Difference between revisions of "Aufgaben:Exercise 4.4: Two-dimensional Gaussian PDF"
From LNTwww
(24 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables |
}} | }} | ||
− | [[File:P_ID261__Sto_A_4_4_neu.png|right| | + | [[File:P_ID261__Sto_A_4_4_neu.png|right|frame|Table: Gaussian error functions]] |
− | + | We consider two-dimensional random variables, where both components are always assumed to be mean-free. | |
− | :$$f_{uv}(u, v)= | + | *The »two-dimensional probability density function« of the random variable $(u, v)$ is: |
+ | :$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$ | ||
− | + | *For another Gaussian two-dimensional random variable $(x, y)$ the following parameters are known: | |
:$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$ | :$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$ | ||
+ | *In the adjacent table can be found | ||
+ | #the values of the »Gaussian cumulative distribution function« ${\rm \phi}(x)$ and | ||
+ | #the »complementary function« ${\rm Q}(x) = 1- {\rm \phi}(x)$. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | === | + | Hints: |
+ | *The exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|»Two-dimensional Gaussian Random Variables«]]. | ||
+ | |||
+ | *Reference is also made to the chapter [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|»Gaussian distributed random variables«]]. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which of the statements are true with respect to the two-dimensional random variable $(u, v)$ ? |
|type="[]"} | |type="[]"} | ||
− | + | + | + The random variables $u$ and $v$ are uncorrelated. |
− | + | + | + The random variables $u$ and $v$ are statistically independent. |
− | { | + | {Calculate the two standard deviations $\sigma_u$ and $\sigma_v$. Enter the quotient of the two standard deviations as a check. |
|type="{}"} | |type="{}"} | ||
− | $\sigma_u/\sigma_v \ = $ { 0.5 3% } | + | $\sigma_u/\sigma_v \ = \ $ { 0.5 3% } |
− | { | + | {Calculate the probability that $u$ is less than $1$. |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(u < 1)\ = $ { 0.9772 3% } | + | ${\rm Pr}(u < 1)\ = \ $ { 0.9772 3% } |
− | { | + | {Calculate the probability that the random variable $u$ is less than $1$ and at the same time the random variable $v$ is greater than $1$. |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}[(u < 1) ∩ (υ > 1)]\ = $ { 0.1551 3% } | + | ${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $ { 0.1551 3% } |
− | { | + | {Which of the statements are true for the two-dimensional random variable $(x, y)$? |
|type="[]"} | |type="[]"} | ||
− | + | + | + The joint probability density function $f_{xy}(x, y)$ is always zero outside the straight line $y = 2x$. |
− | - | + | - For all pairs of values on the straight line $y = 2x$ holds: $f_{xy}(x, y)= 0.5$. |
− | + | + | + With respect to the edge PDFs: $f_{x}(x) = f_{u}(u)$ and $f_{y}(y) = f_{v}(v)$ holds. |
− | { | + | {Calculate the probability that $x$ is less than $1$. |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(x < 1)\ = $ { 0.9772 3% } | + | ${\rm Pr}(x < 1)\ = \ $ { 0.9772 3% } |
− | { | + | {Now calculate the probability that the random variable $x$ is less than $1$ and at the same time the random variable $y$ is greater than $1$. |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}[(x < 1) ∩ (y > 1)]\ = | + | ${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $ { 0.1359 3% } |
Line 66: | Line 70: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' <u>Both statements are true</u>: | |
− | :$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \sigma_u\sigma_v\sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2})}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v})],$$ | + | *Comparing the given 2D–PDF with the general 2D–PDF |
+ | :$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$ | ||
− | :so | + | :so it can be seen that no term with $u \cdot v$ occurs in the exponent, which is only possible with $\rho_{uv} = 0$. |
+ | *But this means that $u$ and $v$ are uncorrelated. | ||
+ | *For Gaussian random variables, however, statistical independence always follows from uncorrelatedness. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | '''(2)''' With statistical independence holds: | |
− | :$$\rm | + | :$$f_{uv}(u, v) = f_u(u)\cdot f_v(v) $$ |
+ | :$$f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , $$ | ||
+ | :$$\it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$ | ||
− | + | *By comparing coefficients, we get $\sigma_u = 0.5$ and $\sigma_v = 1$. | |
− | + | *The quotient is thus $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | '''(3)''' Because $u$ is a continuous random variable: | |
− | + | :$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$ | |
− | + | *With the mean $m_u = 0$ and the standard deviation $\sigma_u = 0.5$ we get: | |
+ | :$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$ | ||
− | |||
− | : | + | [[File:P_ID265__Sto_A_4_4_d.png|right|frame|$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$]] |
− | :$$ | + | '''(4)''' Due to the statistical independence between $u$ and $v$ holds: |
+ | :$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$ | ||
− | : | + | *The probability ${\rm Pr}(u < 1) =0.9772$ has already been calculated. |
+ | *For the second probability ${\rm Pr}(v > 1)$ holds for reasons of symmetry: | ||
+ | :$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$ | ||
+ | :$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$ | ||
− | : | + | The sketch on the right illustrates the given constellation: |
− | [[File: | + | *The PDF contour lines (blue) are stretched ellipses due to $\sigma_v > \sigma_u$ in vertical direction. |
− | :$$\ | + | *Drawn in red (shading) is the area whose probability should be calculated in this subtask. |
+ | |||
+ | |||
+ | |||
+ | [[File:P_ID266__Sto_A_4_4_e.png|right|frame|"Dirac wall" on the correlation line]] | ||
+ | '''(5)''' Correct are <u>the first and the third suggested solutions</u>: | ||
+ | *Because $\rho_{xy} = 1$ there is a deterministic correlation between $x$ and $y$ | ||
+ | :⇒ All values lie on the straight line $y =K \cdot x$. | ||
+ | *Because of the standard deviations $\sigma_x = 0.5$ and $\sigma_y = 1$ it holds $K = 2$. | ||
+ | *On this straight line $y = 2x$ ⇒ all PDF values are infinitely large. | ||
+ | *This means: The joint PDF is here a "Dirac wall". | ||
+ | *As you can see from the sketch, the PDF values are Gaussian distributed on the straight line $y = 2x$. | ||
+ | *The two marginal probability densities are also Gaussian functions, each with zero mean. | ||
+ | *Because of $\sigma_x = \sigma_u$ and $\sigma_y = \sigma_v$ also holds: | ||
+ | :$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$ | ||
− | |||
− | |||
− | : | + | [[File:P_ID274__Sto_A_4_4_g.png|right|frame|Probability calculation for the Dirac wall]] |
− | :$$ | + | '''(6)''' Since the PDF of the random variable $x$ is identical to the PDF $f_u(u)$, it also results in exactly the same probability as calculated in the subtask '''(3)''': |
+ | :$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$ | ||
− | |||
+ | '''(7)''' The random event $y > 1$ is identical to the event $x > 0.5$. | ||
+ | *Thus, the wanted probability is equal to: | ||
+ | :$${\rm Pr}\big[(x < 1) ∩ (y > 1)\big] = \rm Pr \big[ (\it x < \rm 1)\cap (\it x > \rm 0.5) \big] = \it F_x \rm( 1) - \it F_x\rm (0.5). $$ | ||
+ | *With the standard deviation $\sigma_x = 0.5$ it follows further: | ||
+ | :$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Theory of Stochastic Signals: Exercises|^4.2 Gaussian 2D Random Variables^]] |
Latest revision as of 17:37, 9 January 2024
We consider two-dimensional random variables, where both components are always assumed to be mean-free.
- The »two-dimensional probability density function« of the random variable $(u, v)$ is:
- $$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
- For another Gaussian two-dimensional random variable $(x, y)$ the following parameters are known:
- $$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$
- In the adjacent table can be found
- the values of the »Gaussian cumulative distribution function« ${\rm \phi}(x)$ and
- the »complementary function« ${\rm Q}(x) = 1- {\rm \phi}(x)$.
Hints:
- The exercise belongs to the chapter »Two-dimensional Gaussian Random Variables«.
- Reference is also made to the chapter »Gaussian distributed random variables«.
Questions
Solution
(1) Both statements are true:
- Comparing the given 2D–PDF with the general 2D–PDF
- $$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
- so it can be seen that no term with $u \cdot v$ occurs in the exponent, which is only possible with $\rho_{uv} = 0$.
- But this means that $u$ and $v$ are uncorrelated.
- For Gaussian random variables, however, statistical independence always follows from uncorrelatedness.
(2) With statistical independence holds:
- $$f_{uv}(u, v) = f_u(u)\cdot f_v(v) $$
- $$f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , $$
- $$\it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
- By comparing coefficients, we get $\sigma_u = 0.5$ and $\sigma_v = 1$.
- The quotient is thus $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.
(3) Because $u$ is a continuous random variable:
- $$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
- With the mean $m_u = 0$ and the standard deviation $\sigma_u = 0.5$ we get:
- $$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$
(4) Due to the statistical independence between $u$ and $v$ holds:
- $$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
- The probability ${\rm Pr}(u < 1) =0.9772$ has already been calculated.
- For the second probability ${\rm Pr}(v > 1)$ holds for reasons of symmetry:
- $$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
- $$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
The sketch on the right illustrates the given constellation:
- The PDF contour lines (blue) are stretched ellipses due to $\sigma_v > \sigma_u$ in vertical direction.
- Drawn in red (shading) is the area whose probability should be calculated in this subtask.
(5) Correct are the first and the third suggested solutions:
- Because $\rho_{xy} = 1$ there is a deterministic correlation between $x$ and $y$
- ⇒ All values lie on the straight line $y =K \cdot x$.
- Because of the standard deviations $\sigma_x = 0.5$ and $\sigma_y = 1$ it holds $K = 2$.
- On this straight line $y = 2x$ ⇒ all PDF values are infinitely large.
- This means: The joint PDF is here a "Dirac wall".
- As you can see from the sketch, the PDF values are Gaussian distributed on the straight line $y = 2x$.
- The two marginal probability densities are also Gaussian functions, each with zero mean.
- Because of $\sigma_x = \sigma_u$ and $\sigma_y = \sigma_v$ also holds:
- $$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$
(6) Since the PDF of the random variable $x$ is identical to the PDF $f_u(u)$, it also results in exactly the same probability as calculated in the subtask (3):
- $$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
(7) The random event $y > 1$ is identical to the event $x > 0.5$.
- Thus, the wanted probability is equal to:
- $${\rm Pr}\big[(x < 1) ∩ (y > 1)\big] = \rm Pr \big[ (\it x < \rm 1)\cap (\it x > \rm 0.5) \big] = \it F_x \rm( 1) - \it F_x\rm (0.5). $$
- With the standard deviation $\sigma_x = 0.5$ it follows further:
- $$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$