1\hspace{0.0cm}'}g_s^2(t) \,{\rm d} t\hspace{0.2cm}+ \hspace{0.2cm}2 \cdot \int_{T_1\hspace{0.0cm}'}^{T/2}g_s^2(t) \,{\rm d} t \hspace{0.05cm}.$$
  • According to this division,  it can also be written:
$${E_{\rm B}}/{2} = s_0^2 \cdot T_1\hspace{0.0cm}' + E_2 \hspace{0.05cm},\hspace{0.3cm}{\rm with}\hspace{0.3cm} E_{\rm 2} = \ \int_{T_1\hspace{0.0cm}'}^{T/2}g_s^2(t) \,{\rm d} t = s_0^2 \cdot \int_{0}^{T_2\hspace{0.0cm}'}\left ( 1 - \frac {t}{T_2\hspace{0.0cm}'}\right )^2 \,{\rm d} t $$
$$\Rightarrow \hspace{0.3cm}E_{\rm 2} = \ s_0^2 \cdot \left [ \int_{0}^{T_2\hspace{0.0cm}'}\,\,{\rm d} t- \frac {2}{T_2\hspace{0.0cm}'} \cdot \int_{0}^{T_2\hspace{0.0cm}'}t \,\,{\rm d} t + \frac {1}{(T_2\hspace{0.0cm}'\hspace{0.02cm})^2} \cdot \int_{0}^{T_2\hspace{0.0cm}'}t^2 \,\,{\rm d} t\right ] = \ s_0^2 \cdot \left [ {T_2\hspace{0.0cm}'} - \frac {2}{T_2\hspace{0.0cm}'} \cdot \frac {(T_2\hspace{0.0cm}'\hspace{0.02cm})^2}{2} + \frac {1}{(T_2\hspace{0.0cm}'\hspace{0.02cm})^2} \cdot \frac {(T_2\hspace{0.0cm}'\hspace{0.02cm})^3}{3}\right ] = s_0^2 \cdot\frac {T_2\hspace{0.0cm}'\hspace{0.02cm}}{3} \hspace{0.05cm}.$$
  • Substituted into the above equation one obtains:
$${E_{\rm B}}/{2} = s_0^2 \cdot \frac {T_1}{2}+ s_0^2 \cdot \frac {T-T_1}{2 \cdot 3}= s_0^2 \cdot \left [\frac{T}{6} + \frac{T_1}{3}\right ]\hspace{0.3cm} \hspace{0.3cm}\Rightarrow E_{\rm B} = {s_0^2}/{3}\cdot \left (T + 2 \cdot T_1 \right )\hspace{0.05cm}.$$
  • With the given values  ${s_{0}}^{2} = 10 \ \rm mW$  and  $T = 3\ \rm µ s$  we obtain:
$$T_1 = 0\text{:} \hspace{0.75cm} {E_{\rm B}} = \ 1/3 \cdot{s_0^2 \cdot T}= 1/3 \cdot {10^{-2}\,{\rm W} \cdot 3 \cdot 10^{-6}\,{\rm s}} \hspace{0.1cm}\underline {= 1 \cdot 10^{-8}\,{\rm Ws}}\hspace{0.05cm},$$
$$T_1 = T/2\text{:} \hspace{0.2cm} {E_{\rm B}} = \ 2/3 \cdot{ s_0^2 \cdot T}= \hspace{2.6cm}\text{...} \hspace{1.4cm}\hspace{0.1cm}\underline {= 2 \cdot 10^{-8}\,{\rm Ws}} \hspace{0.05cm},$$
$$T_1 = T\text{:} \hspace{0.65cm} {E_{\rm B}} = \ { s_0^2 \cdot T}= \hspace{3.65cm}\text{...} \hspace{1.4cm}\hspace{0.1cm}\underline {= 3 \cdot 10^{-8}\,{\rm Ws}} \hspace{0.05cm}.$$


(2)  The system efficiency under power limitation is maximum  $(\eta_{\rm L} = 1)$,  when the basic transmission pulse  $g_{s}(t)$  has the same shape as the impulse response $h_{\rm E}(t)$. 

  • This is true here for the NRZ transmitted pulse:   $T_1/T \ \underline{= 1}$.


(3)  Under the condition given in question  (2),  the maximum SNR is obtained:

$$\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}| \hspace{0.05cm} L}}= \frac{2 \cdot E_{\rm B}}{N_0} = \frac{2 \cdot 3 \cdot 10^{-8}\,{\rm Ws}}{3 \cdot 10^{-10}\,{\rm W/Hz}}\hspace{0.1cm}\underline {= 200} \hspace{0.05cm}.$$


(4)  In general,  $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$.  For  $t = 0$,  $T_1 = T/2$  gives the trapezoidal area for this:

$$g_0 = g_d(t=0) = \frac{1}{T} \cdot \int_{-\infty}^{+\infty}g_s(t) \,{\rm d} t = \frac{T + T_1}{2} \cdot s_0 = 0.75 \cdot 0.1 \cdot \sqrt{\rm W} \hspace{0.1cm}\underline {= 0.075 \,\sqrt{\rm W}} \hspace{0.05cm}.$$


(5)  With  $T_1 = T/2$  (trapezoidal transmitted pulses),  we obtain for the signal-to-noise ratio:

$$\rho_d = \frac{g_0^2}{\sigma_d^2}\hspace{0.3cm}{\rm with}\hspace{0.3cm} g_0^2=0.075^2\, {\rm W},\hspace{0.1cm} \sigma_d^2 = \frac{N_0}{2 \cdot T} = 5 \cdot 10^{-5}\,{\rm W}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\rho_d = \frac{0.075^2\, {\rm W}}{5 \cdot 10^{-5}\,{\rm W}} = 112.5 \hspace{0.05cm}.$$
  • Thus,  the system efficiency under power limitation with the result of  (3):
$$\eta_{\rm L} = \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}= \frac{112.5}{200}\hspace{0.1cm}\underline {= 0.5625 }\hspace{0.05cm}.$$
  • Due to the mismatch, $\eta_{\rm L} < 1$.


(6)  With the maximum value  $s_{0}$  and the result of  (1):

$$s_{\rm eff} = \sqrt{{ E_{\rm B}}/{T}}= \sqrt{{ 2/3 \cdot s_{0}^2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}C_{\rm S} ={ s_{\rm 0}}/{s_{\rm eff}}= \sqrt{{ 3}/{2}}\hspace{0.1cm}\underline { \approx 1.225}\hspace{0.05cm}.$$


(7)  The system efficiency under peak limitation is smaller than that under power limitation, 
because the non-optimal transmitted signal  (too small energy)  plays a role here in addition to the mismatch:

$$\eta_{\rm A} = \frac{1}{C_{\rm S}^2}\cdot \eta_{\rm L} = \frac{ 2}{3} \cdot 0.5625 =\hspace{0.1cm}\underline { 0.375} \hspace{0.05cm}.$$