Difference between revisions of "Applets:Sampling of Analog Signals and Signal Reconstruction"

From LNTwww
 
(47 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{LntAppletLink|augendiagramm}}
+
{{LntAppletLinkEnDe|sampling_en|sampling}}
+
 
 
== Applet Description==
 
== Applet Description==
 
<br>
 
<br>
The applet deals with the system components&nbsp; &bdquo;sampling&rdquo;&nbsp; and&nbsp; &bdquo;signal reconstruction&rdquo;, two components that are of great importance for understanding the&nbsp; [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]&nbsp; $({\rm PCM})$&nbsp; for example. &nbsp; The upper graphic shows the model on which this applet is based.&nbsp; Below it are the samples&nbsp; $x(\nu \cdot T_{\rm A})$&nbsp; of the time continuous signal&nbsp; $x(t)$. The (infinite) sum over all these samples is called the sampled signal&nbsp; $x_{\rm A}(t)$.  
+
The applet deals with the system components&nbsp; "sampling"&nbsp; and&nbsp; "signal reconstruction", two components that are of great importance for understanding the&nbsp; [[Modulation_Methods/Pulscodemodulation|"Puls code modulation"]]&nbsp; $({\rm PCM})$&nbsp; for example. &nbsp; The upper graphic shows the model on which this applet is based.&nbsp; Below it are the samples&nbsp; $x(\nu \cdot T_{\rm A})$&nbsp; of the time continuous signal&nbsp; $x(t)$. The (infinite) sum over all these samples is called the sampled signal&nbsp; $x_{\rm A}(t)$.  
  
[[File:Abtastung_1_version4.png|center|frame|Top: &nbsp;&nbsp; Underlying model for sampling and signal reconstruction<br>Bottom: &nbsp; Example for time discretization of the time continuous signal&nbsp; $x(t)$]]
+
[[File:EN_Abtastung_1.png|center|frame|Top: &nbsp;&nbsp; Underlying model for sampling and signal reconstruction<br>Bottom: &nbsp; Example for time discretization of the continuous&ndash;time signal&nbsp; $x(t)$]]
  
*At the transmitter, the time discrete (sampled) signal&nbsp; $x_{\rm A}(t)$&nbsp; is obtained from the time continuous source signal&nbsp; $x(t)$&nbsp; $x_{\rm A}(t)$&nbsp; This process is called&nbsp; '''sampling'' &nbsp; or&nbsp; '''A/D conversion'''.   
+
*At the transmitter, the time discrete (sampled) signal&nbsp; $x_{\rm A}(t)$&nbsp; is obtained from the continuous&ndash;time signal&nbsp; $x(t)$.&nbsp; This process is called&nbsp; '''sampling''' &nbsp; or&nbsp; '''A/D conversion'''.   
*The corresponding program parameter for the transmitter is the sampling rate&nbsp; $f_{\rm A}= 1/T_{\rm A}$.&nbsp; The lower graphic shows the sampling rate&nbsp; $T_{\rm A}$&nbsp;.  
+
*The corresponding program parameter for the transmitter is the sampling rate&nbsp; $f_{\rm A}= 1/T_{\rm A}$.&nbsp; The lower graphic shows the sampling distance&nbsp; $T_{\rm A}$&nbsp;.  
 
*In the receiver, the discrete-time received signal&nbsp; $y_{\rm A}(t)$&nbsp; is used to generate the continuous-time sink signal&nbsp; $y(t)$&nbsp; &nbsp; &rArr; &nbsp; '''signal reconstruction'''&nbsp; or&nbsp; '''D/A conversion'''&nbsp; corresponding to the receiver frequency response&nbsp; $H_{\rm E}(f)$.  
 
*In the receiver, the discrete-time received signal&nbsp; $y_{\rm A}(t)$&nbsp; is used to generate the continuous-time sink signal&nbsp; $y(t)$&nbsp; &nbsp; &rArr; &nbsp; '''signal reconstruction'''&nbsp; or&nbsp; '''D/A conversion'''&nbsp; corresponding to the receiver frequency response&nbsp; $H_{\rm E}(f)$.  
  
  
The applet does not consider the PCM blocks&nbsp; &bdquo;Quantization&rdquo;, &nbsp;&bdquo;encoding/decoding&rdquo;. &nbsp; The digital transmission channel is assumed to be ideal.&nbsp;  
+
The applet does not consider the PCM blocks&nbsp; "Quantization"and &nbsp;"encoding/decoding". &nbsp; The digital transmission channel is assumed to be ideal.&nbsp;  
 +
 
 +
[[File:Abtastung_2_neu.png|right|frame|Receiver frequency response&nbsp; $H_{\rm E}(f)$]]
  
 
The following consequences result from this:
 
The following consequences result from this:
Line 18: Line 20:
 
* With suitable system parameters, the error signal &nbsp; $\varepsilon(t) = y(t)-x(t)\equiv 0$&nbsp; is therefore also possible.  
 
* With suitable system parameters, the error signal &nbsp; $\varepsilon(t) = y(t)-x(t)\equiv 0$&nbsp; is therefore also possible.  
  
[[File:Abtastung_2_neu.png|right|frame|Receiver frequency response&nbsp; $H_{\rm E}(f)$]]
+
 
<br>
 
 
The sampling theorem and the signal reconstruction can be better explained in the frequency domain.&nbsp; Therefore all spectral functions are displayed in the program;
 
The sampling theorem and the signal reconstruction can be better explained in the frequency domain.&nbsp; Therefore all spectral functions are displayed in the program;
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;$X(f)\ \bullet\!\!\!\!\!\!\!\!\!\circ\,\ x(t)$,&nbsp; $X_{\rm A}(f)\ \bullet\!\!\!\!\!\!\!\!\! \circ\,\ x_{\rm A}(t)$,&nbsp; $Y(f)\ \bullet\!\!\!\!\!\!\!\!\!\!\circ\,\ y(t)$,&nbsp; $E(f)\ \bullet\!\!-\!\!\!\!\!\!\!\!\!\circ\,\ \varepsilon(t).$&nbsp;
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t)$,&nbsp; $X_{\rm A}(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x_{\rm A}(t)$,&nbsp; $Y(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ y(t)$,&nbsp; $E(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ \varepsilon(t).$&nbsp;
  
 
Parameters for the receiver frequency response&nbsp; $H_{\rm E}(f)$&nbsp; are the cut&ndash;off frequency and the rolloff factor&nbsp; (see lower graph):
 
Parameters for the receiver frequency response&nbsp; $H_{\rm E}(f)$&nbsp; are the cut&ndash;off frequency and the rolloff factor&nbsp; (see lower graph):
$$f_{\rm G} = \frac{f_2 +f_1}{2},\hspace{1cm}r = \frac{f_2 -f_1}{f_2 +f_1}.$$
+
:$$f_{\rm G} = \frac{f_2 +f_1}{2},\hspace{1cm}r = \frac{f_2 -f_1}{f_2 +f_1}.$$
  
 
''Notes:''
 
''Notes:''
  
'''(1)''' &nbsp; All signal values are normalized to&nbsp; $\pm 1$&nbsp; to be understood.&nbsp
+
'''(1)''' &nbsp; All signal values are normalized to&nbsp; $\pm 1$.  
  
'''(2)''' &nbsp; For the services issued, the respective period duration&nbsp; $T_0$ applies:
+
'''(2)''' &nbsp; The power calculation is done by integration over the respective period duration&nbsp; $T_0$:
 
:$$P_x = \frac{1}{T_0} \cdot \int_0^{T_0} x^2(t)\ {\rm d}t,\hspace{0.8cm}P_\varepsilon = \frac{1}{T_0} \cdot \int_0^{T_0} \varepsilon^2(t).$$
 
:$$P_x = \frac{1}{T_0} \cdot \int_0^{T_0} x^2(t)\ {\rm d}t,\hspace{0.8cm}P_\varepsilon = \frac{1}{T_0} \cdot \int_0^{T_0} \varepsilon^2(t).$$
  
 
'''(3)''' &nbsp; The <u>signal power</u>&nbsp; $P_x$&nbsp; and the <u>distortion power</u>&nbsp; $P_\varepsilon$&nbsp; are also output in normalized form, which implicitly assumes the reference resistance&nbsp; $R = 1\, \rm \Omega$&nbsp;;
 
'''(3)''' &nbsp; The <u>signal power</u>&nbsp; $P_x$&nbsp; and the <u>distortion power</u>&nbsp; $P_\varepsilon$&nbsp; are also output in normalized form, which implicitly assumes the reference resistance&nbsp; $R = 1\, \rm \Omega$&nbsp;;
  
'''(4)''' &nbsp; From this the <u>signal&ndash;distortion&ndash;distance</u>&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)$&nbsp; can be calculated.
+
'''(4)''' &nbsp; From these the <u>signal&ndash;distortion&ndash;distance</u>&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)$&nbsp; can be calculated.
 
   
 
   
'''(5)''' &nbsp; Does the spectral function&nbsp; $X(f)$&nbsp; for positive frequencies, consists of&nbsp; $I$&nbsp; Diraclines with the (possibly complex) weights&nbsp; $X_1$, ... , $X_I$, <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;so applies to the transmission power taking into account the mirror-image lines at the negative frequencies:
+
'''(5)''' &nbsp; Does the spectral function&nbsp; $X(f)$&nbsp; for positive frequencies consists of&nbsp; $I$&nbsp; Dirac delta lines with the (possibly complex) weights&nbsp; $X_1$, ... , $X_I$,<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; so applies to the transmission power taking into account the mirror-image lines at the negative frequencies:
  
 
:$$P_x = 2 \cdot \sum_{i=1}^I |X_k|^2.$$
 
:$$P_x = 2 \cdot \sum_{i=1}^I |X_k|^2.$$
  
'''(6)''' &nbsp; Correspondingly, the following applies to the distortion power if the spectral function&nbsp; $E(f)$&nbsp; in the range&nbsp; $f>0$&nbsp; off&nbsp; $J$&nbsp; Diraclines with weights&nbsp; $E_1$, ... , $E_J$&nbsp; composed:  
+
'''(6)''' &nbsp; Correspondingly, the following applies to the distortion power if the spectral function&nbsp; $E(f)$&nbsp; in the range&nbsp; $f>0$&nbsp; has&nbsp; $J$&nbsp; Dirac delta lines with weights&nbsp; $E_1$, ... , $E_J$:  
  
 
:$$P_\varepsilon = 2 \cdot \sum_{j=1}^J |E_j|^2.$$   
 
:$$P_\varepsilon = 2 \cdot \sum_{j=1}^J |E_j|^2.$$   
  
 +
==Theoretical Background==
  
  
Translated with www.DeepL.com/Translator (free version)
+
===Description of sampling in the time domain===
 
 
 
 
 
==Theoretischer Hintergrund==
 
 
 
  
===Beschreibung der Abtastung im Zeitbereich===
+
[[File:P_ID1120__Sig_T_5_1_S1_neu.png|center|frame|For the time discretization of the continuous-time signal&nbsp; $x(t)$]]
  
[[File:P_ID1120__Sig_T_5_1_S1_neu.png|center|frame|Zur Zeitdiskretisierung des zeitkontinuierlichen Signals&nbsp; $x(t)$]]
+
In the following, we use the following nomenclature to describe the sampling:
 
+
*let the continuous-time signal be&nbsp; $x(t)$.
Im Folgenden verwenden wir für die Beschreibung der Abtastung folgende Nomenklatur:
+
*Let the time-discretized signal sampled at equidistant intervals&nbsp; $T_{\rm A}$&nbsp; be&nbsp; $x_{\rm A}(t)$.
*Das zeitkontinuierliche Signal sei&nbsp; $x(t)$.
+
*Out of the sampling time points&nbsp; $\nu \cdot T_{\rm A}$&nbsp; always holds&nbsp; $x_{\rm A}(t) \equiv 0$.
*Das in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; abgetastete zeitdiskretisierte Signal sei&nbsp; $x_{\rm A}(t)$.
+
*The run variable&nbsp; $\nu$&nbsp; be an&nbsp; [[Signal_Representation/Calculating_with_Complex_Numbers#The_set_of_real_numbers|"integer"]]:  &nbsp; &nbsp; $\nu \in \mathbb{Z} =  \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
*Außerhalb der Abtastzeitpunkte&nbsp; $\nu \cdot T_{\rm A}$&nbsp; gilt stets&nbsp; $x_{\rm A}(t) \equiv 0$.
+
*In contrast, at the equidistant sampling times with the constant&nbsp; $K$, the result is:
*Die Laufvariable&nbsp; $\nu$&nbsp; sei&nbsp; [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Reelle_Zahlenmengen|ganzzahlig]]:  &nbsp; &nbsp; $\nu \in \mathbb{Z} =  \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
 
*Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten&nbsp; $K$:
 
 
   
 
   
 
:$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
 
:$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
  
Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt&nbsp; $K = 1$.
+
The constant depends on the type of time discretization. For the above sketch $K = 1$ is valid.
 
<br><br>
 
<br><br>
===Beschreibung der Abtastung mit Diracpuls===
+
===Description of sampling with the Dirac delta pulse===
  
Im Folgenden gehen wir von einer geringfügig anderen Beschreibungsform aus.&nbsp; Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent  anwendet.
+
In the following, we assume a slightly different form of description.&nbsp; The following pages will show that these equations, which take some getting used to, do lead to useful results if they are applied consistently.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definitionen:}$&nbsp;
+
$\text{Definitions:}$&nbsp;
  
* Unter&nbsp; '''Abtastung'''&nbsp; verstehen wir hier die Multiplikation des zeitkontinuierlichen Signals&nbsp; $x(t)$&nbsp; mit einem&nbsp; '''Diracpuls''':
+
* By&nbsp; '''sampling'''&nbsp; we mean here the multiplication of the time-continuous signal&nbsp; $x(t)$&nbsp; by a&nbsp; '''Dirac delta pulse''':
  
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$
  
*Der&nbsp; '''Diracpuls (im Zeitbereich)'''&nbsp; besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand&nbsp; $T_{\rm A}$&nbsp; und alle mit gleichem Impulsgewicht&nbsp; $T_{\rm A}$:
+
*The&nbsp; '''Dirac delta pulse (in the time domain)'''&nbsp; consists of infinitely many Dirac delta pulses, each equally spaced&nbsp; $T_{\rm A}$&nbsp; and all with equal pulse weight&nbsp; $T_{\rm A}$:
 
   
 
   
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
Line 88: Line 83:
 
   
 
   
  
Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:
+
Based on this definition, the following properties result for the sampled signal:
 
:$$x_{\rm A}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
 
:$$x_{\rm A}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
 
  \delta (t- \nu \cdot T_{\rm A}
 
  \delta (t- \nu \cdot T_{\rm A}
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
*Das abgetastete Signal zum betrachteten Zeitpunkt&nbsp; $(\nu \cdot T_{\rm A})$&nbsp; ist gleich&nbsp; $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0)$.
+
*The sampled signal at the considered time&nbsp; $(\nu \cdot T_{\rm A})$&nbsp; ist gleich&nbsp; $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0)$.
*Da&nbsp; $\delta (t)$&nbsp; zur Zeit&nbsp; $t = 0$&nbsp; unendlich ist, sind eigentlich alle Signalwerte&nbsp; $x_{\rm A}(\nu \cdot T_{\rm A})$&nbsp; ebenfalls unendlich groß und auch der oben eingeführte Faktor&nbsp; $K$.
+
*Since&nbsp; $\delta (t)$&nbsp; at time&nbsp; $t = 0$&nbsp; is infinite, actually all signal values&nbsp; $x_{\rm A}(\nu \cdot T_{\rm A})$&nbsp; are also infinite and also the factor&nbsp; $K$ introduced above.
*Zwei Abtastwerte&nbsp; $x_{\rm A}(\nu_1 \cdot T_{\rm A})$&nbsp; und&nbsp; $x_{\rm A}(\nu_2 \cdot T_{\rm A})$&nbsp; unterscheiden sich jedoch  im gleichen Verhältnis wie die Signalwerte&nbsp; $x(\nu_1 \cdot T_{\rm A})$&nbsp; und&nbsp; $x(\nu_2 \cdot T_{\rm A})$.
+
*Two samples&nbsp; $x_{\rm A}(\nu_1 \cdot T_{\rm A})$&nbsp; and&nbsp; $x_{\rm A}(\nu_2 \cdot T_{\rm A})$&nbsp; however, differ in the same proportion as the signal values&nbsp; $x(\nu_1 \cdot T_{\rm A})$&nbsp; and&nbsp; $x(\nu_2 \cdot T_{\rm A})$.
*Die Abtastwerte von&nbsp; $x(t)$&nbsp; erscheinen in den Impulsgewichten der Diracfunktionen:
+
*The samples of&nbsp; $x(t)$&nbsp; appear in the pulse weights of the Dirac delta functions:
*Die zusätzliche Multiplikation mit&nbsp; $T_{\rm A}$&nbsp; ist erforderlich, damit&nbsp; $x(t)$&nbsp; und&nbsp; $x_{\rm A}(t)$&nbsp; gleiche Einheit besitzen.&nbsp; Beachten Sie hierbei, dass&nbsp; $\delta (t)$&nbsp; selbst die Einheit „1/s” aufweist.
+
*The additional multiplication by&nbsp; $T_{\rm A}$&nbsp; is necessary so that&nbsp; $x(t)$&nbsp; and&nbsp; $x_{\rm A}(t)$&nbsp; have the same unit.&nbsp; Note here that&nbsp; $\delta (t)$&nbsp; itself has the unit "1/s".
  
  
===Beschreibung der Abtastung im Frequenzbereich===
+
===Description of sampling in the frequency domain===
  
Zum Spektrum des abgetasteten Signals&nbsp; $x_{\rm A}(t)$&nbsp; kommt man durch Anwendung des&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Frequenzbereich|Faltungssatzes]]. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:
+
The spectrum of the sampled signal&nbsp; $x_{\rm A}(t)$&nbsp; is obtained by applying the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_in_the_frequency_domain|"Convolution Theorem".]] This states that multiplication in the time domain corresponds to convolution in the spectral domain:
 
   
 
   
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
  X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
 
  X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
  
Entwickelt man den&nbsp; Diracpuls&nbsp; $p_{\delta}(t)$ &nbsp; (im Zeitbereich) &nbsp; in eine&nbsp; [[Signaldarstellung/Fourierreihe|Fourierreihe]]&nbsp; und transformiert diese unter Anwendung des&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]]&nbsp; in den Frequenzbereich, so ergibt sich mit dem Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; zweier benachbarter Diraclinien im Frequenzbereich  folgende Korrespondenz &nbsp; &rArr; &nbsp; [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Diracpuls_im_Zeit-_und_im_Frequenzbereich|Beweis]]:
+
If one develops the&nbsp; Dirac delta pulse&nbsp; $p_{\delta}(t)$ &nbsp; (in the time domain) &nbsp; into a&nbsp; [[Signal_Representation/Fourier_Series|"Fourier Series"]]&nbsp; and transforms it using the&nbsp; [[Signal_Representation/The_Fourier_Transform_Theorems#Shifting_Theorem|"Shifting Theorem"]]&nbsp; into the frequency domain, the following correspondence &nbsp; &rArr; &nbsp; [[Signal_Representation/Discrete-Time_Signal_Representation#Dirac_comb_in_time_and_frequency_domain|"proof"]] results with the distance&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; of two adjacent dirac delta lines in the frequency domain:
 
   
 
   
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
Line 114: Line 109:
 
  (f- \mu \cdot f_{\rm A} ).$$
 
  (f- \mu \cdot f_{\rm A} ).$$
  
[[File:P_ID1121__Sig_T_5_1_S3_NEU.png|right|frame|Diracpuls im Zeit- und Frequenzbereich  mit&nbsp; $T_{\rm A} = 50\ {\rm &micro;s}$&nbsp; und&nbsp; $f_{\rm A} = 1/T_{\rm A} = 20\ \text{kHz}$]]
+
[[File:P_ID1121__Sig_T_5_1_S3_NEU.png|right|frame|Dirac delta pulse in time and frequency domain with&nbsp; $T_{\rm A} = 50\ {\rm &micro;s}$&nbsp; und&nbsp; $f_{\rm A} = 1/T_{\rm A} = 20\ \text{kHz}$]]
Das Ergebnis besagt:
+
The result states:
*Der Diracpuls&nbsp; $p_{\delta}(t)$&nbsp; im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand&nbsp; $T_{\rm A}$&nbsp; und alle mit gleichem Impulsgewicht&nbsp; $T_{\rm A}$.
+
*The Dirac delta pulse&nbsp; $p_{\delta}(t)$&nbsp; in the time domain consists of infinitely many Dirac delta pulses, each at the same distance&nbsp; $T_{\rm A}$&nbsp; and all with the same pulse weight&nbsp; $T_{\rm A}$.
*Die Fouriertransformierte von&nbsp; $p_{\delta}(t)$&nbsp; ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich  &nbsp; ⇒ &nbsp; $P_{\delta}(f)$.
+
*The Fourier transform of&nbsp; $p_{\delta}(t)$&nbsp; again gives a Dirac delta pulse, but now in the frequency domain &nbsp; ⇒ &nbsp; $P_{\delta}(f)$.
*Auch&nbsp; $P_{\delta}(f)$&nbsp; besteht aus unendlich vielen Diracimpulsen, nun im jeweiligen Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; und alle mit dem Impulsgewicht&nbsp; $1$.
+
*Also&nbsp; $P_{\delta}(f)$&nbsp; consists of infinitely many Dirac delta pulses, now in the respective spacing&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; and all with pulse weight&nbsp; $1$.
*Die Abstände der Diraclinien in Zeit– und Frequenzbereich folgen demnach dem&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz]]: &nbsp; $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$
+
*The distances of the Dirac delta lines in time and frequency domain thus follow the&nbsp; [[Signal_Representation/The_Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|"Reciprocity Theorem"]]: &nbsp; $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$
  
  
Daraus folgt: &nbsp; Aus dem Spektrum&nbsp; $X(f)$&nbsp; wird durch Faltung mit der um&nbsp; $\mu \cdot f_{\rm A}$&nbsp; verschobenen Diraclinie:
+
From this follows: &nbsp; From the spectrum&nbsp; $X(f)$&nbsp; is obtained by convolution with the Dirac delta line shifted by&nbsp; $\mu \cdot f_{\rm A}$&nbsp;:
 
   
 
   
 
:$$X(f) \star \delta
 
:$$X(f) \star \delta
Line 129: Line 124:
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:
+
Applying this result to all Dirac delta lines of the Dirac delta pulse, we finally obtain:
 
   
 
   
 
:$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta
 
:$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta
Line 137: Line 132:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp; Die Abtastung des analogen Zeitsignals&nbsp; $x(t)$&nbsp; in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; führt im Spektralbereich zu einer&nbsp; '''periodischen Fortsetzung'''&nbsp; von&nbsp; $X(f)$&nbsp; mit dem Frequenzabstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$.}}
+
$\text{Conclusion:}$&nbsp; Sampling the analog time signal&nbsp; $x(t)$&nbsp; at equidistant intervals&nbsp; $T_{\rm A}$&nbsp; results in the spectral domain in a&nbsp; '''periodic continuation'''&nbsp; of&nbsp; $X(f)$&nbsp; with frequency spacing&nbsp; $f_{\rm A} = 1/T_{\rm A}$.}}
  
  
[[File:P_ID1122__Sig_T_5_1_S4_neu.png|right|frame|Spektrum des abgetasteten Signals]]
+
[[File:P_ID1122__Sig_T_5_1_S4_neu.png|right|frame|Spectrum of the sampled signal]]
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 1:}$&nbsp;
+
$\text{Example 1:}$&nbsp;
Die obere Grafik zeigt&nbsp; '''(schematisch!)'''&nbsp; das Spektrum&nbsp; $X(f)$&nbsp; eines Analogsignals&nbsp; $x(t)$, das Frequenzen bis&nbsp; $5 \text{ kHz}$&nbsp; beinhaltet.
+
The upper graph shows&nbsp; '''(schematic!)'''&nbsp; the spectrum&nbsp; $X(f)$&nbsp; of an analog signal&nbsp; $x(t)$, which contains frequencies up to&nbsp; $5 \text{ kHz}$&nbsp;.
  
Tastet man das Signal mit der Abtastrate&nbsp; $f_{\rm A}\,\text{ = 20 kHz}$, also im jeweiligen Abstand&nbsp; $T_{\rm A}\, = {\rm 50 \, &micro;s}$&nbsp; ab, so erhält man das unten skizzierte periodische Spektrum&nbsp; $X_{\rm A}(f)$.  
+
Sampling the signal at the sampling rate&nbsp; $f_{\rm A}\,\text{ = 20 kHz}$, i.e., at the respective spacing&nbsp; $T_{\rm A}\, = {\rm 50 \, &micro;s}$&nbsp; yields the periodic spectrum&nbsp; $X_{\rm A}(f)$ sketched below.  
*Da die Diracfunktionen unendlich schmal sind, beinhaltet das abgetastete Signal&nbsp; $x_{\rm A}(t)$&nbsp; auch beliebig hochfrequente Anteile.  
+
*Since the Dirac delta functions are infinitely narrow, the sampled signal&nbsp; $x_{\rm A}(t)$&nbsp; also contains arbitrary high frequency components.  
*Dementsprechend ist die Spektralfunktion&nbsp; $X_{\rm A}(f)$&nbsp; des abgetasteten Signals bis ins Unendliche ausgedehnt.}}
+
*Correspondingly, the spectral function&nbsp; $X_{\rm A}(f)$&nbsp; of the sampled signal is extended to infinity.}}
  
  
===Signalrekonstruktion===
+
===Signal reconstruction===
  
[[File:P_ID1123__Sig_T_5_1_S5a_neu.png|right|frame|Gemeinsames Modell von &bdquo;Signalabtastung&rdquo; und &bdquo;Signalrekonstruktion&rdquo;]]
+
[[File:EN_Sig_T_5_1_S2_v2.png|right|frame|Joint model of "signal sampling" and "signal reconstruction"]]
Die Signalabtastung ist bei einem digitalen Übertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden.&nbsp; Betrachten wir zum Beispiel das folgende System:  
+
Signal sampling is not an end in itself in a digital transmission system, but it must be reversed at some point&nbsp; For example, consider the following system:  
*Das Analogsignal&nbsp; $x(t)$&nbsp; mit der  Bandbreite&nbsp; $B_{\rm NF}$&nbsp; wird wie oben beschrieben abgetastet.  
+
*The analog signal&nbsp; $x(t)$&nbsp; with bandwidth&nbsp; $B_{\rm NF}$&nbsp; is sampled as described above.  
*Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; vor.  
+
*At the output of an ideal transmission system, the also discrete-time signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; is present.  
*Die Frage ist nun, wie der Block &nbsp; '''Signalrekonstruktion''' &nbsp; zu gestalten ist, damit auch&nbsp; $y(t) = x(t)$&nbsp; gilt.
+
*The question now is how the block &nbsp; '''signal reconstruction''' &nbsp; has to be designed so that also&nbsp; $y(t) = x(t)$&nbsp; holds.
  
[[File:P_ID1124__Sig_T_5_1_S5b_neu.png|right|frame|Frequenzbereichsdarstellung der &bdquo;Signalrekonstruktion&rdquo;]]
+
[[File:P_ID1124__Sig_T_5_1_S5b_neu.png|right|frame|Frequency domain representation of the "signal reconstruction"]]
<br>Die Lösung ist einfach, wenn man die Spektralfunktionen betrachtet: &nbsp;  
+
<br>The solution is simple if you look at the spectral functions: &nbsp;  
  
Man erhält aus&nbsp; $Y_{\rm A}(f)$&nbsp; das Spektrum&nbsp; $Y(f) = X(f)$&nbsp; durch ein Tiefpass&nbsp;Filter mit dem&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Frequenzgang]]&nbsp; $H_{\rm E}(f)$, der&nbsp;
+
One obtains from&nbsp; $Y_{\rm A}(f)$&nbsp; the spectrum&nbsp; $Y(f) = X(f)$&nbsp; by a low-pass&nbsp;filter with the&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Frequency_response_. E2.80.93_Transfer_function|"Frequency response"]]&nbsp; $H_{\rm E}(f)$, which&nbsp;
  
*die tiefen Frequenzen unverfälscht durchlässt:
+
*passes the low frequencies unaltered:
:$$H_{\rm E}(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm
+
:$$H_{\rm E}(f) = 1 \hspace{0.3cm}{\rm{for}} \hspace{0.3cm} |f| \le B_{\rm
 
   NF}\hspace{0.05cm},$$
 
   NF}\hspace{0.05cm},$$
*die hohen Frequenzen vollständig unterdrückt:
+
*completely suppresses the high frequencies:
:$$H_{\rm E}(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm
+
:$$H_{\rm E}(f) = 0 \hspace{0.3cm}{\rm{for}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm
 
   NF}\hspace{0.05cm}.$$
 
   NF}\hspace{0.05cm}.$$
 
   
 
   
Weiter ist aus der nebenstehenden Grafik zu erkennen: &nbsp; Solange die beiden oben genannten Bedingungen erfüllt sind, kann&nbsp; $H_{\rm E}(f)$&nbsp; im Bereich von&nbsp; $B_{\rm NF}$&nbsp; bis&nbsp; $f_{\rm A}–B_{\rm NF}$&nbsp; beliebig geformt sein kann,  
+
Further, it can be seen from the accompanying graph: &nbsp; As long as the above two conditions are satisfied,&nbsp; $H_{\rm E}(f)$&nbsp; can be arbitrarily shaped in the range from&nbsp; $B_{\rm NF}$&nbsp; to&nbsp; $f_{\rm A}-B_{\rm NF}$&nbsp; ,  
*beispielsweise linear abfallend (gestrichelter Verlauf)  
+
*for example linearly descending (dashed line)  
*oder auch rechteckförmig,
+
*or also rectangular.
  
  
===Das Abtasttheorem===
+
===The Sampling Theorem===
  
Die vollständige Rekonstruktion des Analogsignals&nbsp; $y(t)$&nbsp; aus dem abgetasteten Signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; ist nur möglich, wenn die Abtastrate&nbsp; $f_{\rm A}$&nbsp; entsprechend der Bandbreite&nbsp; $B_{\rm NF}$&nbsp; des Nachrichtensignals richtig gewählt wurde.  
+
The complete reconstruction of the analog signal&nbsp; $y(t)$&nbsp; from the sampled signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; is only possible if the sampling rate&nbsp; $f_{\rm A}$&nbsp; corresponding to the bandwidth&nbsp; $B_{\rm NF}$&nbsp; of the message signal has been chosen correctly.  
  
Aus der obigen Grafik  erkennt man, dass folgende Bedingung erfüllt sein muss: &nbsp; $f_{\rm A} - B_{\rm  NF} > B_{\rm  NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot  B_{\rm  NF}\hspace{0.05cm}.$
+
From the above graph, it can be seen that the following condition must be satisfied: &nbsp; $f_{\rm A} - B_{\rm  NF} > B_{\rm  NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot  B_{\rm  NF}\hspace{0.05cm}.$
 
   
 
   
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Abtasttheorem:}$&nbsp; Besitzt ein Analogsignal&nbsp; $x(t)$&nbsp; nur Spektralanteile im Bereich&nbsp; $\vert f \vert < B_{\rm NF}$, so kann dieses aus seinem abgetasteten Signal&nbsp; $x_{\rm A}(t)$&nbsp; nur dann vollständig rekonstruiert werden, wenn die Abtastrate hinreichend groß ist:
+
$\text{Sampling theorem:}$&nbsp; If an analog signal&nbsp; $x(t)$&nbsp; has only spectral components in the range&nbsp; $\vert f \vert < B_{\rm NF}$, it can be completely reconstructed from its sampled signal&nbsp; $x_{\rm A}(t)$&nbsp; only if the sampling rate is sufficiently large:
 
:$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$  
 
:$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$  
  
Für den Abstand zweier Abtastwerte muss demnach gelten:
+
Accordingly, the following must apply to the distance between two samples:
 
   
 
   
 
:$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm  NF} }\hspace{0.05cm}.$$}}
 
:$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm  NF} }\hspace{0.05cm}.$$}}
  
  
Wird bei der Abtastung der größtmögliche Wert &nbsp; ⇒ &nbsp; $T_{\rm A} = 1/(2B_{\rm NF})$&nbsp; herangezogen,  
+
If the largest possible value &nbsp; ⇒ &nbsp; $T_{\rm A} = 1/(2B_{\rm NF})$&nbsp; is used for sampling,  
*so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten
+
*so, for signal reconstruction of the analog signal from its samples.
*ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz&nbsp; $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$&nbsp; verwendet werden.
+
*an ideal, rectangular low-pass filter with cut off frequency&nbsp; $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$&nbsp; must be used.
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 2:}$&nbsp; Die Grafik zeigt oben das auf&nbsp; $\pm\text{ 5 kHz}$&nbsp; begrenzte Spektrum&nbsp; $X(f)$&nbsp; eines Analogsignals, unten das Spektrum&nbsp; $X_{\rm A}(f)$&nbsp; des im Abstand&nbsp; $T_{\rm A} =\,\text{ 100 &micro;s}$&nbsp; abgetasteten Signals &nbsp; ⇒ &nbsp; $f_{\rm A}=\,\text{ 10 kHz}$.  
+
$\text{Example 2:}$&nbsp; The graph shows above the spectrum&nbsp; $\pm\text{ 5 kHz}$&nbsp; of an analog signal limited to&nbsp; $X(f)$&nbsp; below the spectrum&nbsp; $X_{\rm A}(f)$&nbsp; of the signal sampled at distance&nbsp; $T_{\rm A} =\,\text{ 100 &micro;s}$&nbsp; ⇒ &nbsp; $f_{\rm A}=\,\text{ 10 kHz}$.  
[[File:P_ID1125__Sig_T_5_1_S6_neu.png|right|frame|Abtasttheorem im Frequenzbereich]]
+
[[File:P_ID1125__Sig_T_5_1_S6_neu.png|right|frame|Sampling theorem in the frequency domain]]
Zusätzlich eingezeichnet ist der Frequenzgang&nbsp; $H_{\rm E}(f)$&nbsp; des tiefpassartigen Empfangsfilters zur Signalrekonstruktion, dessen Grenzfrequenz exakt&nbsp; $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$&nbsp; betragen muss.
+
Additionally drawn is the frequency response&nbsp; $H_{\rm E}(f)$&nbsp; of the low-pass receiving filter for signal reconstruction, whose cutoff frequency must be exactly&nbsp; $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$&nbsp;.
  
  
*Mit jedem anderen&nbsp; $f_{\rm G}$–Wert ergäbe sich&nbsp; $Y(f) \neq X(f)$.  
+
*With any other&nbsp; $f_{\rm G}$ value, there would be&nbsp; $Y(f) \neq X(f)$.  
*Bei&nbsp; $f_{\rm G} < 5\,\text{ kHz}$&nbsp; fehlen die oberen&nbsp; $X(f)$–Anteile.
+
*For&nbsp; $f_{\rm G} < 5\,\text{ kHz}$&nbsp; the upper&nbsp; $X(f)$ portions are missing.
* Bei&nbsp; $f_{\rm G} > 5\,\text{ kHz}$&nbsp; kommt es aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in&nbsp; $Y(f)$.
+
* At&nbsp; $f_{\rm G} > 5\,\text{ kHz}$&nbsp; there are unwanted spectral components in&nbsp; $Y(f)$ due to convolution products.
  
  
Wäre am Sender die Abtastung mit einer Abtastrate&nbsp; $f_{\rm A} < 10\ \text{ kHz}$&nbsp; erfolgt  &nbsp; ⇒ &nbsp; $T_{\rm A} >100 \ {\rm &micro;  s}$, so wäre das Analogsignal&nbsp; $y(t) = x(t)$&nbsp; aus den Abtastwerten&nbsp; $y_{\rm A}(t)$&nbsp; auf keinen Fall rekonstruierbar.}}
+
If at the transmitter the sampling had been done with a sampling rate&nbsp; $f_{\rm A} < 10\,\text{ kHz}$&nbsp; &nbsp; ⇒ &nbsp; $T_{\rm A} >100 \ {\rm &micro;  s}$, the analog signal&nbsp; $y(t) = x(t)$&nbsp; would not be reconstructible from the samples&nbsp; $y_{\rm A}(t)$&nbsp; in any case. }}
 
<br clear=all>
 
<br clear=all>
==Versuchsdurchführung==
+
==Exercises==
<br>
 
[[File:Aufgaben_2D-Gauss.png|right]]
 
  
*First, select the number&nbsp; ('''1''', ... , '''10''')&nbsp; of the task to be processed.
+
*First, select the number&nbsp; $(1,\ 2,  \text{...} \ )$&nbsp; of the task to be processed.&nbsp; The number&nbsp; $0$&nbsp; corresponds to a "Reset":&nbsp; Same setting as at program start.
*A task description is displayed. The parameter values are adjusted.
+
*A task description is displayed.&nbsp; The parameter values are adjusted.&nbsp; Solution after pressing "Show Solution".
*Solution after pressing &bdquo;sample solution&rdquo;.
+
*All signal values are to be understood as normalized to&nbsp; $\pm 1$.&nbsp; Powers are normalized values, too.   
*The number&nbsp; '''0'''&nbsp; corresponds to a &bdquo;Reset&rdquo;:&nbsp; Same setting as at program start.
 
*All signal values are normalized to&nbsp; $\pm 1$&nbsp; to be understood.&nbsp; Also the output powers are normalized values.   
 
  
  
{{{BlueBox|TEXT=
+
{{BlaueBox|TEXT=
'''(1)'''&nbsp; For the source signal,&nbsp; $x(t) = A \cdot \cos (2\pi \cdot f_0 \cdot t -\varphi)$&nbsp; with&nbsp; $f_0 = \text{4 kHz}$. &nbsp; sampling with&nbsp; $f_{\rm A} = \text{10 kHz}$.&nbsp; rectangle&ndash;low-pass;&nbsp; cut-off frequency:&nbsp; $f_{\rm G} = \text{5 kHz}$. <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Interpret the output graphics and evaluate the present signal reconstruction for all permitted parameter values of&nbsp;$A$&nbsp; and&nbsp;$\varphi$. }}
+
'''(1)'''&nbsp; Source signal:&nbsp; $x(t) = A \cdot \cos (2\pi \cdot f_0 \cdot t -\varphi)$&nbsp; with&nbsp; $f_0 = \text{4 kHz}$. &nbsp; Sampling with&nbsp; $f_{\rm A} = \text{10 kHz}$.&nbsp; Rectanglular low-pass;&nbsp; cut off frequency:&nbsp; $f_{\rm G} = \text{5 kHz}$. <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Interpret the shown graphics and evaluate the present signal reconstruction for all permitted parameter values of&nbsp;$A$&nbsp; and&nbsp;$\varphi$. }}
  
*&nbsp;The spectrum&nbsp; $X(f)$&nbsp; consists of two diraclines at&nbsp; $\pm \text{4 kHz}$, each with pulse weight &nbsp;$0.5$.  
+
*&nbsp;The spectrum&nbsp; $X(f)$&nbsp; consists of two Dirac functions at&nbsp; $\pm \text{4 kHz}$, each with impulse weight &nbsp;$0.5$.  
: *&nbsp;By the periodic continuation has&nbsp; $X_{\rm A}(f)$&nbsp; lines of equal height at&nbsp; $\pm \text{4 kHz}$,&nbsp; $\pm \text{6 kHz}$,&nbsp; $\pm \text{14 kHz}$,&nbsp; $\pm \text{16 kHz}$,&nbsp; $\pm \text{24 kHz}$,&nbsp; $\pm \text{26 kHz}$,&nbsp; etc.
+
*&nbsp;By the periodic continuation&nbsp; $X_{\rm A}(f)$&nbsp; has lines of equal height at&nbsp; $\pm \text{4 kHz}$,&nbsp; $\pm \text{6 kHz}$,&nbsp; $\pm \text{14 kHz}$,&nbsp; $\pm \text{16 kHz}$,&nbsp; $\pm \text{24 kHz}$,&nbsp; $\pm \text{26 kHz}$,&nbsp; etc.
: *&nbsp;The rectangle&ndash;Lowpass with the cutoff frequency&nbsp; $f_{\rm G} = \text{5 kHz}$&nbsp; removes all lines except the two at&nbsp; $\pm \text{4 kHz}$&nbsp; &rArr; &nbsp;$Y(f) =X(f)$&nbsp; &rArr; &nbsp;$y(t) =x(t)$&nbsp; &rArr; &nbsp; $P_\varepsilon = 0$.
+
*&nbsp;The rectangular low-pass with the cut off frequency&nbsp; $f_{\rm G} = \text{5 kHz}$&nbsp; removes all lines except the two at&nbsp; $\pm \text{4 kHz}$&nbsp; &rArr; &nbsp;$Y(f) =X(f)$&nbsp; &rArr; &nbsp;$y(t) =x(t)$&nbsp; &rArr; &nbsp; $P_\varepsilon = 0$.
*&nbsp;The signal reconstruction works perfectly here&nbsp; $(P_\varepsilon = 0)$&nbsp; for all amplitudes&nbsp;$A$&nbsp; and any phases&nbsp;$\varphi$.
+
*&nbsp;The signal reconstruction works here perfectly&nbsp; $(P_\varepsilon = 0)$&nbsp; for all amplitudes&nbsp;$A$&nbsp; and any phases&nbsp;$\varphi$.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(2)'''&nbsp; Es gelte weiter&nbsp; $A=1$,&nbsp; $f_0 = \text{4 kHz}$,&nbsp; $\varphi=0$,&nbsp; $f_{\rm A} = \text{10 kHz}$,&nbsp; $f_{\rm G} = \text{5 kHz}$.&nbsp; Welchen Einfluss haben hier die Rolloff&ndash;Faktoren&nbsp; $r=0.2$,&nbsp; $r=0.5$&nbsp; und &nbsp; $r=1$?  <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Geben Sie die jeweiligen Leistungen&nbsp; $P_x$&nbsp; und&nbsp; $P_\varepsilon$&nbsp; an.&nbsp; für welche&nbsp; $r$&ndash;Werte ist&nbsp; $P_\varepsilon= 0$?&nbsp; Gelten diese Ergebnisse auch für andere&nbsp; $A$&nbsp; und&nbsp; $\varphi$?  }}
+
'''(2)'''&nbsp; Continue with&nbsp; $A=1$,&nbsp; $f_0 = \text{4 kHz}$,&nbsp; $\varphi=0$,&nbsp; $f_{\rm A} = \text{10 kHz}$,&nbsp; $f_{\rm G} = \text{5 kHz}$. &nbsp; What is the influence of the rolloff&ndash;factors&nbsp; $r=0.2$,&nbsp; $r=0.5$&nbsp; and &nbsp; $r=1$?  <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Specify the power values&nbsp; $P_x$&nbsp; and&nbsp; $P_\varepsilon$&nbsp;. &nbsp; For which&nbsp; $r$&ndash;values is&nbsp; $P_\varepsilon= 0$?&nbsp; Do these results also apply to other&nbsp; $A$&nbsp; and&nbsp; $\varphi$?  }}
 +
 
 +
:*&nbsp;With&nbsp; $|X(f = \pm \text{4 kHz})|=0.5$&nbsp; the signal power is&nbsp; $P_x = 2\cdot 0.5^2 = 0.5$.&nbsp; The distortion power&nbsp; $P_\varepsilon$&nbsp; depends significantly on the rolloff&ndash;factor&nbsp; $r$&nbsp;.
 +
:*&nbsp;$P_\varepsilon$&nbsp; is zero for&nbsp; $r \le 0.2$.&nbsp;  Then the&nbsp; $X_{\rm A}(f)$ line at&nbsp; $f_0 = \text{4 kHz}$&nbsp; is not changed by the low-pass and the unwanted&nbsp; line at&nbsp; $\text{6 kHz}$&nbsp; is fully suppressed.
 +
:*&nbsp;$r = 0.5$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.35$,&nbsp; $Y(f = \text{6 kHz}) = 0.15$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0. 15$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.09$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB$.
 +
:*$r = 1.0$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.3$,&nbsp; $Y(f = \text{6 kHz}) = 0.2$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0. 2$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.16$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB$.
 +
:*&nbsp;For all&nbsp; $r$&nbsp; the distortion power  $P_\varepsilon$&nbsp; is independent of&nbsp; $\varphi$. &nbsp; The amplitude&nbsp; $A$&nbsp; affects&nbsp; $P_x$&nbsp; and&nbsp; $P_\varepsilon$&nbsp; in the same way &nbsp; &rArr; &nbsp; the quotient is independent of&nbsp; $A$.
  
:*&nbsp;Die Signalleistung ist mit&nbsp; $|X_1|=0.5$&nbsp; gleich&nbsp; $P_x = 2\cdot 0.5^2 = 0.5$.&nbsp; Die Verzerrungsleistung&nbsp; $P_\varepsilon$&nbsp; hängt signifikant vom Rolloff&ndash;Faktor&nbsp; $r$&nbsp; ab.
 
:*&nbsp;Für&nbsp; $r \le 0.2$&nbsp; ist&nbsp; $P_\varepsilon=0$.&nbsp; Die&nbsp; $X_{\rm A}(f)$&ndash;Linie bei&nbsp; $f_0 = \text{4 kHz}$&nbsp; wird durch den Tiefpass nicht verändert und die unerwünschte&nbsp; Linie bei&nbsp; $\text{6 kHz}$&nbsp; voll unterdrückt.
 
:*&nbsp;$r = 0.5$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.35$,&nbsp; $Y(f = \text{6 kHz}) = 0.15$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.15$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.09$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB$.
 
:*$r = 1.0$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.3$,&nbsp; $Y(f = \text{6 kHz}) = 0.2$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.2$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.16$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB$.
 
:*&nbsp;Für alle&nbsp; $r$&nbsp; ist&nbsp; $P_\varepsilon$&nbsp; unabhängig von&nbsp; $\varphi$.&nbsp; Die Amplitude&nbsp; $A$&nbsp; beeinflusst&nbsp; $P_x$&nbsp; und&nbsp; $P_\varepsilon$&nbsp; in gleicher Weise &nbsp; &rArr; &nbsp; der Quotient ist jeweils unabhängig von&nbsp; $A$. 
 
 
      
 
      
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(3)'''&nbsp; Nun gelte&nbsp; $A=1$,&nbsp; $f_0 = \text{5 kHz}$,&nbsp; $\varphi=0$,&nbsp; $f_{\rm A} = \text{10 kHz}$,&nbsp; $f_{\rm G} = \text{5 kHz}$,&nbsp; $r=0$&nbsp; $($Rechteck&ndash;Tiefpass$)$.&nbsp; Interpretieren Sie das Ergebnis der Signalrekonstruktion.}}
+
'''(3)'''&nbsp; Now apply&nbsp; $A=1$,&nbsp; $f_0 = \text{5 kHz}$,&nbsp; $\varphi=0$,&nbsp; $f_{\rm A} = \text{10 kHz}$,&nbsp; $f_{\rm G} = \text{5 kHz}$,&nbsp; $r=0$&nbsp; $($rectangular low&ndash;pass$)$. &nbsp; Interpret the result of the signal reconstruction.}}
 +
 
 +
:*&nbsp; $X(f)$&nbsp; consists of two Dirac delta lines at&nbsp; $\pm \text{5 kHz}$&nbsp; $($weight &nbsp;$0.5)$. &nbsp;By periodic continuation&nbsp; $X_{\rm A}(f)$&nbsp;  has lines at&nbsp; $\pm \text{5 kHz}$,&nbsp; $\pm \text{15 kHz}$,&nbsp; $\pm \text{25 kHz}$,&nbsp; etc.
 +
:*&nbsp; The&nbsp; rectanglular low-pass&nbsp; removes the lines at&nbsp; $\pm \text{15 kHz}$,&nbsp; $\pm \text{25 kHz}$.&nbsp; The lines at&nbsp; $\pm \text{5 kHz}$&nbsp; are halved because of&nbsp; $H_{\rm E}(\pm f_{\rm G}) = H_{\rm E}(\pm \text{5 kHz}) = 0.5$. 
 +
:*&nbsp;&nbsp; &rArr; &nbsp; $\text{Weights of }X(f = \pm \text{5 kHz})$:&nbsp; $0.5$ &nbsp; # &nbsp; $\text{Weights of }X(f_{\rm A} = \pm \text{5 kHz})$:&nbsp; $1. 0$; &nbsp; &nbsp; # &nbsp; $\text{Weights of }Y(f = \pm \text{5 kHz})$:&nbsp; $0.5$ &nbsp; &rArr; &nbsp; $Y(f)=X(f)$.
 +
:*&nbsp;So the signal reconstruction works perfectly here too&nbsp; $(P_\varepsilon = 0)$.&nbsp; The same is true for the phase&nbsp; $\varphi=180^\circ$ &nbsp; &rArr; &nbsp; $x(t) = -A \cdot \cos (2\pi \cdot f_0 \cdot t)$.
  
:*&nbsp;$X(f)$&nbsp; besteht aus zwei Diraclinien bei&nbsp; $\pm \text{5 kHz}$&nbsp; $($Gewicht &nbsp;$0.5)$. &nbsp;Durch die periodische Fortsetzung hat&nbsp; $X_{\rm A}(f)$&nbsp; Linien bei&nbsp; $\pm \text{5 kHz}$,&nbsp; $\pm \text{15 kHz}$,&nbsp; $\pm \text{25 kHz}$,&nbsp; usw.
 
:*&nbsp; Der Rechteck&ndash;Tiefpass entfernt die Linien bei&nbsp; $\pm \text{15 kHz}$,&nbsp; $\pm \text{25 kHz}$,&nbsp;  Die Linien bei&nbsp; $\pm \text{5 kHz}$&nbsp; werden wegen&nbsp; $H_{\rm E}(\pm f_{\rm G}) = H_{\rm E}(\pm \text{5 kHz}) = 0.5$ halbiert
 
:*&nbsp;&nbsp; &rArr; &nbsp;  $\text{Gewichte von }X(f = \pm \text{5 kHz})$:&nbsp; $0.5$ &nbsp; | &nbsp; $\text{Gewichte von }X(f_{\rm A} = \pm \text{5 kHz})$:&nbsp; $1.0$; &nbsp; &nbsp; | &nbsp; $\text{Gewichte von }Y(f = \pm \text{5 kHz})$:&nbsp; $0.5$ &nbsp; &rArr; &nbsp; $Y(f)=X(f)$.
 
:*&nbsp;Die Signalrekonstruktion funktioniert also auch hier perfekt&nbsp; $(P_\varepsilon = 0)$.&nbsp; Das gilt auch für die Phase&nbsp; $\varphi=180^\circ$ &nbsp; &rArr; &nbsp; $x(t) = -A \cdot \cos (2\pi \cdot f_0 \cdot t)$.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(4)'''&nbsp; Es gelten weiter die Einstellungen von&nbsp; '''(3)'''&nbsp; mit Ausnahme von&nbsp; $\varphi=30^\circ$.&nbsp; Interpretieren Sie die Unterschiede gegenüber der Einstellung&nbsp; '''(3)''' &nbsp; &rArr; &nbsp; $\varphi=0^\circ$.}}
+
'''(4)'''&nbsp; The settings of&nbsp; $(3)$&nbsp; continue to apply except for&nbsp; $\varphi=30^\circ$.&nbsp; Interpret the differences from the setting&nbsp; $(3)$ &nbsp; &rArr; &nbsp; $\varphi=0^\circ$.}}
 +
 
 +
:*&nbsp;Phase relations are lost.&nbsp; The sink signal&nbsp; $y(t)$&nbsp; is cosine-shaped&nbsp; $(\varphi_y=0^\circ)$&nbsp; with by the factor&nbsp; $\cos(\varphi_x)$&nbsp; smaller amplitude than the source signal&nbsp; $x(t)$.
 +
:*&nbsp;Justification in the frequency domain:&nbsp; In the periodic continuation of&nbsp; $X(f)$&nbsp; &rArr;&nbsp; $X_{\rm A}(f)$&nbsp; only the real parts are to be added.&nbsp; The imaginary parts cancel out.
 +
:*&nbsp;The Dirac delta line of&nbsp; $X(f)$&nbsp; at frequency&nbsp; $f_0$ &nbsp; &rArr; &nbsp; $X(f_0)$&nbsp; is complex, &nbsp; $Y(f_0)$&nbsp; is real, and&nbsp; $E(f_0)$&nbsp; is imaginary &nbsp; &rArr; &nbsp; $\varepsilon(t)$&nbsp; is minus&ndash;sinusoidal &nbsp; &rArr; &nbsp; $P_\varepsilon = 0. 125$.
  
:*&nbsp;Die Phasenbeziehung geht verloren.&nbsp; Das Sinkensignal&nbsp; $y(t)$&nbsp; verläuft cosinusförmig&nbsp; $(\varphi_y=0^\circ)$&nbsp; mit um&nbsp; $\cos(\varphi_x)$&nbsp; kleinerer Amplitude als das Quellensignal&nbsp; $x(t)$.
 
:*&nbsp;Begründung im Frequenzbereich:&nbsp; Bei der periodische Fortsetzung von&nbsp; $X(f)$&nbsp; &rArr;&nbsp; $X_{\rm A}(f)$&nbsp; sind nur die Realteile zu addieren.&nbsp; Die Imaginärteile löschen sich aus.
 
:*&nbsp;Die&nbsp; $f_0$&ndash;Diraclinie von&nbsp; $Y(f)$&nbsp; ist reell, die von&nbsp; $X(f)$&nbsp; komplex und die von&nbsp; $E(f)$&nbsp; imaginär &nbsp; &rArr; &nbsp; $\varepsilon(t)$&nbsp; verläuft minus&ndash;sinusförmig &nbsp; &rArr; &nbsp;  $P_\varepsilon = 0.125$.
 
  
'''Carolin: Bitte letzte Zeile der Musterlösung ändern'''
+
{{BlueBox|TEXT=
 +
'''(5)'''&nbsp; Illustrate again the result of&nbsp; $(4)$&nbsp; compared to the settings&nbsp; $f_0 = \text{5 kHz}$,&nbsp; $\varphi=30^\circ$,&nbsp; $f_{\rm A} = \text{11 kHz}$,&nbsp; $f_{\rm G} = \text{5.5 kHz}$.}}
 +
:*&nbsp;With this setting, the spectrum&nbsp; $X_{\rm A}(f)$&nbsp; also has a positive imaginary part at&nbsp; $\text{5 kHz}$&nbsp; and a negative imaginary part of the same magnitude at&nbsp; $\text{6 kHz}$.
 +
:*&nbsp;The rectangular low-pass with cutoff frequency&nbsp; $\text{5.5 kHz}$&nbsp; removes this second component.&nbsp; Thus, with the new setting&nbsp; $Y(f) =X(f)$ &nbsp; &rArr; &nbsp; $P_\varepsilon = 0$.
 +
:*&nbsp;Any $f_0$ oscillation of arbitrary phase is error-free reconstructible from its samples if&nbsp; $f_{\rm A} = 2 \cdot f_{\rm 0} + \mu, \ f_{\rm G}= f_{\rm A}/2$&nbsp; $($any small $\mu>0)$.
 +
:*&nbsp;For <u>value&ndash;continuous</u> spectrum with &nbsp; $X(|f|> f_0) \equiv 0$&nbsp; &rArr; &nbsp; $\big[$no diraclines at $\pm f_0 \big ]$&nbsp; the sampling rate&nbsp; $f_{\rm A} = 2 \cdot f_{\rm 0}$&nbsp;  is sufficient  in principle.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Line 261: Line 260:
 
:*&nbsp;Bei <u>wertkontinuierlichem</u> Spektrum mit &nbsp; $X(|f|> f_0) \equiv 0$&nbsp; &rArr; &nbsp; $\big[$keine Diraclinien bei $\pm f_0 \big ]$  genügt grundsätzlich die Abtastrate&nbsp; $f_{\rm A} =  2 \cdot f_{\rm 0}$.
 
:*&nbsp;Bei <u>wertkontinuierlichem</u> Spektrum mit &nbsp; $X(|f|> f_0) \equiv 0$&nbsp; &rArr; &nbsp; $\big[$keine Diraclinien bei $\pm f_0 \big ]$  genügt grundsätzlich die Abtastrate&nbsp; $f_{\rm A} =  2 \cdot f_{\rm 0}$.
  
{{BlaueBox|TEXT=
 
'''(6)'''&nbsp; Es gelten weiter die Einstellungen von&nbsp; '''(3)'''&nbsp; und&nbsp; '''(4)'''&nbsp; mit Ausnahme von&nbsp; $\varphi=90^\circ$.&nbsp; Interpretieren Sie die Darstellungen im Zeit&ndash; und Frequenzbereich.}}   
 
:*&nbsp;Das Quellensignal wird genau bei seinen Nulldurchgängen abgetastet &nbsp; &rArr; &nbsp; $x_{\rm A}(t) \equiv 0$&nbsp; &rArr; &nbsp; &nbsp;$y(t) \equiv 0$&nbsp; &rArr; &nbsp;$\varepsilon(t)=-x(t)$&nbsp; &rArr; &nbsp;$P_\varepsilon = P_x$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=0\ \rm dB$.
 
:*&nbsp;Beschreibung im Frequenzbereich:&nbsp; Wie in&nbsp; '''(4)'''&nbsp; löschen sich die Imaginärteile von&nbsp; $X_{\rm A}(f)$&nbsp; aus.&nbsp; Auch die Realteile von&nbsp; $X_{\rm A}(f)$&nbsp; sind wegen des Sinusverlaufs Null.
 
 
{{BlaueBox|TEXT=
 
'''(7)'''&nbsp; Nun betrachten wir das&nbsp; $\text {Quellensignal 2}$.&nbsp; Die weiteren Parameter seien&nbsp; $f_{\rm A} = \text{5 kHz}$,&nbsp; $f_{\rm G} = \text{2.5 kHz}$,&nbsp; $r=0$.&nbsp; Interpretieren Sie die Ergebnisse.}}   
 
:*&nbsp;Das Quellensignal besitzt Spektralanteile bis&nbsp; $\pm \text{2 kHz}$.&nbsp; Die Signalleistung ist $P_x = 2 \cdot \big[0.1^2 + 0.25^2+0.15^2\big]= 0.19 $.&nbsp;
 
:*&nbsp;Mit der Abtastrate&nbsp; $f_{\rm A} = \text{5 kHz}$&nbsp; sowie den Empfängerparametern&nbsp; $f_{\rm G} = \text{2.5 kHz}$&nbsp; und&nbsp;  $r=0$ funktioniert die Signalrekonstruktion perfekt:&nbsp; $P_\varepsilon = 0$.
 
:*&nbsp;Ebenso mit dem Trapez&ndash;Tiefpass mit&nbsp; $f_{\rm G} = \text{2.5 kHz}$, wenn für den Rolloff&ndash;Faktor gilt:&nbsp;  $r \le 0.2$. 
 
  
{{BlaueBox|TEXT=
+
{{BlueBox|TEXT=
'''(8)'''&nbsp; Was passiert, wenn die Grenzfrequenz&nbsp; $f_{\rm G} = \text{1.5 kHz}$&nbsp; des Rechteck&ndash;Tiefpasses zu klein ist?&nbsp; Interpretieren Sie insbesondere das Fehlersignal&nbsp; $\varepsilon(t)=y(t)-x(t)$.}}
+
'''(6)'''&nbsp; The settings of&nbsp; $(3)$&nbsp; and&nbsp; $(4)$&nbsp; continue to apply except for&nbsp; $\varphi=90^\circ$.&nbsp; Interpret the plots in the time and frequency domain.}}    
:*&nbsp;Das Fehlersignal&nbsp; $\varepsilon(t)=-0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t -60^\circ)=0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t +120^\circ)$&nbsp; ist gleich dem (negierten) Signalanteil bei&nbsp; $\text{2 kHz}$.&nbsp; '''Stimmt das?'''
+
:*&nbsp;The source signal is sampled exactly at its zero crossings &nbsp;  &rArr;  &nbsp; $x_{\rm A}(t) \equiv 0$ &nbsp; &rArr; &nbsp; &nbsp; $y(t) \equiv 0$ &nbsp; &rArr; &nbsp; $\varepsilon(t)=-x(t)$ &nbsp; &rArr; &nbsp; $P_\varepsilon = P_x$ &nbsp; &rArr; &nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)=0\ \rm dB$.
:*&nbsp;Die Verzerrungsleistung ist&nbsp; $P_\varepsilon(t)=2 \cdot 0.15^2= 0.045$&nbsp; und der Signal&ndash;zu&ndash;Verzerrungsabstand&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)=10 \cdot \lg \ (0.19/0.045)= 6.26\ \rm dB$.
+
:*&nbsp;Description in the frequency domain: &nbsp; As in&nbsp; $(4)$&nbsp; the imaginary parts of&nbsp; $X_{\rm A}(f)$&nbsp; cancel out.&nbsp; Also the real parts of&nbsp; $X_{\rm A}(f)$&nbsp; are zero because of the sinusoid.
  
{{BlaueBox|TEXT=
 
'''(9)'''&nbsp; Was passiert, wenn die Grenzfrequenz&nbsp; $f_{\rm G} = \text{3.5 kHz}$&nbsp; des Rechteck&ndash;Tiefpasses zu groß ist?&nbsp; Interpretieren Sie insbesondere das Fehlersignal&nbsp; $\varepsilon(t)=y(t)-x(t)$.}}
 
:*&nbsp;Das Fehlersignal&nbsp; $\varepsilon(t)=0.3 \cdot \cos(2\pi \cdot \text{3 kHz} \cdot t +60^\circ)$&nbsp; ist nun gleich dem vom Tiefpass nicht entfernten $\text{3 kHz}$&ndash;Anteil des Sinkensignals&nbsp; $y(t)$.&nbsp; '''Stimmt das?'''
 
:*&nbsp;Gegenüber der Teilaufgabe&nbsp; '''(8)'''&nbsp; verändert sich die Frequenz von&nbsp; $\text{2 kHz}$&nbsp; auf&nbsp; $\text{3 kHz}$&nbsp; und auch die Phasenbeziehung.
 
:*&nbsp;Die Amplitude dieses&nbsp; $\text{3 kHz}$&ndash;Fehlersignals ist gleich der Amplitude des&nbsp; $\text{2 kHz}$&ndash;Anteils von$x(t)$.&nbsp; Auch hier gilt&nbsp; $P_\varepsilon(t)= 0.045$,&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)= 6.26\ \rm dB$.
 
  
{{BlaueBox|TEXT=
+
{{BlueBox|TEXT=
'''(10)'''&nbsp; Abschließend betrachten wir das&nbsp; $\text {Quellensignal 4}$&nbsp; $($Anteile bis&nbsp; $\pm \text{4 kHz})$, sowie&nbsp; $f_{\rm A} = \text{5 kHz}$,&nbsp; $f_{\rm G} = \text{2.5 kHz}$,&nbsp; $0 \le r\le 1$.&nbsp; Interpretation der Ergebnisse.}}     
+
'''(7)'''&nbsp; Now consider the&nbsp; $\text {Source Signal 2}$.&nbsp; Let the other parameters be&nbsp; $f_{\rm A} = \text{5 kHz}$,&nbsp; $f_{\rm G} = \text{2.5 kHz}$,&nbsp; $r=0$.&nbsp; Interpret the results.}}     
:*&nbsp;Bis zum Rolloff&ndash;Faktor&nbsp; $r=0.2$&nbsp; funktioniert die Signalrekonstruktion perfekt&nbsp; $(P_\varepsilon = 0)$.&nbsp; Erhöht man&nbsp; $r$, so nimmt&nbsp; $P_\varepsilon$&nbsp; kontinuierlich zu und&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)$&nbsp; ab. 
+
:*&nbsp;The source signal has spectral components up to&nbsp; $\pm \text{2 kHz}$.&nbsp; The signal power is $P_x = 2 \cdot \big[0.1^2 + 0.25^2+0.15^2\big]= 0.19 $.&nbsp;  
:*&nbsp;Mit&nbsp; $r=1$&nbsp; werden die Signalfrequenzen&nbsp; $\text{0.5 kHz}$,&nbsp; ...,&nbsp; $\text{4 kHz}$&nbsp; abgeschwächt, umso mehr, je höher die Frequenz ist, zum Beispiel&nbsp; $H_{\rm E}(f=\text{4 kHz}) = 0.6$.
+
:*&nbsp;With the sampling rate&nbsp; $f_{\rm A} = \text{5 kHz}$&nbsp; and the receiver parameters&nbsp; $f_{\rm G} = \text{2.5 kHz}$&nbsp; and&nbsp; $r=0$, the signal reconstruction works perfectly:&nbsp; $P_\varepsilon = 0$.
:*&nbsp;Ebenso beinhaltet&nbsp; $Y(f)$&nbsp; aufgrund der periodischen Fortsetzung auch Anteile bei den Frequenzen&nbsp; $\text{6 kHz}$,&nbsp; $\text{7 kHz}$,&nbsp; $\text{8 kHz}$,&nbsp; $\text{9 kHz}$&nbsp; und&nbsp; $\text{9.5 kHz}$.
+
:*&nbsp;Likewise with the trapezoidal low&ndash;pass with&nbsp; $f_{\rm G} = \text{2.5 kHz}$, if for the rolloff factor holds:&nbsp; $r \le 0.2$.
:*&nbsp;Zu den Abtastzeitpunkten&nbsp; $t\hspace{0.05cm}' = n \cdot T_{\rm A}$&nbsp; stimmen&nbsp; $x(t\hspace{0.05cm}')$&nbsp; und&nbsp; $y(t\hspace{0.05cm}')$&nbsp; exakt überein  &nbsp; &rArr; &nbsp; $\varepsilon(t\hspace{0.05cm}') = 0$.&nbsp; Dazwischen nicht &nbsp; &rArr; &nbsp; kleine Verzerrungsleistung&nbsp; $P_\varepsilon = 0.008$.
 
  
'''Carolin: Bitte zweite Zeile der Musterlösung ändern<br>
 
'''Außerdem müssten bei den Signalen 2 bis 4 jeweils der Phasenwert phi_1 = 180 Grad ausgegeben werden (Realteil von 1 kHz jeweils negativ)
 
  
 +
{{BlueBox|TEXT=
 +
'''(8)'''&nbsp; What happens if the cutoff frequency&nbsp; $f_{\rm G} = \text{1.5 kHz}$&nbsp; of the rectangular low&ndash;pass filter is too small?&nbsp; In particular, interpret the error signal&nbsp; $\varepsilon(t)=y(t)-x(t)$.}} 
 +
:*&nbsp;The error signal&nbsp; $\varepsilon(t)=-0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t -60^\circ)=0. 3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t +120^\circ)$&nbsp; is equal to the (negated) signal component at&nbsp; $\text{2 kHz}$.&nbsp;
 +
:*&nbsp;The distortion power is&nbsp; $P_\varepsilon=2 \cdot 0.15^2= 0.045$&nbsp; and the signal&ndash;to&ndash;distortion ratio&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)=10 \cdot \lg \ (0.19/0.045)= 6.26\ \rm dB$.
 
   
 
   
  
 +
{{BlueBox|TEXT=
 +
'''(9)'''&nbsp; What happens if the cutoff frequency&nbsp; $f_{\rm G} = \text{3.5 kHz}$&nbsp; of the rectangular low&ndash;pass filter is too large?&nbsp; In particular, interpret the error signal&nbsp; $\varepsilon(t)=y(t)-x(t)$.}}
 +
:*&nbsp;The error signal&nbsp; $\varepsilon(t)=0.3 \cdot \cos(2\pi \cdot \text{3 kHz} \cdot t +60^\circ)$&nbsp; is now equal to the&nbsp; $\text{3 kHz}$&nbsp; portion of the sink signal&nbsp; $y(t)$&nbsp; not removed by the low-pass filter.
 +
:*&nbsp;Compared to the subtask&nbsp; $(8)$&nbsp; the frequency changes from&nbsp; $\text{2 kHz}$&nbsp; to&nbsp; $\text{3 kHz}$&nbsp; and also the phase relationship.
 +
:*&nbsp;The amplitude of this&nbsp; $\text{3 kHz}$ error signal is equal to the amplitude of the&nbsp; $\text{2 kHz}$ portion of&nbsp; $x(t)$.&nbsp; Again&nbsp; $P_\varepsilon= 0.045$,&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)= 6.26\ \rm dB$. 
  
==Zur Handhabung des Applets==
 
<br>
 
[[File:Anleitung_Auge.png|right|600px]]
 
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Auswahl: &nbsp; Codierung <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(binär,&nbsp; quaternär,&nbsp; AMI&ndash;Code,&nbsp; Duobinärcode)
 
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Auswahl: &nbsp; Detektionsgrundimpuls<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (nach Gauß&ndash;TP,&nbsp; CRO&ndash;Nyquist,&nbsp; nach Spalt&ndash;TP}
+
{{BlueBox|TEXT=
 +
'''(10)'''&nbsp; Finally, we consider the&nbsp; $\text {source signal 4}$&nbsp; $($portions until&nbsp; $\pm \text{4 kHz})$, as well as&nbsp; $f_{\rm A} = \text{5 kHz}$,&nbsp; $f_{\rm G} = \text{2. 5 kHz}$,&nbsp; $0 \le r\le 1$.&nbsp; Interpretation of results.}}   
 +
:*&nbsp;Up to&nbsp; $r=0.2$&nbsp; the signal reconstruction works perfectly&nbsp; $(P_\varepsilon = 0)$.&nbsp; If one increases&nbsp; $r$, then&nbsp; $P_\varepsilon$&nbsp; increases continuously and&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)$&nbsp; decreases. 
 +
:*&nbsp;With&nbsp; $r=1$&nbsp; the signal frequencies&nbsp; $\text{0.5 kHz}$,&nbsp; ...,&nbsp; $\text{4 kHz}$&nbsp; are attenuated, the more the higher the frequency is,&nbsp; for example&nbsp; $H_{\rm E}(f=\text{4 kHz}) = 0.6$.
 +
:*&nbsp;Similarly,&nbsp; $Y(f)$&nbsp; also includes components at frequencies&nbsp; $\text{6 kHz}$,&nbsp; $\text{7 kHz}$,&nbsp; $\text{8 kHz}$,&nbsp; $\text{9 kHz}$&nbsp; and&nbsp; $\text{9.5 kHz}$ due to periodic continuation.
 +
:*&nbsp;At the sampling times&nbsp; $t\hspace{0.05cm}' = n \cdot T_{\rm A}$, the signals&nbsp; $x(t\hspace{0.05cm}')$&nbsp; and&nbsp; $y(t\hspace{0.05cm}')$&nbsp; agree exactly&nbsp; &rArr; &nbsp; $\varepsilon(t\hspace{0.05cm}') = 0$.&nbsp; In between, not&nbsp; &rArr; &nbsp; small distortion power &nbsp; $P_\varepsilon = 0.008$.
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Prametereingabe zu&nbsp; '''(B)'''<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(Grenzfrequenz,&nbsp; Rolloff&ndash;Faktor,&nbsp; Rechteckdauer)  
+
   
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Steuerung der Augendiagrammdarstellung<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(Start,&nbsp; Pause/Weiter,&nbsp; Einzelschritt,&nbsp; Gesamt,&nbsp; Reset)
 
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Geschwindigkeit der Augendiagrammdarstellung
+
==Applet Manual==
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Darstellung:&nbsp; Detektionsgrundimpuls &nbsp;$g_d(t)$
+
[[File:Exercise_Abtast_v2.png|right|600px|frame|Screenshot]]
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Selection of one of the four given source signals, <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Adjustment of amplitudes, frequencies and phases.
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Darstellung:&nbsp; Detektionsnutzsignal &nbsp;$d_{\rm S}(t - \nu \cdot T)$
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Output of all set parameters of the source signal:
 +
 +
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Sampling & signal reconstruction parameters:
 +
::*Sampling frequency&nbsp; $f_{\rm A}$,&nbsp;
 +
::*Limit frequency of the receiving filter&nbsp; $f_{\rm G}$,
 +
::*Rolloff factor of the receiving filter&nbsp; $r$,
 +
:::&rArr; &nbsp; Trapezoidal&ndash;corner frequencies:&nbsp; $f_{1,\ 2} = f_{\rm G}\cdot (1\mp r)$  
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Darstellung:&nbsp; Augendiagramm im Bereich &nbsp;$\pm T$
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Numerical result output:
 +
::*Signal power&nbsp; $P_{x}$
 +
::*Distortion power&nbsp; $P_{\varepsilon}$
 +
::*Signal to distortion ratio&nbsp; $10 \cdot \lg \ P_{x}/P_{\varepsilon}$
 +
 +
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Graphical output range for time domain:
 +
::*Source signal&nbsp; $x(t)$ &nbsp; &rArr; &nbsp; blue,
 +
::*Sampled signal&nbsp; $x_{\rm A}(t)$ &nbsp; &rArr; &nbsp; blue,
 +
::*Reconstructed signal&nbsp; $y(t)$ &nbsp; &rArr; &nbsp; green,
 +
::*Differential signal&nbsp; $\varepsilon(t)=y(t) - x(t)$ &nbsp; &rArr; &nbsp; purple
 +
 +
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Graphical output area for frequency domain:
 +
::*$X(f)$ &nbsp; &rArr; &nbsp; blue,
 +
::*$X_{\rm A}(f)$ &nbsp; &rArr; &nbsp; blue,
 +
::*$Y(f)$ &nbsp; &rArr; &nbsp; green,
 +
::*$E(f)=Y(f) - X(f)$ &nbsp; &rArr; &nbsp; purple
 +
 +
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Exercise selection
  
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Numerikausgabe:&nbsp; $ö_{\rm norm}$&nbsp; (normierte Augenöffnung)
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Questions and solutions
 +
<br clear=all>
 +
==About the Authors==
 +
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].
 +
*The first version was created in 2008 by [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Slim_Lamine_.28Studienarbeit_EI_2006.29|Slim Lamine]]&nbsp; as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Prametereingabe &nbsp;$10 \cdot \lg \ E_{\rm B}/N_0$&nbsp; für&nbsp; '''(K)'''
+
*Last revision and English version 2020/2021 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; in the context of a working student activity.&nbsp;  
 
 
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Numerikausgabe:&nbsp; $\sigma_{\rm norm}$&nbsp; (normierter Rauscheffektivwert)
 
 
 
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Numerikausgabe:&nbsp; $p_{\rm U}$&nbsp; (ungünstigste Fehlerwahrscheinlichkeit)
 
 
 
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Aufgabenauswahl
 
 
 
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Aufgabenstellung
 
 
 
&nbsp; &nbsp; '''(O)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Musterlösung einblenden
 
<br clear=all>
 
==Über die Autoren==
 
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.
 
*Die erste Version wurde 2008 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Slim_Lamine_.28Studienarbeit_EI_2006.29|Slim Lamine]]&nbsp; im Rahmen einer Werkstudententätigkeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
* 2020 wurde das Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet (Betreuer:&nbsp; [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
 
  
  
Die Umsetzung dieses Applets auf HTML 5 wurde durch&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.
+
The conversion of this applet to HTML 5 was financially supported by&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; ("study grants")&nbsp; of the TUM Faculty EI.&nbsp; We thank.
  
  
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
 
  
{{LntAppletLink|augendiagramm}}
+
==Once again:&nbsp; Open Applet in new Tab==
 +
{{LntAppletLinkEnDe|sampling_en|sampling}}

Latest revision as of 18:10, 26 April 2023

Open Applet in new Tab   Deutsche Version Öffnen

Applet Description


The applet deals with the system components  "sampling"  and  "signal reconstruction", two components that are of great importance for understanding the  "Puls code modulation"  $({\rm PCM})$  for example.   The upper graphic shows the model on which this applet is based.  Below it are the samples  $x(\nu \cdot T_{\rm A})$  of the time continuous signal  $x(t)$. The (infinite) sum over all these samples is called the sampled signal  $x_{\rm A}(t)$.

Top:    Underlying model for sampling and signal reconstruction
Bottom:   Example for time discretization of the continuous–time signal  $x(t)$
  • At the transmitter, the time discrete (sampled) signal  $x_{\rm A}(t)$  is obtained from the continuous–time signal  $x(t)$.  This process is called  sampling   or  A/D conversion.
  • The corresponding program parameter for the transmitter is the sampling rate  $f_{\rm A}= 1/T_{\rm A}$.  The lower graphic shows the sampling distance  $T_{\rm A}$ .
  • In the receiver, the discrete-time received signal  $y_{\rm A}(t)$  is used to generate the continuous-time sink signal  $y(t)$    ⇒   signal reconstruction  or  D/A conversion  corresponding to the receiver frequency response  $H_{\rm E}(f)$.


The applet does not consider the PCM blocks  "Quantization"and  "encoding/decoding".   The digital transmission channel is assumed to be ideal. 

Receiver frequency response  $H_{\rm E}(f)$

The following consequences result from this:

  • In the program simplifying  $y_{\rm A}(t) = x_{\rm A}(t)$  is set.
  • With suitable system parameters, the error signal   $\varepsilon(t) = y(t)-x(t)\equiv 0$  is therefore also possible.


The sampling theorem and the signal reconstruction can be better explained in the frequency domain.  Therefore all spectral functions are displayed in the program;

             $X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t)$,  $X_{\rm A}(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x_{\rm A}(t)$,  $Y(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ y(t)$,  $E(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ \varepsilon(t).$ 

Parameters for the receiver frequency response  $H_{\rm E}(f)$  are the cut–off frequency and the rolloff factor  (see lower graph):

$$f_{\rm G} = \frac{f_2 +f_1}{2},\hspace{1cm}r = \frac{f_2 -f_1}{f_2 +f_1}.$$

Notes:

(1)   All signal values are normalized to  $\pm 1$.

(2)   The power calculation is done by integration over the respective period duration  $T_0$:

$$P_x = \frac{1}{T_0} \cdot \int_0^{T_0} x^2(t)\ {\rm d}t,\hspace{0.8cm}P_\varepsilon = \frac{1}{T_0} \cdot \int_0^{T_0} \varepsilon^2(t).$$

(3)   The signal power  $P_x$  and the distortion power  $P_\varepsilon$  are also output in normalized form, which implicitly assumes the reference resistance  $R = 1\, \rm \Omega$ ;

(4)   From these the signal–distortion–distance  $10 \cdot \lg \ (P_x/P_\varepsilon)$  can be calculated.

(5)   Does the spectral function  $X(f)$  for positive frequencies consists of  $I$  Dirac delta lines with the (possibly complex) weights  $X_1$, ... , $X_I$,
          so applies to the transmission power taking into account the mirror-image lines at the negative frequencies:

$$P_x = 2 \cdot \sum_{i=1}^I |X_k|^2.$$

(6)   Correspondingly, the following applies to the distortion power if the spectral function  $E(f)$  in the range  $f>0$  has  $J$  Dirac delta lines with weights  $E_1$, ... , $E_J$:

$$P_\varepsilon = 2 \cdot \sum_{j=1}^J |E_j|^2.$$

Theoretical Background

Description of sampling in the time domain

For the time discretization of the continuous-time signal  $x(t)$

In the following, we use the following nomenclature to describe the sampling:

  • let the continuous-time signal be  $x(t)$.
  • Let the time-discretized signal sampled at equidistant intervals  $T_{\rm A}$  be  $x_{\rm A}(t)$.
  • Out of the sampling time points  $\nu \cdot T_{\rm A}$  always holds  $x_{\rm A}(t) \equiv 0$.
  • The run variable  $\nu$  be an  "integer":     $\nu \in \mathbb{Z} = \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
  • In contrast, at the equidistant sampling times with the constant  $K$, the result is:
$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$

The constant depends on the type of time discretization. For the above sketch $K = 1$ is valid.

Description of sampling with the Dirac delta pulse

In the following, we assume a slightly different form of description.  The following pages will show that these equations, which take some getting used to, do lead to useful results if they are applied consistently.

$\text{Definitions:}$ 

  • By  sampling  we mean here the multiplication of the time-continuous signal  $x(t)$  by a  Dirac delta pulse:
$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$
  • The  Dirac delta pulse (in the time domain)  consists of infinitely many Dirac delta pulses, each equally spaced  $T_{\rm A}$  and all with equal pulse weight  $T_{\rm A}$:
$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$


Based on this definition, the following properties result for the sampled signal:

$$x_{\rm A}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$
  • The sampled signal at the considered time  $(\nu \cdot T_{\rm A})$  ist gleich  $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0)$.
  • Since  $\delta (t)$  at time  $t = 0$  is infinite, actually all signal values  $x_{\rm A}(\nu \cdot T_{\rm A})$  are also infinite and also the factor  $K$ introduced above.
  • Two samples  $x_{\rm A}(\nu_1 \cdot T_{\rm A})$  and  $x_{\rm A}(\nu_2 \cdot T_{\rm A})$  however, differ in the same proportion as the signal values  $x(\nu_1 \cdot T_{\rm A})$  and  $x(\nu_2 \cdot T_{\rm A})$.
  • The samples of  $x(t)$  appear in the pulse weights of the Dirac delta functions:
  • The additional multiplication by  $T_{\rm A}$  is necessary so that  $x(t)$  and  $x_{\rm A}(t)$  have the same unit.  Note here that  $\delta (t)$  itself has the unit "1/s".


Description of sampling in the frequency domain

The spectrum of the sampled signal  $x_{\rm A}(t)$  is obtained by applying the  "Convolution Theorem". This states that multiplication in the time domain corresponds to convolution in the spectral domain:

$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$

If one develops the  Dirac delta pulse  $p_{\delta}(t)$   (in the time domain)   into a  "Fourier Series"  and transforms it using the  "Shifting Theorem"  into the frequency domain, the following correspondence   ⇒   "proof" results with the distance  $f_{\rm A} = 1/T_{\rm A}$  of two adjacent dirac delta lines in the frequency domain:

$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ).$$
Dirac delta pulse in time and frequency domain with  $T_{\rm A} = 50\ {\rm µs}$  und  $f_{\rm A} = 1/T_{\rm A} = 20\ \text{kHz}$

The result states:

  • The Dirac delta pulse  $p_{\delta}(t)$  in the time domain consists of infinitely many Dirac delta pulses, each at the same distance  $T_{\rm A}$  and all with the same pulse weight  $T_{\rm A}$.
  • The Fourier transform of  $p_{\delta}(t)$  again gives a Dirac delta pulse, but now in the frequency domain   ⇒   $P_{\delta}(f)$.
  • Also  $P_{\delta}(f)$  consists of infinitely many Dirac delta pulses, now in the respective spacing  $f_{\rm A} = 1/T_{\rm A}$  and all with pulse weight  $1$.
  • The distances of the Dirac delta lines in time and frequency domain thus follow the  "Reciprocity Theorem":   $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$


From this follows:   From the spectrum  $X(f)$  is obtained by convolution with the Dirac delta line shifted by  $\mu \cdot f_{\rm A}$ :

$$X(f) \star \delta (f- \mu \cdot f_{\rm A} )= X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

Applying this result to all Dirac delta lines of the Dirac delta pulse, we finally obtain:

$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

$\text{Conclusion:}$  Sampling the analog time signal  $x(t)$  at equidistant intervals  $T_{\rm A}$  results in the spectral domain in a  periodic continuation  of  $X(f)$  with frequency spacing  $f_{\rm A} = 1/T_{\rm A}$.


Spectrum of the sampled signal

$\text{Example 1:}$  The upper graph shows  (schematic!)  the spectrum  $X(f)$  of an analog signal  $x(t)$, which contains frequencies up to  $5 \text{ kHz}$ .

Sampling the signal at the sampling rate  $f_{\rm A}\,\text{ = 20 kHz}$, i.e., at the respective spacing  $T_{\rm A}\, = {\rm 50 \, µs}$  yields the periodic spectrum  $X_{\rm A}(f)$ sketched below.

  • Since the Dirac delta functions are infinitely narrow, the sampled signal  $x_{\rm A}(t)$  also contains arbitrary high frequency components.
  • Correspondingly, the spectral function  $X_{\rm A}(f)$  of the sampled signal is extended to infinity.


Signal reconstruction

Joint model of "signal sampling" and "signal reconstruction"

Signal sampling is not an end in itself in a digital transmission system, but it must be reversed at some point  For example, consider the following system:

  • The analog signal  $x(t)$  with bandwidth  $B_{\rm NF}$  is sampled as described above.
  • At the output of an ideal transmission system, the also discrete-time signal  $y_{\rm A}(t) = x_{\rm A}(t)$  is present.
  • The question now is how the block   signal reconstruction   has to be designed so that also  $y(t) = x(t)$  holds.
Frequency domain representation of the "signal reconstruction"


The solution is simple if you look at the spectral functions:  

One obtains from  $Y_{\rm A}(f)$  the spectrum  $Y(f) = X(f)$  by a low-pass filter with the  "Frequency response"  $H_{\rm E}(f)$, which 

  • passes the low frequencies unaltered:
$$H_{\rm E}(f) = 1 \hspace{0.3cm}{\rm{for}} \hspace{0.3cm} |f| \le B_{\rm NF}\hspace{0.05cm},$$
  • completely suppresses the high frequencies:
$$H_{\rm E}(f) = 0 \hspace{0.3cm}{\rm{for}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm NF}\hspace{0.05cm}.$$

Further, it can be seen from the accompanying graph:   As long as the above two conditions are satisfied,  $H_{\rm E}(f)$  can be arbitrarily shaped in the range from  $B_{\rm NF}$  to  $f_{\rm A}-B_{\rm NF}$  ,

  • for example linearly descending (dashed line)
  • or also rectangular.


The Sampling Theorem

The complete reconstruction of the analog signal  $y(t)$  from the sampled signal  $y_{\rm A}(t) = x_{\rm A}(t)$  is only possible if the sampling rate  $f_{\rm A}$  corresponding to the bandwidth  $B_{\rm NF}$  of the message signal has been chosen correctly.

From the above graph, it can be seen that the following condition must be satisfied:   $f_{\rm A} - B_{\rm NF} > B_{\rm NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot B_{\rm NF}\hspace{0.05cm}.$

$\text{Sampling theorem:}$  If an analog signal  $x(t)$  has only spectral components in the range  $\vert f \vert < B_{\rm NF}$, it can be completely reconstructed from its sampled signal  $x_{\rm A}(t)$  only if the sampling rate is sufficiently large:

$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$

Accordingly, the following must apply to the distance between two samples:

$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm NF} }\hspace{0.05cm}.$$


If the largest possible value   ⇒   $T_{\rm A} = 1/(2B_{\rm NF})$  is used for sampling,

  • so, for signal reconstruction of the analog signal from its samples.
  • an ideal, rectangular low-pass filter with cut off frequency  $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$  must be used.


$\text{Example 2:}$  The graph shows above the spectrum  $\pm\text{ 5 kHz}$  of an analog signal limited to  $X(f)$  below the spectrum  $X_{\rm A}(f)$  of the signal sampled at distance  $T_{\rm A} =\,\text{ 100 µs}$  ⇒   $f_{\rm A}=\,\text{ 10 kHz}$.

Sampling theorem in the frequency domain

Additionally drawn is the frequency response  $H_{\rm E}(f)$  of the low-pass receiving filter for signal reconstruction, whose cutoff frequency must be exactly  $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$ .


  • With any other  $f_{\rm G}$ value, there would be  $Y(f) \neq X(f)$.
  • For  $f_{\rm G} < 5\,\text{ kHz}$  the upper  $X(f)$ portions are missing.
  • At  $f_{\rm G} > 5\,\text{ kHz}$  there are unwanted spectral components in  $Y(f)$ due to convolution products.


If at the transmitter the sampling had been done with a sampling rate  $f_{\rm A} < 10\,\text{ kHz}$    ⇒   $T_{\rm A} >100 \ {\rm µ s}$, the analog signal  $y(t) = x(t)$  would not be reconstructible from the samples  $y_{\rm A}(t)$  in any case.


Exercises

  • First, select the number  $(1,\ 2, \text{...} \ )$  of the task to be processed.  The number  $0$  corresponds to a "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values are adjusted.  Solution after pressing "Show Solution".
  • All signal values are to be understood as normalized to  $\pm 1$.  Powers are normalized values, too.


(1)  Source signal:  $x(t) = A \cdot \cos (2\pi \cdot f_0 \cdot t -\varphi)$  with  $f_0 = \text{4 kHz}$.   Sampling with  $f_{\rm A} = \text{10 kHz}$.  Rectanglular low-pass;  cut off frequency:  $f_{\rm G} = \text{5 kHz}$.
            Interpret the shown graphics and evaluate the present signal reconstruction for all permitted parameter values of $A$  and $\varphi$.

  •  The spectrum  $X(f)$  consists of two Dirac functions at  $\pm \text{4 kHz}$, each with impulse weight  $0.5$.
  •  By the periodic continuation  $X_{\rm A}(f)$  has lines of equal height at  $\pm \text{4 kHz}$,  $\pm \text{6 kHz}$,  $\pm \text{14 kHz}$,  $\pm \text{16 kHz}$,  $\pm \text{24 kHz}$,  $\pm \text{26 kHz}$,  etc.
  •  The rectangular low-pass with the cut off frequency  $f_{\rm G} = \text{5 kHz}$  removes all lines except the two at  $\pm \text{4 kHz}$  ⇒  $Y(f) =X(f)$  ⇒  $y(t) =x(t)$  ⇒   $P_\varepsilon = 0$.
  •  The signal reconstruction works here perfectly  $(P_\varepsilon = 0)$  for all amplitudes $A$  and any phases $\varphi$.


(2)  Continue with  $A=1$,  $f_0 = \text{4 kHz}$,  $\varphi=0$,  $f_{\rm A} = \text{10 kHz}$,  $f_{\rm G} = \text{5 kHz}$.   What is the influence of the rolloff–factors  $r=0.2$,  $r=0.5$  and   $r=1$?
          Specify the power values  $P_x$  and  $P_\varepsilon$ .   For which  $r$–values is  $P_\varepsilon= 0$?  Do these results also apply to other  $A$  and  $\varphi$?

  •  With  $|X(f = \pm \text{4 kHz})|=0.5$  the signal power is  $P_x = 2\cdot 0.5^2 = 0.5$.  The distortion power  $P_\varepsilon$  depends significantly on the rolloff–factor  $r$ .
  •  $P_\varepsilon$  is zero for  $r \le 0.2$.  Then the  $X_{\rm A}(f)$ line at  $f_0 = \text{4 kHz}$  is not changed by the low-pass and the unwanted  line at  $\text{6 kHz}$  is fully suppressed.
  •  $r = 0.5$ :  $Y(f = \text{4 kHz}) = 0.35$,  $Y(f = \text{6 kHz}) = 0.15$  ⇒   $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0. 15$  ⇒  $P_\varepsilon = 0.09$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB$.
  • $r = 1.0$ :  $Y(f = \text{4 kHz}) = 0.3$,  $Y(f = \text{6 kHz}) = 0.2$  ⇒   $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0. 2$  ⇒  $P_\varepsilon = 0.16$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB$.
  •  For all  $r$  the distortion power $P_\varepsilon$  is independent of  $\varphi$.   The amplitude  $A$  affects  $P_x$  and  $P_\varepsilon$  in the same way   ⇒   the quotient is independent of  $A$.


(3)  Now apply  $A=1$,  $f_0 = \text{5 kHz}$,  $\varphi=0$,  $f_{\rm A} = \text{10 kHz}$,  $f_{\rm G} = \text{5 kHz}$,  $r=0$  $($rectangular low–pass$)$.   Interpret the result of the signal reconstruction.

  •   $X(f)$  consists of two Dirac delta lines at  $\pm \text{5 kHz}$  $($weight  $0.5)$.  By periodic continuation  $X_{\rm A}(f)$  has lines at  $\pm \text{5 kHz}$,  $\pm \text{15 kHz}$,  $\pm \text{25 kHz}$,  etc.
  •   The  rectanglular low-pass  removes the lines at  $\pm \text{15 kHz}$,  $\pm \text{25 kHz}$.  The lines at  $\pm \text{5 kHz}$  are halved because of  $H_{\rm E}(\pm f_{\rm G}) = H_{\rm E}(\pm \text{5 kHz}) = 0.5$.
  •    ⇒   $\text{Weights of }X(f = \pm \text{5 kHz})$:  $0.5$   #   $\text{Weights of }X(f_{\rm A} = \pm \text{5 kHz})$:  $1. 0$;     #   $\text{Weights of }Y(f = \pm \text{5 kHz})$:  $0.5$   ⇒   $Y(f)=X(f)$.
  •  So the signal reconstruction works perfectly here too  $(P_\varepsilon = 0)$.  The same is true for the phase  $\varphi=180^\circ$   ⇒   $x(t) = -A \cdot \cos (2\pi \cdot f_0 \cdot t)$.


(4)  The settings of  $(3)$  continue to apply except for  $\varphi=30^\circ$.  Interpret the differences from the setting  $(3)$   ⇒   $\varphi=0^\circ$.

  •  Phase relations are lost.  The sink signal  $y(t)$  is cosine-shaped  $(\varphi_y=0^\circ)$  with by the factor  $\cos(\varphi_x)$  smaller amplitude than the source signal  $x(t)$.
  •  Justification in the frequency domain:  In the periodic continuation of  $X(f)$  ⇒  $X_{\rm A}(f)$  only the real parts are to be added.  The imaginary parts cancel out.
  •  The Dirac delta line of  $X(f)$  at frequency  $f_0$   ⇒   $X(f_0)$  is complex,   $Y(f_0)$  is real, and  $E(f_0)$  is imaginary   ⇒   $\varepsilon(t)$  is minus–sinusoidal   ⇒   $P_\varepsilon = 0. 125$.


(5)  Illustrate again the result of  $(4)$  compared to the settings  $f_0 = \text{5 kHz}$,  $\varphi=30^\circ$,  $f_{\rm A} = \text{11 kHz}$,  $f_{\rm G} = \text{5.5 kHz}$.

  •  With this setting, the spectrum  $X_{\rm A}(f)$  also has a positive imaginary part at  $\text{5 kHz}$  and a negative imaginary part of the same magnitude at  $\text{6 kHz}$.
  •  The rectangular low-pass with cutoff frequency  $\text{5.5 kHz}$  removes this second component.  Thus, with the new setting  $Y(f) =X(f)$   ⇒   $P_\varepsilon = 0$.
  •  Any $f_0$ oscillation of arbitrary phase is error-free reconstructible from its samples if  $f_{\rm A} = 2 \cdot f_{\rm 0} + \mu, \ f_{\rm G}= f_{\rm A}/2$  $($any small $\mu>0)$.
  •  For value–continuous spectrum with   $X(|f|> f_0) \equiv 0$  ⇒   $\big[$no diraclines at $\pm f_0 \big ]$  the sampling rate  $f_{\rm A} = 2 \cdot f_{\rm 0}$  is sufficient in principle.

(5)  Verdeutlichen Sie sich nochmals das Ergebnis von  (4)  im Vergleich zu den Einstellungen  $f_0 = \text{5 kHz}$,  $\varphi=30^\circ$,  $f_{\rm A} = \text{11 kHz}$,  $f_{\rm G} = \text{5.5 kHz}$.

  •  Bei dieser Einstellung hat das  $X_{\rm A}(f)$–Spektrum auch einen positiven Imaginärteil bei  $\text{5 kHz}$  und einen negativen Imaginärteil gleicher Höhe bei  $\text{6 kHz}$.
  •  Der Rechteck–Tiefpass mit der Grenzfrequenz  $\text{5.5 kHz}$  entfernt diesen zweiten Anteil.  Somit ist bei dieser Einstellung  $Y(f) =X(f)$   ⇒   $P_\varepsilon = 0$.
  •  Jede  $f_0$–Schwingung beliebiger Phase ist fehlerfrei aus seinen Abtastwerten rekonstruierbar, falls  $f_{\rm A} = 2 \cdot f_{\rm 0} + \mu, \ f_{\rm G}= f_{\rm A}/2$  $($beliebig kleines $\mu>0)$.
  •  Bei wertkontinuierlichem Spektrum mit   $X(|f|> f_0) \equiv 0$  ⇒   $\big[$keine Diraclinien bei $\pm f_0 \big ]$ genügt grundsätzlich die Abtastrate  $f_{\rm A} = 2 \cdot f_{\rm 0}$.


(6)  The settings of  $(3)$  and  $(4)$  continue to apply except for  $\varphi=90^\circ$.  Interpret the plots in the time and frequency domain.

  •  The source signal is sampled exactly at its zero crossings   ⇒   $x_{\rm A}(t) \equiv 0$   ⇒     $y(t) \equiv 0$   ⇒   $\varepsilon(t)=-x(t)$   ⇒   $P_\varepsilon = P_x$   ⇒   $10 \cdot \lg \ (P_x/P_\varepsilon)=0\ \rm dB$.
  •  Description in the frequency domain:   As in  $(4)$  the imaginary parts of  $X_{\rm A}(f)$  cancel out.  Also the real parts of  $X_{\rm A}(f)$  are zero because of the sinusoid.


(7)  Now consider the  $\text {Source Signal 2}$.  Let the other parameters be  $f_{\rm A} = \text{5 kHz}$,  $f_{\rm G} = \text{2.5 kHz}$,  $r=0$.  Interpret the results.

  •  The source signal has spectral components up to  $\pm \text{2 kHz}$.  The signal power is $P_x = 2 \cdot \big[0.1^2 + 0.25^2+0.15^2\big]= 0.19 $. 
  •  With the sampling rate  $f_{\rm A} = \text{5 kHz}$  and the receiver parameters  $f_{\rm G} = \text{2.5 kHz}$  and  $r=0$, the signal reconstruction works perfectly:  $P_\varepsilon = 0$.
  •  Likewise with the trapezoidal low–pass with  $f_{\rm G} = \text{2.5 kHz}$, if for the rolloff factor holds:  $r \le 0.2$.


(8)  What happens if the cutoff frequency  $f_{\rm G} = \text{1.5 kHz}$  of the rectangular low–pass filter is too small?  In particular, interpret the error signal  $\varepsilon(t)=y(t)-x(t)$.

  •  The error signal  $\varepsilon(t)=-0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t -60^\circ)=0. 3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t +120^\circ)$  is equal to the (negated) signal component at  $\text{2 kHz}$. 
  •  The distortion power is  $P_\varepsilon=2 \cdot 0.15^2= 0.045$  and the signal–to–distortion ratio  $10 \cdot \lg \ (P_x/P_\varepsilon)=10 \cdot \lg \ (0.19/0.045)= 6.26\ \rm dB$.


(9)  What happens if the cutoff frequency  $f_{\rm G} = \text{3.5 kHz}$  of the rectangular low–pass filter is too large?  In particular, interpret the error signal  $\varepsilon(t)=y(t)-x(t)$.

  •  The error signal  $\varepsilon(t)=0.3 \cdot \cos(2\pi \cdot \text{3 kHz} \cdot t +60^\circ)$  is now equal to the  $\text{3 kHz}$  portion of the sink signal  $y(t)$  not removed by the low-pass filter.
  •  Compared to the subtask  $(8)$  the frequency changes from  $\text{2 kHz}$  to  $\text{3 kHz}$  and also the phase relationship.
  •  The amplitude of this  $\text{3 kHz}$ error signal is equal to the amplitude of the  $\text{2 kHz}$ portion of  $x(t)$.  Again  $P_\varepsilon= 0.045$,  $10 \cdot \lg \ (P_x/P_\varepsilon)= 6.26\ \rm dB$.


(10)  Finally, we consider the  $\text {source signal 4}$  $($portions until  $\pm \text{4 kHz})$, as well as  $f_{\rm A} = \text{5 kHz}$,  $f_{\rm G} = \text{2. 5 kHz}$,  $0 \le r\le 1$.  Interpretation of results.

  •  Up to  $r=0.2$  the signal reconstruction works perfectly  $(P_\varepsilon = 0)$.  If one increases  $r$, then  $P_\varepsilon$  increases continuously and  $10 \cdot \lg \ (P_x/P_\varepsilon)$  decreases.
  •  With  $r=1$  the signal frequencies  $\text{0.5 kHz}$,  ...,  $\text{4 kHz}$  are attenuated, the more the higher the frequency is,  for example  $H_{\rm E}(f=\text{4 kHz}) = 0.6$.
  •  Similarly,  $Y(f)$  also includes components at frequencies  $\text{6 kHz}$,  $\text{7 kHz}$,  $\text{8 kHz}$,  $\text{9 kHz}$  and  $\text{9.5 kHz}$ due to periodic continuation.
  •  At the sampling times  $t\hspace{0.05cm}' = n \cdot T_{\rm A}$, the signals  $x(t\hspace{0.05cm}')$  and  $y(t\hspace{0.05cm}')$  agree exactly  ⇒   $\varepsilon(t\hspace{0.05cm}') = 0$.  In between, not  ⇒   small distortion power   $P_\varepsilon = 0.008$.



Applet Manual

Screenshot

    (A)     Selection of one of the four given source signals,
              Adjustment of amplitudes, frequencies and phases.

    (B)     Output of all set parameters of the source signal:

    (C)     Sampling & signal reconstruction parameters:

  • Sampling frequency  $f_{\rm A}$, 
  • Limit frequency of the receiving filter  $f_{\rm G}$,
  • Rolloff factor of the receiving filter  $r$,
⇒   Trapezoidal–corner frequencies:  $f_{1,\ 2} = f_{\rm G}\cdot (1\mp r)$

    (D)     Numerical result output:

  • Signal power  $P_{x}$
  • Distortion power  $P_{\varepsilon}$
  • Signal to distortion ratio  $10 \cdot \lg \ P_{x}/P_{\varepsilon}$

    (E)     Graphical output range for time domain:

  • Source signal  $x(t)$   ⇒   blue,
  • Sampled signal  $x_{\rm A}(t)$   ⇒   blue,
  • Reconstructed signal  $y(t)$   ⇒   green,
  • Differential signal  $\varepsilon(t)=y(t) - x(t)$   ⇒   purple

    (F)     Graphical output area for frequency domain:

  • $X(f)$   ⇒   blue,
  • $X_{\rm A}(f)$   ⇒   blue,
  • $Y(f)$   ⇒   green,
  • $E(f)=Y(f) - X(f)$   ⇒   purple

    (G)     Exercise selection

    (H)     Questions and solutions

About the Authors

This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first version was created in 2008 by Slim Lamine  as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: Günter Söder).
  • Last revision and English version 2020/2021 by  Carolin Mirschina  in the context of a working student activity. 


The conversion of this applet to HTML 5 was financially supported by  Studienzuschüsse  ("study grants")  of the TUM Faculty EI.  We thank.


Once again:  Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen