Difference between revisions of "Applets:Pulses and Spectra"

From LNTwww
 
(24 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{LntAppletLink|impulsesAndSpectra_en}}        
+
{{LntAppletLinkEnDe|pulsesAndSpectra_en|pulsesAndSpectra}}
[https://www.lntwww.de/Applets:Impulse_und_Spektren '''German Version''']
+
 
  
 
==Applet Description==
 
==Applet Description==
 
<br>
 
<br>
Dargestellt werden impulsförmige symmetrische Zeitsignale &nbsp; &rArr; &nbsp; &bdquo;Impulse&rdquo;&nbsp; $x(t)$&nbsp; und die dazugehörigen Spektralfunktionen&nbsp; $X(f)$, nämlich
+
Time-limited symmetric signals &nbsp; &rArr; &nbsp; "pulses"&nbsp; $x(t)$&nbsp; and the corresponding spectral functions&nbsp; $X(f)$&nbsp; are considered, namely
*Gaussian impulse,&nbsp;  
+
*rectangular impulse, &nbsp;  
+
*Gaussian pulse,&nbsp;  
*triangular impulse,&nbsp;  
+
*rectangular pulse, &nbsp;  
*trapezoidal impulse,&nbsp;  
+
*triangular pulse,&nbsp;  
*cosine-rolloff impulse.
+
*trapezoidal pulse,&nbsp;  
 +
*raised cosine pulse,
 +
*cosine square pulse.
 +
 
  
 +
Further it is to be noted:
 +
* The functions&nbsp; $x(t)$&nbsp; resp.&nbsp; $X(f)$&nbsp; are shown for up to two parameter sets in one diagram each.
 +
* The red curves and numbers apply to the left parameter set, the blue ones to the right parameter set.
 +
* The abscissas&nbsp; $t$&nbsp; (time) and&nbsp; $f$&nbsp; (frequency) as well as the ordinates&nbsp; $x(t)$&nbsp; (signal values) and&nbsp; $X(f)$&nbsp; (spectral values) are normalized.
  
Weiter ist zu beachten:
 
* Die Funktionen&nbsp; $x(t)$&nbsp; bzw.&nbsp; $X(f)$&nbsp; werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
 
* Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
 
* Die Abszissen&nbsp; $t$&nbsp; (Zeit) und&nbsp; $f$&nbsp; (Frequenz) sowie die Ordinaten&nbsp; $x(t)$&nbsp; (Signalwerte) bzw.&nbsp; $X(f)$&nbsp;  (Spektralwerte) sind jeweils normiert.
 
  
  
==Theoretical background==
+
==Theoretical Background==
 
<br>
 
<br>
 
===Relationship $x(t)\Leftrightarrow X(f)$===
 
===Relationship $x(t)\Leftrightarrow X(f)$===
*Der Zusammenhang zwischen der Zeitfunktion&nbsp; $x(t)$&nbsp; und dem Spektrum&nbsp; $X(f)$&nbsp; ist durch das&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_erste_Fourierintegral|erste Fourierintegral]]&nbsp; gegeben:
+
*The relationship between the time function&nbsp; $x(t)$&nbsp; and the spectrum&nbsp; $X(f)$&nbsp; is given by the&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|"first Fourier integral"]]&nbsp;:
 
:$$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm}
 
:$$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm}
\rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$  
+
\rm FT\hspace{-0.1cm}: \ Fourier \ transform.$$  
  
*Um aus der Spektralfunktion&nbsp; $X(f)$&nbsp; die Zeitfunktion&nbsp; $x(t)$&nbsp; berechnen zu können, benötigt man das&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral|zweite Fourierintegral]]:
+
*In order to calculate the time function&nbsp; $x(f)$&nbsp; from the spectral function&nbsp; $x(t)$&nbsp; one needs the&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|"second Fourier integral"]]:
 
:$$x(t)={\rm IFT} [X(f)] = \int_{-\infty}^{+\infty}X(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm}
 
:$$x(t)={\rm IFT} [X(f)] = \int_{-\infty}^{+\infty}X(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm}
{\rm IFT}\hspace{-0.1cm}: \rm  Inverse \ Fouriertransformation.$$  
+
{\rm IFT}\hspace{-0.1cm}: \rm  Inverse \ Fourier \ transform.$$  
  
*In allen Beispielen verwenden wir reelle und gerade Funktionen.&nbsp; Somit gilt:
+
*In all examples we use real and even functions.&nbsp; Thus:
 
:$$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
 
:$$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
*$x(t)$&nbsp; und&nbsp; $X(f)$&nbsp; haben unterschiedliche Einheiten, beispielsweise&nbsp; $x(t)$&nbsp; in&nbsp; $\rm V$,&nbsp; $X(f)$&nbsp; in&nbsp; $\rm V/Hz$.
+
*$x(t)$&nbsp; and&nbsp; $X(f)$&nbsp; have different units, for example&nbsp; $x(t)$&nbsp; in&nbsp; $\rm V$,&nbsp; $X(f)$&nbsp; in&nbsp; $\rm V/Hz$.
*Der Zusammenhang zwischen diesem Modul und dem ähnlich aufgebauten Applet&nbsp; [[Applets:Frequenzgang_und_Impulsantwort|Frequenzgang & Impulsantwort]]&nbsp; basiert auf dem&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Vertauschungssatz|Vertauschungssatz]].
+
*The relationship between this module and the similarly constructed applet&nbsp; [[Applets:Frequenzgang_und_Impulsantwort|"Frequency response & Impulse response"]]&nbsp; is based on the&nbsp; [[Signal_Representation/The_Fourier_Transform_Theorems#Duality_Theorem|"Duality Theorem"]].
*Alle Zeiten sind auf eine Zeit&nbsp; $T$&nbsp; normiert und alle Frequenzen auf&nbsp; $1/T$ &nbsp; &rArr; &nbsp; die Spektralwerte&nbsp; $X(f)$&nbsp; müssen noch mit der Normierungszeit&nbsp; $T$&nbsp; multipliziert werden.
+
*All times are normalized to a time&nbsp; $T$&nbsp; and all frequencies are normalized to&nbsp; $1/T$ &nbsp; &rArr; &nbsp; the spectral values&nbsp; $X(f)$&nbsp; still have to be multiplied by the normalization time&nbsp; $T$&nbsp;.
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel:}$ &nbsp; Stellt man einen Rechteckimpuls mit Amplitude&nbsp; $A_1 = 1$&nbsp; und äquivalenter Impulsdauer&nbsp; $\Delta t_1 = 1$&nbsp; ein, so ist&nbsp; $x_1(t)$&nbsp; im Bereich&nbsp; $-0.5 < t < +0.5$&nbsp; gleich Eins und außerhalb dieses Bereichs gleich Null.&nbsp; Die Spektralfunktion&nbsp; $X_1(f)$&nbsp; verläuft&nbsp; $\rm si$&ndash;förmig mit&nbsp; $X_1(f= 0) = 1$&nbsp; und der ersten Nullstelle bei&nbsp; $f=1$.
+
$\text{Example:}$ &nbsp; If one sets a rectangular pulse with amplitude&nbsp; $A_1 = 1$&nbsp; and equivalent pulse duration&nbsp; $\Delta t_1 = 1$&nbsp; then&nbsp; $x_1(t)$&nbsp; in the range&nbsp; $-0.5 < t < +0. 5$&nbsp; equal to one and outside this range equal to zero.&nbsp; The spectral function&nbsp; $X_1(f)$&nbsp; proceeds&nbsp; $\rm si$&ndash;shaped with&nbsp; $X_1(f= 0) = 1$&nbsp; and the first zero at&nbsp; $f=1$.
  
*Soll mit dieser Einstellung ein Rechteckimpuls mit&nbsp; $A = K = 3 \ \rm V$&nbsp; und&nbsp; $\Delta t = T = 2 \ \rm ms$&nbsp; nachgebildet werden, dann sind alle Signalwerte mit&nbsp; $K = 3 \ \rm V$&nbsp; und alle Spektralwerte mit&nbsp; $K \cdot T = 0.006 \ \rm V/Hz$&nbsp; zu multiplizieren.  
+
*If a rectangular pulse with&nbsp; $A = K = 3 \ \rm V$&nbsp; and&nbsp; $\delta t = T = 2 \ \rm ms$&nbsp; is to be simulated with this setting, then all signal values with&nbsp; $K = 3 \ \rm V$&nbsp; and all spectral values with&nbsp; $K \cdot T = 0. 006 \ \rm V/Hz$&nbsp; to be multiplied by.  
*Der maximale Spektralwert ist dann&nbsp; $X(f= 0) = 0.006 \ \rm V/Hz$&nbsp; und die erste Nullstelle liegt bei&nbsp; $f=1/T = 0.5 \ \rm kHz$.}}
+
*The maximum spectral value is then&nbsp; $X(f= 0) = 0.006 \ \rm V/Hz$&nbsp; and the first zero is at&nbsp; $f=1/T = 0.5 \ \rm kHz$.}}
  
  
===Gaussian Impulse ===
+
===Gaussian Pulse ===
  
*Die Zeitfunktion des Gaußimpulses mit der Höhe&nbsp; $K$&nbsp; und der (äquivalenten) Dauer&nbsp; $\Delta t$&nbsp; lautet:  
+
*The time function of the Gaussian pulse with height&nbsp; $K$&nbsp; and (equivalent) duration&nbsp; $\Delta t$&nbsp; is:  
 
:$$x(t)=K\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(t/\Delta t)^2}.$$
 
:$$x(t)=K\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(t/\Delta t)^2}.$$
*Die äquivalente Zeitdauer&nbsp; $\Delta t$&nbsp; ergibt sich aus dem flächengleichen Rechteck.
+
*The equivalent time duration&nbsp; $\Delta t$&nbsp; is obtained from the rectangle of equal area.
*Der Wert bei&nbsp; $t = \Delta t/2$&nbsp; ist um den Faktor&nbsp; $0.456$&nbsp; kleiner als der Wert bei&nbsp; $t=0$.
+
*The value at&nbsp; $t = \Delta t/2$&nbsp; is smaller than the value at&nbsp; $t=0$ by the factor&nbsp; $0.456$&nbsp;.
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
+
*For the spectral function we get according to the Fourier transform:
 
:$$X(f)=K\cdot \Delta t \cdot {\rm e}^{-\pi(f\hspace{0.05cm}\cdot \hspace{0.05cm} \Delta t)^2} .$$
 
:$$X(f)=K\cdot \Delta t \cdot {\rm e}^{-\pi(f\hspace{0.05cm}\cdot \hspace{0.05cm} \Delta t)^2} .$$
*Je kleiner die äquivalente Zeitdauer&nbsp; $\Delta t$&nbsp; ist, um so breiter und niedriger ist das Spektrum &nbsp; &rArr; &nbsp; [[Signal_Representation/Fourier_Transform_Laws#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz von Bandbreite und Impulsdauer]].
+
*The smaller the equivalent time duration&nbsp; $\Delta t$&nbsp; is, the wider and lower the spectrum &nbsp; &rArr; &nbsp; [[Signal_Representation/The_Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|"Reciprocity law of bandwidth and pulse duration"]].
*Sowohl&nbsp; $x(t)$&nbsp; als auch&nbsp; $X(f)$&nbsp; sind zu keinem&nbsp; $f$&ndash; &nbsp;bzw.&nbsp; $t$&ndash;Wert exakt gleich Null.
+
*Both&nbsp; $x(t)$&nbsp; and&nbsp; $X(f)$&nbsp; are not exactly zero at any&nbsp; $f$&ndash; &nbsp;or&nbsp; $t$&ndash;value, respectively.
*Für praktische Anwendungen kann der Gaußimpuls jedoch  in Zeit und Frequenz als begrenzt angenommen werden.&nbsp; Zum Beispiel ist&nbsp; $x(t)$&nbsp; bereits bei&nbsp; $t=1.5 \Delta t$&nbsp; auf weniger als&nbsp; $0.1\% $&nbsp; des Maximums abgefallen.
+
*For practical applications, however, the Gaussian pulse can be assumed to be limited in time and frequency.&nbsp; For example,&nbsp; $x(t)$&nbsp; has already dropped to less than&nbsp; $0.1\% $&nbsp; of the maximum at&nbsp; $t=1.5 \delta t$&nbsp; .
  
  
===Rectangular  Impulse   ===
+
===Rectangular  Pulse   ===
*Die Zeitfunktion des Rechteckimpulses mit der Höhe&nbsp; $K$&nbsp; und der (äquivalenten) Dauer&nbsp; $\Delta t$&nbsp; lautet:
+
*The time function of the rectangular pulse with height&nbsp; $K$&nbsp; and (equivalent) duration&nbsp; $\Delta t$&nbsp; is:
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K /2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.}  \\ \end{array}$$
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K /2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{for}}  \\  {\rm{for}}  \\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.}  \\ \end{array}$$
  
*Der&nbsp; $\pm \Delta t/2$&ndash;Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
+
*The $\pm \Delta t/2$ value lies midway between the left- and right-hand limits.
*Für die Spektralfunktion erhält man entsprechend den Gesetzmäßigkeiten der Fouriertransformation (1. Fourierintegral):
+
*For the spectral function one obtains according to the laws of the Fourier transform (1st Fourier integral):
:$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
+
:$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f) \quad \text{with} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
*Der Spektralwert bei&nbsp; $f=0$&nbsp; ist gleich der Rechteckfläche der Zeitfunktion.
+
*The spectral value at&nbsp; $f=0$&nbsp; is equal to the rectangular area of the time function.
*Die Spektralfunktion besitzt Nullstellen in äquidistanten Abständen&nbsp; $1/\Delta t$.
+
*The spectral function has zeros at equidistant distances&nbsp; $1/\delta t$.
*Das Integral über der Spektralfunktion&nbsp; $X(f)$&nbsp; ist gleich dem Signalwert zum Zeitpunkt&nbsp; $t=0$, also der Impulshöhe&nbsp; $K$.
+
*The integral over the spectral function&nbsp; $X(f)$&nbsp; is equal to the signal value at time&nbsp; $t=0$, i.e. the pulse height&nbsp; $K$.
  
  
===Triangular  Impulse===
+
===Triangular  Pulse===
*Die Zeitfunktion des Dreieckimpulses mit der Höhe&nbsp; $K$&nbsp; und der (äquivalenten) Dauer&nbsp; $\Delta t$&nbsp; lautet:
+
*The time function of the triangular pulse with height&nbsp; $K$&nbsp; and (equivalent) duration&nbsp; $\Delta t$&nbsp; is:
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot (1-|t|/{\Delta t})  \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot (1-|t|/{\Delta t})  \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{for}}  \\    {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
  
*Die absolute Zeitdauer ist&nbsp; $2 \cdot \Delta t$;&nbsp; diese ist doppelt so groß als die des Rechtecks.
+
*The absolute time duration is&nbsp; $2 \cdot \Delta t$;&nbsp; this is twice as large as that of the rectangle.
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
+
*For the spectral function, we obtain according to the Fourier transform:
:$$X(f)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta t \cdot f) \quad \text{mit} \quad {\rm si}(x)=\frac{\sin(x)}{x}.$$
+
:$$X(f)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta t \cdot f) \quad \text{with} \quad {\rm si}(x)=\frac{\sin(x)}{x}.$$
*Obige Zeitfunktion ist gleich der Faltung zweier Rechteckimpulse, jeweils mit Breite&nbsp; $\Delta t$.  
+
*The above time function is equal to the convolution of two rectangular pulses, each with width&nbsp; $\delta t$.  
*Daraus folgt:&nbsp; $X(f)$&nbsp; beinhaltet anstelle der&nbsp; ${\rm si}$-Funktion die&nbsp; ${\rm si}^2$-Funktion.
+
*From this follows:&nbsp; $X(f)$&nbsp; contains instead of the&nbsp; ${\rm si}$-function the&nbsp; ${\rm si}^2$-function.
*$X(f)$&nbsp; weist somit ebenfalls Nullstellen im äquidistanten Abständen&nbsp; $1/\Delta f$&nbsp; auf.
+
*$X(f)$&nbsp; thus also has zeros at equidistant intervals&nbsp; $1/\rm f$&nbsp;.
*Der asymptotische Abfall von&nbsp; $X(f)$&nbsp; erfolgt hier mit&nbsp; $1/f^2$, während zum Vergleich der Rechteckimpuls mit&nbsp; $1/f$&nbsp; abfällt.
+
*The asymptotic decay of&nbsp; $X(f)$&nbsp; occurs here with&nbsp; $1/f^2$, while for comparison the rectangular pulse decays with&nbsp; $1/f$&nbsp;.
  
  
  
===Trapezoidal  Impulse   ===
+
===Trapezoidal  Pulse   ===
Die Zeitfunktion des Trapezimpulses mit der Höhe&nbsp; $K$&nbsp; und den Zeitparametern&nbsp; $t_1$&nbsp; und&nbsp; $t_2$&nbsp; lautet:
+
The time function of the trapezoidal pulse with height&nbsp; $K$&nbsp; and time parameters&nbsp; $t_1$&nbsp; and&nbsp; $t_2$&nbsp; is:
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}\quad  \\  {\rm{f\ddot{u}r}}\quad  \\  {\rm{f\ddot{u}r}} \quad \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{for}}\quad  \\  {\rm{for}}\quad  \\  {\rm{for}} \quad \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
  
*Für die äquivalente Impulsdauer (flächengleiches Rechteck) gilt: &nbsp; $\Delta t = t_1+t_2$.
+
*For the equivalent pulse duration (rectangle of equal area) holds: &nbsp; $\Delta t = t_1+t_2$.
*Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
+
*The rolloff factor (in the time domain) characterizes the slope:
 
:$$r=\frac{t_2-t_1}{t_2+t_1}.$$
 
:$$r=\frac{t_2-t_1}{t_2+t_1}.$$
*Der Sonderfall&nbsp; $r=0$&nbsp; entspricht dem Rechteckimpuls und der Sonderfall&nbsp; $r=1$&nbsp; dem Dreieckimpuls.
+
*The special case&nbsp; $r=0$&nbsp; corresponds to the rectangular pulse and the special case&nbsp; $r=1$&nbsp; to the triangular pulse.
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
+
*For the spectral function one obtains according to the Fourier transform:
:$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f)\cdot {\rm si}(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{mit} \quad {\rm si}(x)=\frac{\sin(x)}{x}.$$
+
:$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f)\cdot {\rm si}(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{with} \quad {\rm si}(x)=\frac{\sin(x)}{x}.$$
*Der asymptotische Abfall von&nbsp; $X(f)$&nbsp; liegt zwischen&nbsp; $1/f$&nbsp; $($für Rechteck,&nbsp; $r=0)$&nbsp; und&nbsp; $1/f^2$&nbsp; $($für Dreieck,&nbsp; $r=1)$.
+
*The asymptotic decay of&nbsp; $X(f)$&nbsp; lies between&nbsp; $1/f$&nbsp; $($for rectangle,&nbsp; $r=0)$&nbsp; and&nbsp; $1/f^2$&nbsp; $($for triangle,&nbsp; $r=1)$.
  
  
===Cosine-rolloff   Impulse   ===
+
===Raised cosine   Pulse   ===
Die Zeitfunktion des Cosinus-Rolloff-Impulses mit der Höhe&nbsp; $K$&nbsp; und den Zeitparametern&nbsp; $t_1$&nbsp; und&nbsp; $t_2$&nbsp; lautet:
+
The time function of the raised cosine pulse with height&nbsp; $K$&nbsp; and time parameters&nbsp; $t_1$&nbsp; and&nbsp; $t_2$&nbsp; is:
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot {\pi}/{2}\Big) \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}\quad  \\  {\rm{f\ddot{u}r}}\quad  \\  {\rm{f\ddot{u}r}}\quad  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot {\pi}/{2}\Big) \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{for}}\quad  \\  {\rm{for}}\quad  \\  {\rm{for}}\quad  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
  
*Für die äquivalente  Impulsdauer (flächengleiches Rechteck) gilt: &nbsp; $\Delta t = t_1+t_2$.
+
*For the equivalent pulse duration (rectangle of equal area) holds: &nbsp; $\Delta t = t_1+t_2$.
*Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
+
*The rolloff factor (in the time domain) characterizes the slope:
 
:$$r=\frac{t_2-t_1}{t_2+t_1}.$$
 
:$$r=\frac{t_2-t_1}{t_2+t_1}.$$
*Der Sonderfall&nbsp; $r=0$&nbsp; entspricht dem Rechteckimpuls und der Sonderfall&nbsp; $r=1$&nbsp; dem Cosinus-Quadrat-Impuls.
+
*The special case&nbsp; $r=0$&nbsp; corresponds to the square pulse and the special case&nbsp; $r=1$&nbsp; to the cosine square pulse.
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
+
*For the spectral function one obtains according to the Fourier transform:
 
:$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
 
:$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
*Je größer der Rolloff-Faktor&nbsp; $r$&nbsp; ist, desto schneller nimmt&nbsp; $X(f)$&nbsp; asymptotisch mit&nbsp; $f$&nbsp; ab.
+
*The larger the rolloff factor&nbsp; $r$&nbsp; is, the faster&nbsp; $X(f)$&nbsp; decreases asymptotically with&nbsp; $f$&nbsp;.
  
  
===Cosinus-square Impulse ===
+
===Cosine square Pulse ===
*Dies ist ein Sonderfall des Cosinus-Rolloff-Impulses und ergibt sich für&nbsp; $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}t_1=0, \ t_2= \Delta t$:
+
*This is a special case of the raised cosine pulse and results for&nbsp; $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}t_1=0, \ t_2= \Delta t$:
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\hspace{0.05cm}\cdot \hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot \hspace{0.05cm} \Delta t}\Big)  \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\hspace{0.05cm}\cdot \hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot \hspace{0.05cm} \Delta t}\Big)  \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{for}}  \\    {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
  
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
+
*For the spectral function, we obtain according to the Fourier transform:
 
:$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot \big  [{\rm si}(\pi(\Delta t\cdot f +0.5))+{\rm si}(\pi(\Delta t\cdot f -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
 
:$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot \big  [{\rm si}(\pi(\Delta t\cdot f +0.5))+{\rm si}(\pi(\Delta t\cdot f -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
*Wegen der letzten&nbsp; ${\rm si}$-Funktion ist&nbsp; $X(f)=0$&nbsp; für alle Vielfachen von&nbsp; $F=1/\Delta t$.&nbsp; Die äquidistanten Nulldurchgänge des Cos-Rolloff-Impulses bleiben erhalten.
+
*Because of the last&nbsp; ${\rm si}$-function is&nbsp; $X(f)=0$&nbsp; for all multiples of&nbsp; $F=1/\delta t$.&nbsp; The equidistant zero crossings of the raised cosine pulse are preserved.
*Aufgrund des Klammerausdrucks weist&nbsp; $X(f)$&nbsp; nun weitere Nulldurchgänge bei&nbsp; $f=\pm1.5 F$,&nbsp; $\pm2.5 F$,&nbsp; $\pm3.5 F$, ... auf.
+
*Because of the bracket expression,&nbsp; $X(f)$&nbsp; now exhibits further zero crossings at&nbsp; $f=\pm1.5 F$,&nbsp; $\pm2.5 F$,&nbsp; $\pm3.5 F$, ... .
*Für die Frequenz&nbsp; $f=\pm F/2$&nbsp; erhält man die Spektralwerte&nbsp; $K\cdot \Delta t/2$.
+
*For frequency&nbsp; $f=\pm F/2$&nbsp; the spectral values&nbsp; $K\cdot \Delta t/2$ are obtained.
*Der asymptotische Abfall von&nbsp; $X(f)$&nbsp; verläuft in diesem Sonderfall mit&nbsp; $1/f^3$.
+
*The asymptotic decay of&nbsp; $X(f)$&nbsp; runs in this special case with&nbsp; $1/f^3$.
  
 
==Exercises==
 
==Exercises==
Line 133: Line 136:
  
 
  {{BlaueBox|TEXT=   
 
  {{BlaueBox|TEXT=   
'''(1)''' &nbsp; Compare the&nbsp; <b>red Gaussian impulse</b> &nbsp;$(A_1 = 1, \Delta t_1 = 1)$&nbsp;  with the&nbsp; <b>blue rectangular impulse</b> &nbsp;$(A_2 = 1, \Delta t_2 = 1)$  &rArr; default setting.
+
'''(1)''' &nbsp; Compare the&nbsp; <b>red Gaussian pulse</b> &nbsp;$(A_1 = 1, \Delta t_1 = 1)$&nbsp;  with the&nbsp; <b>blue rectangular pulse</b> &nbsp;$(A_2 = 1, \Delta t_2 = 1)$  &rArr; default setting.
 
<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; What are the differences in the time and frequency domain?}}
 
<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; What are the differences in the time and frequency domain?}}
  
* The Gaussian impulse theoretically reaches infinity in the time&ndash; as well as in the frequency domain. <br>
+
* The Gaussian pulse theoretically reaches infinity in the time as well as in the frequency domain. <br>
 
* Practically&nbsp; $x_1(t)$&nbsp; for&nbsp; $|t| > 1.5$&nbsp; and&nbsp; $X_1(f)$&nbsp; for&nbsp; $|f| > 1.5$&nbsp; are almost zero.<br>
 
* Practically&nbsp; $x_1(t)$&nbsp; for&nbsp; $|t| > 1.5$&nbsp; and&nbsp; $X_1(f)$&nbsp; for&nbsp; $|f| > 1.5$&nbsp; are almost zero.<br>
 
* The rectangle is strictly limited in time:&nbsp;  $x_2(|t| > 0.5) \equiv 0$.&nbsp; $X_2(f)$&nbsp; has shares in a much larger range than&nbsp; $X_1(f)$. <br>
 
* The rectangle is strictly limited in time:&nbsp;  $x_2(|t| > 0.5) \equiv 0$.&nbsp; $X_2(f)$&nbsp; has shares in a much larger range than&nbsp; $X_1(f)$. <br>
* It holds&nbsp; $X_1(f = 0) = X_2(f = 0)$&nbsp; since the integral over the Gaussian impulse&nbsp; $x_1(t)$&nbsp; is equal to the integral over the rectangular impulse&nbsp; $x_2(t)$.
+
* It holds&nbsp; $X_1(f = 0) = X_2(f = 0)$&nbsp; since the integral over the Gaussian pulse&nbsp; $x_1(t)$&nbsp; is equal to the integral over the rectangular pulse&nbsp; $x_2(t)$.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(2)''' &nbsp; Compare the&nbsp; <b>red Gaussian impulse</b>&nbsp; $(A_1 = 1,&nbsp; \Delta t_1 = 1)$ with the&nbsp; <b>blue rectangular impulse</b>&nbsp; $(A_2 = 1,&nbsp; \Delta t_2)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Vary the equivalent impulse duration&nbsp; $\Delta t_2$&nbsp; between&nbsp; $0.5$&nbsp; and &nbsp;$2$.&nbsp; Interpret the displayed graphs.}}
+
'''(2)''' &nbsp; Compare the&nbsp; <b>red Gaussian pulse</b>&nbsp; $(A_1 = 1,&nbsp; \Delta t_1 = 1)$ with the&nbsp; <b>blue rectangular pulse</b>&nbsp; $(A_2 = 1,&nbsp; \Delta t_2)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Vary the equivalent pulse duration&nbsp; $\Delta t_2$&nbsp; between&nbsp; $0.5$&nbsp; and &nbsp;$2$.&nbsp; Interpret the displayed graphs.}}
  
* One can recognize the reciprocity law of bandwidth and impulse duration.&nbsp; The greater&nbsp; $\Delta t_2$, the higher and narrower the spectral function&nbsp; $X_2(f)$.<br>
+
* One can recognize the reciprocity law of bandwidth and pulse duration.&nbsp; The greater&nbsp; $\Delta t_2$, the higher and narrower the spectral function&nbsp; $X_2(f)$.<br>
 
* For each setting of&nbsp; $\Delta t_2$,&nbsp; $x_1(t=0)$&nbsp; and&nbsp; $x_2(t=0)$&nbsp; are equal &nbsp; &rArr;  &nbsp; Also, the integrals over&nbsp; $X_1(f)$&nbsp; and&nbsp; $X_2(f)$&nbsp; are identical.
 
* For each setting of&nbsp; $\Delta t_2$,&nbsp; $x_1(t=0)$&nbsp; and&nbsp; $x_2(t=0)$&nbsp; are equal &nbsp; &rArr;  &nbsp; Also, the integrals over&nbsp; $X_1(f)$&nbsp; and&nbsp; $X_2(f)$&nbsp; are identical.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(3)''' &nbsp; Compare the&nbsp; <b>red Gaussian impulse</b>&nbsp; $(A_1 = 1,&nbsp; \Delta t_1 = 1)$ with the&nbsp; <b>blue rectangular impulse</b>&nbsp; $(A_2 = 1,&nbsp; \Delta t_2 = 0.5)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Vary&nbsp; $\Delta t_2$&nbsp; between&nbsp; $0.05$&nbsp; and&nbsp; $2$.&nbsp; Interpret the displayed graphs and extrapolate the result.}}
+
'''(3)''' &nbsp; Compare the&nbsp; <b>red Gaussian pulse</b>&nbsp; $(A_1 = 1,&nbsp; \Delta t_1 = 1)$ with the&nbsp; <b>blue rectangular pulse</b>&nbsp; $(A_2 = 1,&nbsp; \Delta t_2 = 0.5)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Vary&nbsp; $\Delta t_2$&nbsp; between&nbsp; $0.05$&nbsp; and&nbsp; $2$.&nbsp; Interpret the displayed graphs and extrapolate the result.}}
  
 
* The blue spectrum is now twice as wide as the red one, but only half as high.&nbsp; First zero of&nbsp; $X_1(f)$&nbsp; at&nbsp; $f = 1$, of&nbsp; $X_2(f)$&nbsp; at&nbsp; $f = 2$.<br>
 
* The blue spectrum is now twice as wide as the red one, but only half as high.&nbsp; First zero of&nbsp; $X_1(f)$&nbsp; at&nbsp; $f = 1$, of&nbsp; $X_2(f)$&nbsp; at&nbsp; $f = 2$.<br>
Line 160: Line 163:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(4)''' &nbsp; Compare the&nbsp; <b> rectangular impulse</b>&nbsp; $(A_1 = 1, &nbsp; \Delta t_1 = 1)$&nbsp; with the&nbsp; <b>triangular impulse</b>&nbsp; $(A_2 = 1, &nbsp; \Delta t_2 = 1)$.&nbsp; Interpret the spectral functions.}}
+
'''(4)''' &nbsp; Compare the&nbsp; <b> rectangular pulse</b>&nbsp; $(A_1 = 1, &nbsp; \Delta t_1 = 1)$&nbsp; with the&nbsp; <b>triangular pulse</b>&nbsp; $(A_2 = 1, &nbsp; \Delta t_2 = 1)$.&nbsp; Interpret the spectral functions.}}
  
* The (normalized) spectrum of the rectangle&nbsp; $x_1(t)$&nbsp; with the (normalized) parameters&nbsp; $A_1 = 1, \ \ \Delta t_1 = 1$&nbsp; is:&nbsp; $X_1(f)= {\rm si}(\pi\cdot f)$.<br>
+
* The (normalized) spectrum of the rectangle&nbsp; $x_1(t)$&nbsp; with the (normalized) parameters&nbsp; $A_1 = 1, \ \ \Delta t_1 = 1$&nbsp; is:&nbsp; $X_1(f)= {\rm si}(\pi\cdot f)= {\rm sinc}(f)$.<br>
 
* The convolution of the rectangle&nbsp; $x_1(t)$&nbsp; with itself gives the triangle&nbsp; $x_2(t) = x_1(t) \star x_1(t)$.&nbsp; By the convolution theorem: &nbsp; $X_2(f) =  X_1(f)^2 $. <br>
 
* The convolution of the rectangle&nbsp; $x_1(t)$&nbsp; with itself gives the triangle&nbsp; $x_2(t) = x_1(t) \star x_1(t)$.&nbsp; By the convolution theorem: &nbsp; $X_2(f) =  X_1(f)^2 $. <br>
* By squaring the&nbsp; $\rm si$&ndash;shaped spectral function&nbsp; $X_1(f)$&nbsp; the zeros of&nbsp; $X_2(f)$&nbsp; remain unchanged.&nbsp; But now it holds that: $X_2(f) \ge 0$.
+
* By squaring the&nbsp; ${\rm sinc}(f)$&ndash;shaped spectral function&nbsp; $X_1(f)$&nbsp; the zeros of&nbsp; $X_2(f)$&nbsp; remain unchanged.&nbsp; But now it holds that: $X_2(f) \ge 0$.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(5)''' &nbsp; Compare the&nbsp; <b>trapezoidal impulse</b>&nbsp; $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$&nbsp; with the&nbsp;  
+
'''(5)''' &nbsp; Compare the&nbsp; <b>trapezoidal pulse</b>&nbsp; $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$&nbsp; with the&nbsp;  
<b>triangular impulse</b> $(A_2 = 1, &nbsp; \Delta t_2 = 1)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Vary&nbsp; $r_1$&nbsp; between&nbsp; $0$&nbsp; and&nbsp; $1$.&nbsp; Interpret the spectral function&nbsp; $X_1(f)$.}}
+
<b>triangular pulse</b> $(A_2 = 1, &nbsp; \Delta t_2 = 1)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Vary&nbsp; $r_1$&nbsp; between&nbsp; $0$&nbsp; and&nbsp; $1$.&nbsp; Interpret the spectral function&nbsp; $X_1(f)$.}}
  
* The trapezoidal impulse with roll&ndash;off factor&nbsp; $r_1= 0$&nbsp; is identical to the rectangular impulse.&nbsp; The &bdquo;normalized spectrum&rdquo; is&nbsp; $X_1(f)= {\rm si}(\pi\cdot f)$.<br>
+
* The trapezoidal pulse with roll&ndash;off factor&nbsp; $r_1= 0$&nbsp; is identical to the rectangular pulse.&nbsp; The "normalized spectrum" is&nbsp; $X_1(f)= {\rm sinc}(f)$.<br>
* The trapezoidal impulse with roll&ndash;off factor&nbsp; $r_1= 1$&nbsp; is identical to the triangular impulse.&nbsp; The &bdquo;normalized spectrum&rdquo; is&nbsp; $X_1(f)= {\rm si}^2(\pi\cdot f)$. <br>
+
* The trapezoidal pulse with roll&ndash;off factor&nbsp; $r_1= 1$&nbsp; is identical to the triangular pulse.&nbsp; The "normalized spectrum" is&nbsp; $X_1(f)= {\rm sinc}^2(f)$. <br>
 
* In both cases&nbsp; $X_1(f)$&nbsp; has equidistant zeros at&nbsp; $\pm 1$,&nbsp; $\pm 2$, ...&nbsp; (none else); &nbsp; $0 < r_1 < 1$:&nbsp; depending on&nbsp; $r_1$&nbsp; further zeros.
 
* In both cases&nbsp; $X_1(f)$&nbsp; has equidistant zeros at&nbsp; $\pm 1$,&nbsp; $\pm 2$, ...&nbsp; (none else); &nbsp; $0 < r_1 < 1$:&nbsp; depending on&nbsp; $r_1$&nbsp; further zeros.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(6)''' &nbsp; Compare this&nbsp; <b>trapezoidal impulse</b>&nbsp; with the <b>cosine-rolloff impulse</b>&nbsp;  
+
'''(6)''' &nbsp; Compare this&nbsp; <b>trapezoidal pulse</b>&nbsp; with the <b>cosine roll-off pulse</b>&nbsp;  
 
$(A_2 = 1,\ \Delta t_2 = 1.0,\ r_2 = 0.5)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Vary&nbsp; $r_2$&nbsp; between&nbsp; $0$&nbsp; and&nbsp; $1$.&nbsp; Interpret the spectral function&nbsp; $X_2(f)$&nbsp; for&nbsp; $r_2 = 0.7$.}}
 
$(A_2 = 1,\ \Delta t_2 = 1.0,\ r_2 = 0.5)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Vary&nbsp; $r_2$&nbsp; between&nbsp; $0$&nbsp; and&nbsp; $1$.&nbsp; Interpret the spectral function&nbsp; $X_2(f)$&nbsp; for&nbsp; $r_2 = 0.7$.}}
  
* With the same&nbsp; $r= 0.5$&nbsp; the cosine-rolloff impulse&nbsp; $X_2(f)$ is for&nbsp; $f > 1$&nbsp; greater in amount than the trapezoidal impulse.<br>
+
* With the same&nbsp; $r= 0.5$&nbsp; the cosine roll-off pulse&nbsp; $X_2(f)$ is for&nbsp; $f > 1$&nbsp; greater in magnitude than the trapezoidal pulse.<br>
* With the same rolloff factor&nbsp; $(r_1 = r_2= 0.5)$&nbsp; the drop of&nbsp; $X_2(f)$&nbsp; around the frequency&nbsp; $f = 0.5$&nbsp; is steeper than the drop of&nbsp; $X_1(f)$. <br>
+
* With the same roll-off factor&nbsp; $(r_1 = r_2= 0.5)$&nbsp; the drop of&nbsp; $X_2(f)$&nbsp; around the frequency&nbsp; $f = 0.5$&nbsp; is steeper than the drop of&nbsp; $X_1(f)$. <br>
 
* With&nbsp; $r_1 = 0.5$&nbsp; and&nbsp; $r_2 = 0.7$&nbsp; $x_1(t) \approx x_2(t)$&nbsp; is valid and therefore also&nbsp; $X_1(f) \approx X_2(f)$.&nbsp; Comparable edge steepness.
 
* With&nbsp; $r_1 = 0.5$&nbsp; and&nbsp; $r_2 = 0.7$&nbsp; $x_1(t) \approx x_2(t)$&nbsp; is valid and therefore also&nbsp; $X_1(f) \approx X_2(f)$.&nbsp; Comparable edge steepness.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(7)''' &nbsp; Compare the&nbsp; <b>red trapezoidal impulse</b>&nbsp; $(A_1 = 1, \Delta t_1 = 1, \ r_1 = 1)$&nbsp; with the&nbsp; <b>blue cosine-rolloff impulse</b>&nbsp; $(A_2 = 1,\ \Delta t_2 = 1.0, \ r_2 = 1)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Interpret the time function&nbsp; $x_2(t)$&nbsp; and the spectral function&nbsp; $X_2(f)$&nbsp; system theoretically.}}
+
'''(7)''' &nbsp; Compare the&nbsp; <b>red trapezoidal pulse</b>&nbsp; $(A_1 = 1, \Delta t_1 = 1, \ r_1 = 1)$&nbsp; with the&nbsp; <b>blue cosine roll-off pulse</b>&nbsp; $(A_2 = 1,\ \Delta t_2 = 1.0, \ r_2 = 1)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Interpret the time function&nbsp; $x_2(t)$&nbsp; and the spectral function&nbsp; $X_2(f)$&nbsp; system theoretically.}}
  
* $x_2(t) = \cos^2(|t|\cdot \pi/2) \ \ \ \text{for} \ |t| \le 1$&nbsp; is the&nbsp; cosine-square impulse.&nbsp; Zeros at&nbsp; $f = \pm 1$,&nbsp; $\pm 2$, ...  <br>
+
* $x_2(t) = \cos^2(|t|\cdot \pi/2) \ \ \ \text{for} \ |t| \le 1$&nbsp; is the&nbsp; cosine square pulse.&nbsp; Zeros at&nbsp; $f = \pm 1$,&nbsp; $\pm 2$, ...  <br>
 
* For the frequency&nbsp; $f=\pm 0.5$&nbsp; one obtains the spectral values&nbsp; $X_2(f)=0.5$.&nbsp; The asymptotic decline is shown here with&nbsp; $1/f^3$.  
 
* For the frequency&nbsp; $f=\pm 0.5$&nbsp; one obtains the spectral values&nbsp; $X_2(f)=0.5$.&nbsp; The asymptotic decline is shown here with&nbsp; $1/f^3$.  
  
Line 194: Line 197:
  
 
==Applet Manual==
 
==Applet Manual==
<br>
+
 
[[File:Exercise_impuls.png |right|frame|Screenshot]]
+
[[File:EN_Impulse_Man_neu.png|right|frame|Screenshot]]
 +
 
 +
 
 
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Theme (changeable graphical user interface design)
 
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Theme (changeable graphical user interface design)
 
:* Dark: &nbsp; dark background&nbsp; (recommended by the authors)
 
:* Dark: &nbsp; dark background&nbsp; (recommended by the authors)
Line 202: Line 207:
 
:*  Protanopia: &nbsp; for users with pronounced red visual impairment
 
:*  Protanopia: &nbsp; for users with pronounced red visual impairment
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Preselection for pulse shape&nbsp; $x_1(t)$&nbsp; (red curve)
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Preselection for pulse shape&nbsp; $x_1(t)$ &nbsp; &rArr; &nbsp; red curve
  
 
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Parameter definition for&nbsp; $x_1(t)$&nbsp;  
 
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Parameter definition for&nbsp; $x_1(t)$&nbsp;  
Line 208: Line 213:
 
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Numeric output for&nbsp; $x_1(t_*)$&nbsp; and&nbsp; $X_1(f_*)$
 
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Numeric output for&nbsp; $x_1(t_*)$&nbsp; and&nbsp; $X_1(f_*)$
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Preselection for pulse shape&nbsp; $x_2(t)$&nbsp; (blue curve)
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Preselection for pulse shape&nbsp; $x_2(t)$&nbsp; &rArr; &nbsp; blue curve
  
 
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Parameter definition for&nbsp; $x_2(t)$&nbsp;  
 
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Parameter definition for&nbsp; $x_2(t)$&nbsp;  
Line 227: Line 232:
  
 
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Show and hide sample solution
 
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Show and hide sample solution
 +
<br clear=all>
  
 
+
==About the Authors==
==About the authors==
 
 
<br>
 
<br>
 +
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].
 +
*The first version was created in 2005 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]]&nbsp; as part of her diploma thesis with “FlashMX – Actionscript”&nbsp; (Supervisor:&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 +
*In 2017 the program was redesigned by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]]&nbsp; (Ingenieurspraxis_Math, Supervisor: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) via "HTML5".
 +
*Last revision and English version 2020 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; in the context of a working student activity.&nbsp;
  
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
 
*Die erste Version wurde 2005 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28am_LNT_von_1972-2011.29|Klaus Eichin]]).
 
*2017 wurde &bdquo;Impulse & Spektren&rdquo;  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]] im Rahmen seiner Ingenieurspraxis (Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]])  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
 
*Letztmalige Überarbeitung 2020 durch&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit.
 
  
 
==Once again: Open Applet in new Tab==
 
==Once again: Open Applet in new Tab==
{{LntAppletLink|impulsesAndSpectra_en}}   &nbsp; &nbsp;  &nbsp; 
+
{{LntAppletLinkEnDe|pulsesAndSpectra_en|pulsesAndSpectra}}
[https://www.lntwww.de/Applets:Impulse_und_Spektren '''German Version''']
 
 
<br><br>
 
<br><br>

Latest revision as of 13:10, 21 April 2023

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


Time-limited symmetric signals   ⇒   "pulses"  $x(t)$  and the corresponding spectral functions  $X(f)$  are considered, namely

  • Gaussian pulse, 
  • rectangular pulse,  
  • triangular pulse, 
  • trapezoidal pulse, 
  • raised cosine pulse,
  • cosine square pulse.


Further it is to be noted:

  • The functions  $x(t)$  resp.  $X(f)$  are shown for up to two parameter sets in one diagram each.
  • The red curves and numbers apply to the left parameter set, the blue ones to the right parameter set.
  • The abscissas  $t$  (time) and  $f$  (frequency) as well as the ordinates  $x(t)$  (signal values) and  $X(f)$  (spectral values) are normalized.


Theoretical Background


Relationship $x(t)\Leftrightarrow X(f)$

  • The relationship between the time function  $x(t)$  and the spectrum  $X(f)$  is given by the  "first Fourier integral" :
$$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} \rm FT\hspace{-0.1cm}: \ Fourier \ transform.$$
  • In order to calculate the time function  $x(f)$  from the spectral function  $x(t)$  one needs the  "second Fourier integral":
$$x(t)={\rm IFT} [X(f)] = \int_{-\infty}^{+\infty}X(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm} {\rm IFT}\hspace{-0.1cm}: \rm Inverse \ Fourier \ transform.$$
  • In all examples we use real and even functions.  Thus:
$$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
  • $x(t)$  and  $X(f)$  have different units, for example  $x(t)$  in  $\rm V$,  $X(f)$  in  $\rm V/Hz$.
  • The relationship between this module and the similarly constructed applet  "Frequency response & Impulse response"  is based on the  "Duality Theorem".
  • All times are normalized to a time  $T$  and all frequencies are normalized to  $1/T$   ⇒   the spectral values  $X(f)$  still have to be multiplied by the normalization time  $T$ .


$\text{Example:}$   If one sets a rectangular pulse with amplitude  $A_1 = 1$  and equivalent pulse duration  $\Delta t_1 = 1$  then  $x_1(t)$  in the range  $-0.5 < t < +0. 5$  equal to one and outside this range equal to zero.  The spectral function  $X_1(f)$  proceeds  $\rm si$–shaped with  $X_1(f= 0) = 1$  and the first zero at  $f=1$.

  • If a rectangular pulse with  $A = K = 3 \ \rm V$  and  $\delta t = T = 2 \ \rm ms$  is to be simulated with this setting, then all signal values with  $K = 3 \ \rm V$  and all spectral values with  $K \cdot T = 0. 006 \ \rm V/Hz$  to be multiplied by.
  • The maximum spectral value is then  $X(f= 0) = 0.006 \ \rm V/Hz$  and the first zero is at  $f=1/T = 0.5 \ \rm kHz$.


Gaussian Pulse

  • The time function of the Gaussian pulse with height  $K$  and (equivalent) duration  $\Delta t$  is:
$$x(t)=K\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(t/\Delta t)^2}.$$
  • The equivalent time duration  $\Delta t$  is obtained from the rectangle of equal area.
  • The value at  $t = \Delta t/2$  is smaller than the value at  $t=0$ by the factor  $0.456$ .
  • For the spectral function we get according to the Fourier transform:
$$X(f)=K\cdot \Delta t \cdot {\rm e}^{-\pi(f\hspace{0.05cm}\cdot \hspace{0.05cm} \Delta t)^2} .$$
  • The smaller the equivalent time duration  $\Delta t$  is, the wider and lower the spectrum   ⇒   "Reciprocity law of bandwidth and pulse duration".
  • Both  $x(t)$  and  $X(f)$  are not exactly zero at any  $f$–  or  $t$–value, respectively.
  • For practical applications, however, the Gaussian pulse can be assumed to be limited in time and frequency.  For example,  $x(t)$  has already dropped to less than  $0.1\% $  of the maximum at  $t=1.5 \delta t$  .


Rectangular Pulse

  • The time function of the rectangular pulse with height  $K$  and (equivalent) duration  $\Delta t$  is:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K /2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{for}} \\ {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.} \\ \end{array}$$
  • The $\pm \Delta t/2$ value lies midway between the left- and right-hand limits.
  • For the spectral function one obtains according to the laws of the Fourier transform (1st Fourier integral):
$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f) \quad \text{with} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
  • The spectral value at  $f=0$  is equal to the rectangular area of the time function.
  • The spectral function has zeros at equidistant distances  $1/\delta t$.
  • The integral over the spectral function  $X(f)$  is equal to the signal value at time  $t=0$, i.e. the pulse height  $K$.


Triangular Pulse

  • The time function of the triangular pulse with height  $K$  and (equivalent) duration  $\Delta t$  is:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot (1-|t|/{\Delta t}) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.} \\ \end{array}$$
  • The absolute time duration is  $2 \cdot \Delta t$;  this is twice as large as that of the rectangle.
  • For the spectral function, we obtain according to the Fourier transform:
$$X(f)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta t \cdot f) \quad \text{with} \quad {\rm si}(x)=\frac{\sin(x)}{x}.$$
  • The above time function is equal to the convolution of two rectangular pulses, each with width  $\delta t$.
  • From this follows:  $X(f)$  contains instead of the  ${\rm si}$-function the  ${\rm si}^2$-function.
  • $X(f)$  thus also has zeros at equidistant intervals  $1/\rm f$ .
  • The asymptotic decay of  $X(f)$  occurs here with  $1/f^2$, while for comparison the rectangular pulse decays with  $1/f$ .


Trapezoidal Pulse

The time function of the trapezoidal pulse with height  $K$  and time parameters  $t_1$  and  $t_2$  is:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{for}}\quad \\ {\rm{for}}\quad \\ {\rm{for}} \quad \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,} \\ {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.} \\ \end{array}$$
  • For the equivalent pulse duration (rectangle of equal area) holds:   $\Delta t = t_1+t_2$.
  • The rolloff factor (in the time domain) characterizes the slope:
$$r=\frac{t_2-t_1}{t_2+t_1}.$$
  • The special case  $r=0$  corresponds to the rectangular pulse and the special case  $r=1$  to the triangular pulse.
  • For the spectral function one obtains according to the Fourier transform:
$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f)\cdot {\rm si}(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{with} \quad {\rm si}(x)=\frac{\sin(x)}{x}.$$
  • The asymptotic decay of  $X(f)$  lies between  $1/f$  $($for rectangle,  $r=0)$  and  $1/f^2$  $($for triangle,  $r=1)$.


Raised cosine Pulse

The time function of the raised cosine pulse with height  $K$  and time parameters  $t_1$  and  $t_2$  is:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot {\pi}/{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{for}}\quad \\ {\rm{for}}\quad \\ {\rm{for}}\quad \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,} \\ {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.} \\ \end{array}$$
  • For the equivalent pulse duration (rectangle of equal area) holds:   $\Delta t = t_1+t_2$.
  • The rolloff factor (in the time domain) characterizes the slope:
$$r=\frac{t_2-t_1}{t_2+t_1}.$$
  • The special case  $r=0$  corresponds to the square pulse and the special case  $r=1$  to the cosine square pulse.
  • For the spectral function one obtains according to the Fourier transform:
$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
  • The larger the rolloff factor  $r$  is, the faster  $X(f)$  decreases asymptotically with  $f$ .


Cosine square Pulse

  • This is a special case of the raised cosine pulse and results for  $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}t_1=0, \ t_2= \Delta t$:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\hspace{0.05cm}\cdot \hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot \hspace{0.05cm} \Delta t}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.} \\ \end{array}$$
  • For the spectral function, we obtain according to the Fourier transform:
$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot \big [{\rm si}(\pi(\Delta t\cdot f +0.5))+{\rm si}(\pi(\Delta t\cdot f -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
  • Because of the last  ${\rm si}$-function is  $X(f)=0$  for all multiples of  $F=1/\delta t$.  The equidistant zero crossings of the raised cosine pulse are preserved.
  • Because of the bracket expression,  $X(f)$  now exhibits further zero crossings at  $f=\pm1.5 F$,  $\pm2.5 F$,  $\pm3.5 F$, ... .
  • For frequency  $f=\pm F/2$  the spectral values  $K\cdot \Delta t/2$ are obtained.
  • The asymptotic decay of  $X(f)$  runs in this special case with  $1/f^3$.

Exercises


  • First select the number  $(1,\text{...}, 7)$  of the exercise.  The number  $0$  corresponds to a "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values ​​are adjusted.  Solution after pressing "Show solution".
  • "Red" refers to the first parameter set ⇒ $x_1(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_1(f)$,  "Blue" refers to the second parameter set ⇒ $x_2(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_2(f)$.
  • Values with magnitude less than  $0.0005$  are output in the program as "zero".


(1)   Compare the  red Gaussian pulse  $(A_1 = 1, \Delta t_1 = 1)$  with the  blue rectangular pulse  $(A_2 = 1, \Delta t_2 = 1)$ ⇒ default setting.
          What are the differences in the time and frequency domain?

  • The Gaussian pulse theoretically reaches infinity in the time as well as in the frequency domain.
  • Practically  $x_1(t)$  for  $|t| > 1.5$  and  $X_1(f)$  for  $|f| > 1.5$  are almost zero.
  • The rectangle is strictly limited in time:  $x_2(|t| > 0.5) \equiv 0$.  $X_2(f)$  has shares in a much larger range than  $X_1(f)$.
  • It holds  $X_1(f = 0) = X_2(f = 0)$  since the integral over the Gaussian pulse  $x_1(t)$  is equal to the integral over the rectangular pulse  $x_2(t)$.


(2)   Compare the  red Gaussian pulse  $(A_1 = 1,  \Delta t_1 = 1)$ with the  blue rectangular pulse  $(A_2 = 1,  \Delta t_2)$.
          Vary the equivalent pulse duration  $\Delta t_2$  between  $0.5$  and  $2$.  Interpret the displayed graphs.

  • One can recognize the reciprocity law of bandwidth and pulse duration.  The greater  $\Delta t_2$, the higher and narrower the spectral function  $X_2(f)$.
  • For each setting of  $\Delta t_2$,  $x_1(t=0)$  and  $x_2(t=0)$  are equal   ⇒   Also, the integrals over  $X_1(f)$  and  $X_2(f)$  are identical.


(3)   Compare the  red Gaussian pulse  $(A_1 = 1,  \Delta t_1 = 1)$ with the  blue rectangular pulse  $(A_2 = 1,  \Delta t_2 = 0.5)$.
          Vary  $\Delta t_2$  between  $0.05$  and  $2$.  Interpret the displayed graphs and extrapolate the result.

  • The blue spectrum is now twice as wide as the red one, but only half as high.  First zero of  $X_1(f)$  at  $f = 1$, of  $X_2(f)$  at  $f = 2$.
  • Reduction of  $\Delta t_2$:  $X_2(f)$  lower and wider.  Very flat course at  $\Delta t_2 = 0.05$:  $X_2(f = 0)= 0.05$,  $X_2(f = \pm 3)= 0.048$.
  • If one choose  $\Delta t_2 = \varepsilon \to 0$  (not possible in the program),  the result would be the almost constant, very small spectrum  $X_2(f)=A \cdot \varepsilon \to 0$.
  • Increasing the amplitude to  $A=1/\varepsilon$  results in the constant spectral function  $X_2(f) = 1$  of the Dirac function  $\delta(t)$.  That means:
  • $\delta(t)$  is approximated by a rectangle  $($width  $\Delta t = \varepsilon \to 0$,  height  $A = 1/\varepsilon \to \infty)$.  The weight of the Dirac function is one:  $x(t) = 1 \cdot \delta (t)$.


(4)   Compare the  rectangular pulse  $(A_1 = 1,   \Delta t_1 = 1)$  with the  triangular pulse  $(A_2 = 1,   \Delta t_2 = 1)$.  Interpret the spectral functions.

  • The (normalized) spectrum of the rectangle  $x_1(t)$  with the (normalized) parameters  $A_1 = 1, \ \ \Delta t_1 = 1$  is:  $X_1(f)= {\rm si}(\pi\cdot f)= {\rm sinc}(f)$.
  • The convolution of the rectangle  $x_1(t)$  with itself gives the triangle  $x_2(t) = x_1(t) \star x_1(t)$.  By the convolution theorem:   $X_2(f) = X_1(f)^2 $.
  • By squaring the  ${\rm sinc}(f)$–shaped spectral function  $X_1(f)$  the zeros of  $X_2(f)$  remain unchanged.  But now it holds that: $X_2(f) \ge 0$.


(5)   Compare the  trapezoidal pulse  $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$  with the  triangular pulse $(A_2 = 1,   \Delta t_2 = 1)$.
         Vary  $r_1$  between  $0$  and  $1$.  Interpret the spectral function  $X_1(f)$.

  • The trapezoidal pulse with roll–off factor  $r_1= 0$  is identical to the rectangular pulse.  The "normalized spectrum" is  $X_1(f)= {\rm sinc}(f)$.
  • The trapezoidal pulse with roll–off factor  $r_1= 1$  is identical to the triangular pulse.  The "normalized spectrum" is  $X_1(f)= {\rm sinc}^2(f)$.
  • In both cases  $X_1(f)$  has equidistant zeros at  $\pm 1$,  $\pm 2$, ...  (none else);   $0 < r_1 < 1$:  depending on  $r_1$  further zeros.


(6)   Compare this  trapezoidal pulse  with the cosine roll-off pulse  $(A_2 = 1,\ \Delta t_2 = 1.0,\ r_2 = 0.5)$.
         Vary  $r_2$  between  $0$  and  $1$.  Interpret the spectral function  $X_2(f)$  for  $r_2 = 0.7$.

  • With the same  $r= 0.5$  the cosine roll-off pulse  $X_2(f)$ is for  $f > 1$  greater in magnitude than the trapezoidal pulse.
  • With the same roll-off factor  $(r_1 = r_2= 0.5)$  the drop of  $X_2(f)$  around the frequency  $f = 0.5$  is steeper than the drop of  $X_1(f)$.
  • With  $r_1 = 0.5$  and  $r_2 = 0.7$  $x_1(t) \approx x_2(t)$  is valid and therefore also  $X_1(f) \approx X_2(f)$.  Comparable edge steepness.


(7)   Compare the  red trapezoidal pulse  $(A_1 = 1, \Delta t_1 = 1, \ r_1 = 1)$  with the  blue cosine roll-off pulse  $(A_2 = 1,\ \Delta t_2 = 1.0, \ r_2 = 1)$.
          Interpret the time function  $x_2(t)$  and the spectral function  $X_2(f)$  system theoretically.

  • $x_2(t) = \cos^2(|t|\cdot \pi/2) \ \ \ \text{for} \ |t| \le 1$  is the  cosine square pulse.  Zeros at  $f = \pm 1$,  $\pm 2$, ...
  • For the frequency  $f=\pm 0.5$  one obtains the spectral values  $X_2(f)=0.5$.  The asymptotic decline is shown here with  $1/f^3$.


Applet Manual

Screenshot


    (A)     Theme (changeable graphical user interface design)

  • Dark:   dark background  (recommended by the authors)
  • Bright:   white background  (recommended for beamers and printouts)
  • Deuteranopia:   for users with pronounced green visual impairment
  • Protanopia:   for users with pronounced red visual impairment

    (B)     Preselection for pulse shape  $x_1(t)$   ⇒   red curve

    (C)     Parameter definition for  $x_1(t)$ 

    (D)     Numeric output for  $x_1(t_*)$  and  $X_1(f_*)$

    (E)     Preselection for pulse shape  $x_2(t)$  ⇒   blue curve

    (F)     Parameter definition for  $x_2(t)$ 

    (G)     Numeric output for  $x_2(t_*)$  and  $X_2(f_*)$

    (H)     Setting the time  $t_*$  for the numeric output

    (I)     Setting the frequency  $f_*$  for the numeric output

    (J)     Graphic field for the time domain

    (K)     Graphic field for the frequency domain

    (L)     Selection of the exercise according to the numbers

    (M)     Task description and questions

    (N)     Show and hide sample solution

About the Authors


This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first version was created in 2005 by  Ji Li  as part of her diploma thesis with “FlashMX – Actionscript”  (Supervisor:  Günter Söder).
  • In 2017 the program was redesigned by  David Jobst  (Ingenieurspraxis_Math, Supervisor: Tasnád Kernetzky ) via "HTML5".
  • Last revision and English version 2020 by  Carolin Mirschina  in the context of a working student activity. 


Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen