Difference between revisions of "Aufgaben:Exercise 4.4: Two-dimensional Gaussian PDF"

From LNTwww
 
(24 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Zweidimensionale Gaußsche Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables
 
}}
 
}}
  
[[File:P_ID261__Sto_A_4_4_neu.png|right|Tabelle der Gaußschen Fehlerfunktionen]]
+
[[File:P_ID261__Sto_A_4_4_neu.png|right|frame|Table:  Gaussian error functions]]
Wir betrachten zweidimensionale Zufallsgrößen, wobei beide Komponenten stets als mittelwertfrei vorausgesetzt werden. Die 2D-WDF der Zufallsgröße $(u, v)$ lautet:
+
We consider two-dimensional random variables,  where both components are always assumed to be mean-free.
:$$f_{uv}(u, v)=\frac{1}{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
+
*The  »two-dimensional probability density function«  of the random variable  $(u, v)$  is:
 +
:$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
  
Von der ebenfalls Gaußschen 2D-Zufallsgröße $(x, y)$ sind die folgenden Parameter bekannt:
+
*For another Gaussian two-dimensional random variable  $(x, y)$  the following parameters are known:
 
:$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$
 
:$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$
 +
*In the adjacent table can be found
 +
#the values of the  »Gaussian cumulative distribution function«  ${\rm \phi}(x)$  and
 +
#the  »complementary function«  ${\rm Q}(x) = 1- {\rm \phi}(x)$.
  
Die Werte des Gaußschen Fehlerintegrals ${\rm \phi}(x)$ sowie der Komplementärfunktion ${\rm Q}(x) = 1- {\rm \phi}(x)$ können Sie der nebenstehenden Tabelle entnehmen.
 
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]].
 
*Bezuig genommen wird auch auf das Kapitel [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen|Gaußverteilte Zufallsgrößen]]
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Die hier behandelte Thematik ist in zwei Lernvideos zusammengefasst:
 
:[[Gaußsche Zufallsgrößen ohne statistische Bindungen]]
 
:[[Gaußsche Zufallsgrößen mit statistischen Bindungen]]
 
  
  
===Fragebogen===
+
Hints:
 +
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|»Two-dimensional Gaussian Random Variables«]].
 +
 
 +
*Reference is also made to the chapter  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|»Gaussian distributed random variables«]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der Aussagen gelten hinsichtlich der 2D-Zufallsgr&ouml;&szlig;e $(u, v)$?
+
{Which of the statements are true with respect to the two-dimensional random variable&nbsp; $(u, v)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Die Zufallsgr&ouml;&szlig;en <i>u</i> und <i>&upsilon;</i> sind unkorreliert.
+
+ The random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are uncorrelated.
+ Die Zufallsgr&ouml;&szlig;en <i>u</i> und <i>&upsilon;</i> sind statistisch unabh&auml;ngig.
+
+ The random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are statistically independent.
  
  
{Berechnen Sie die beiden Streuungen $\sigma_u$ und $\sigma_v$. Geben Sie zur Kontrolle den Quotienten der beiden Streuungen ein.
+
{Calculate the two standard deviations&nbsp; $\sigma_u$&nbsp; and&nbsp; $\sigma_v$.&nbsp; Enter the quotient of the two standard deviations as a check.
 
|type="{}"}
 
|type="{}"}
$\sigma_u/\sigma_v \ = $ { 0.5 3% }
+
$\sigma_u/\sigma_v \ = \ $ { 0.5 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass $u$ kleiner als $1$ ist.
+
{Calculate the probability that&nbsp; $u$&nbsp; is less than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(u < 1)\ = $ { 0.9772 3% }
+
${\rm Pr}(u < 1)\ = \ $ { 0.9772 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass die Zufallsgr&ouml;&szlig;e $u$ kleiner als $1$ und gleichzeitig die Zufallsgr&ouml;&szlig;e $v$ gr&ouml;&szlig;er als $1$ ist.
+
{Calculate the probability that the random variable&nbsp; $u$&nbsp; is less than&nbsp; $1$&nbsp; and at the same time the random variable&nbsp; $v$&nbsp; is greater than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}[(u < 1) ∩ (υ > 1)]\ = $ { 0.1551 3% }
+
${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $ { 0.1551 3% }
  
  
{Welche der Aussagen sind f&uuml;r die 2D-Zufallsgr&ouml;&szlig;e $(x, y)$ zutreffend?
+
{Which of the statements are true for the two-dimensional random variable&nbsp; $(x, y)$?
 
|type="[]"}
 
|type="[]"}
+ Die 2D-WDF $f_{xy}(x, y)$ ist au&szlig;erhalb der Geraden $y = 2x$ stets $0$.
+
+ The joint probability density function&nbsp; $f_{xy}(x, y)$&nbsp; is always zero outside the straight line&nbsp; $y = 2x$.
- F&uuml;r alle Wertepaare auf der Geraden $y = 2x$ gilt $f_{xy}(x, y)= 0.5$.
+
- For all pairs of values on the straight line&nbsp; $y = 2x$&nbsp; holds: &nbsp;$f_{xy}(x, y)= 0.5$.
+ Bez&uuml;glich der Rand-WDF gilt $f_{x}(x) = f_{u}(u)$ sowie $f_{y}(y) = f_{v}(v)$.
+
+ With respect to the edge PDFs:&nbsp; $f_{x}(x) = f_{u}(u)$&nbsp; and $f_{y}(y) = f_{v}(v)$ holds.
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass $x$ kleiner als $1$ ist.
+
{Calculate the probability that&nbsp; $x$&nbsp; is less than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(x < 1)\ = $ { 0.9772 3% }
+
${\rm Pr}(x < 1)\ = \ $ { 0.9772 3% }
  
  
{Berechnen Sie nun die Wahrscheinlichkeit, dass die Zufallsgr&ouml;&szlig;e $x$ kleiner als $1$ und gleichzeitig die Zufallsgr&ouml;&szlig;e $y$ gr&ouml;&szlig;er als $1$ ist.
+
{Now calculate the probability that the random variable&nbsp; $x$&nbsp; is less than&nbsp; $1$&nbsp; and at the same time the random variable&nbsp; $y$&nbsp; is greater than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}[(x < 1) ∩ (y > 1)]\ = { 0.1359 3% }
+
${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $ { 0.1359 3% }
  
  
Line 66: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;<u>Beide Aussagen treffen zu</u>. Vergleicht man die gegebene mit der allgemeing&uuml;ltigen 2D-WDF
+
'''(1)'''&nbsp; <u>Both statements are true</u>:
:$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \sigma_u\sigma_v\sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2})}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v})],$$
+
*Comparing the given 2D&ndash;PDF with the general 2D&ndash;PDF
 +
:$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
  
:so erkennt man, dass im Exponenten kein Term mit <i>u</i> &middot; <i>&upsilon;</i> auftritt, was nur bei <i>&rho;<sub>u&upsilon;</sub></i> = 0 m&ouml;glich ist. Dies bedeutet aber, dass <i>u</i> und <i>&upsilon;</i> unkorreliert sind. Bei Gau&szlig;schen Zufallsgr&ouml;&szlig;en folgt aus der Unkorreliertheit aber auch stets die statistische Unabh&auml;ngigkeit.
+
:so it can be seen that no term with&nbsp; $u \cdot v$&nbsp; occurs in the exponent,&nbsp; which is only possible with&nbsp; $\rho_{uv} = 0$.
 +
*But this means that&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are uncorrelated.
 +
*For Gaussian random variables,&nbsp; however,&nbsp; statistical independence always follows from uncorrelatedness.
  
:<b>2.</b>&nbsp;&nbsp;Bei statistischer Unabh&auml;ngigkeit gilt:
 
:$$f_{uv}(u, v) = f_u(u)\cdot f_v(v),$$
 
:$$f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , \hspace{1.2cm} \it f_v(v)=\frac{{\rm e}^{-{\it v^{\rm 2}}/{({\rm 2}\sigma_v^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
 
  
[[File:P_ID265__Sto_A_4_4_d.png|right|]]
 
:Durch Koeffizientenvergleich erh&auml;lt man <i>&sigma;<sub>u</sub></i> = 0.5 und <i>&sigma;<sub>&upsilon;</sub></i> = 1. Der Quotient ist somit <i>&sigma;<sub>u</sub></i>/<i>&sigma;<sub>&upsilon;</sub></i> <u>= 0.5</u>.
 
  
:<b>3.</b>&nbsp;&nbsp;Da <i>u</i> eine kontinuierliche Zufallsgr&ouml;&szlig;e ist, gilt:
+
'''(2)'''&nbsp; With statistical independence holds:
:$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u(\rm 1). $$
+
:$$f_{uv}(u, v) = f_u(u)\cdot f_v(v) $$
 +
:$$f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , $$
 +
:$$\it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
  
:Mit dem  Mittelwert <i>m<sub>u</sub></i> = 0 und der  Streuung <i>&sigma;<sub>u</sub></i> = 0.5 erhält man:
+
*By comparing coefficients,&nbsp; we get&nbsp; $\sigma_u = 0.5$&nbsp; and&nbsp; $\sigma_v = 1$.
:$$\rm Pr(\it u < \rm 1) = \rm \phi(\frac{\rm 1}{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$
+
*The quotient is thus&nbsp; $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.
  
:<b>4.</b>&nbsp;&nbsp;Aufgrund der statistischen Unabh&auml;ngigkeit zwischen <i>u</i> und <i>&upsilon;</i> gilt:
 
:$$\rm Pr((\it u < \rm 1) \cap (\it v > \rm 1)) = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
 
  
:Die Wahrscheinlichkeit Pr(<i>u</i> < 1) =0.9772 wurde bereits  berechnet. F&uuml;r die zweite Wahrscheinlichkeit Pr(<i>&upsilon;</i> > 1) gilt aus Symmetriegr&uuml;nden:
 
:$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm -1) = \it F_v(\rm -1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
 
:$$\Rightarrow \rm Pr((\it u < \rm 1) \cap (\it v > \rm 1)) = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
 
  
:Die obige Skizze verdeutlicht die vorgegebene Konstellation. Die H&ouml;henlinien der WDF (blau) sind wegen <i>&sigma;<sub>&upsilon;</sub></i> > <i>&sigma;<sub>u</sub></i> in vertikaler Richtung gestreckte Ellipsen. Rot schraffiert eingezeichnet ist das Gebiet, dessen Wahrscheinlichkeit in dieser Teilaufgabe berechnet werden sollte.
+
'''(3)'''&nbsp; Because&nbsp; $u$&nbsp; is a continuous random variable:
[[File:P_ID266__Sto_A_4_4_e.png|right|]]
+
:$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
  
:<b>5.</b>&nbsp;&nbsp;Wegen <i>&rho;<sub>xy</sub></i> = 1 besteht ein deterministischer Zusammenhang zwischen <i>x</i> und <i>y</i> &nbsp;&#8658;&nbsp; alle Werte liegen auf der Geraden <i>y</i> = <i>K</i> &middot; <i>x</i>. Aufgrund der Streuungen <i>&sigma;<sub>x</sub></i> = 0.5 und <i>&sigma;<sub>y</sub></i> = 1 gilt <i>K</i> = 2.
+
*With the mean&nbsp; $m_u = 0$&nbsp; and the standard deviation&nbsp; $\sigma_u = 0.5$&nbsp; we get:
 +
:$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$
  
:Auf dieser Geraden <i>y</i> = 2<i>x</i> sind alle WDF-Werte unendlich gro&szlig;. Das bedeutet: Die 2D-WDF ist hier eine &bdquo;Diracwand&rdquo;.
 
  
:Wie aus der Skizze hervorgeht, sind die WDF&ndash;Werte auf der Geraden <i>y</i> = 2<i>x</i>, die gleichzeitig die Korrelationsgerade darstellt, gau&szlig;verteilt. Auch die beiden Randwahrscheinlichkeitsdichten sind hier Gau&szlig;funktionen, jeweils mit dem Mittelwert 0. Da <i>&sigma;<sub>x</sub></i> = <i>&sigma;<sub>u</sub></i> und <i>&sigma;<sub>y</sub></i> = <i>&sigma;<sub>&upsilon;</sub></i> ist, gilt auch:
+
[[File:P_ID265__Sto_A_4_4_d.png|right|frame|$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$]]
:$$f_x(x) = f_u(u)\hspace{0.5cm}f_y(y) = f_v(v).$$
+
'''(4)'''&nbsp; Due to the statistical independence between&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; holds:
 +
:$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
  
:Richtig sind somit <u>der erste und der dritte Lösungsvorschlag</u>.
+
*The probability&nbsp; ${\rm Pr}(u < 1) =0.9772$&nbsp; has already been calculated.
 +
*For the second probability&nbsp; ${\rm Pr}(v > 1)$&nbsp; holds for reasons of symmetry:
 +
:$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
 +
:$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
  
:<b>6.</b>&nbsp;&nbsp;Da die WDF der Zufallsgr&ouml;&szlig;e <i>x</i> identisch mit der WDF <i>f<sub>u</sub></i>(<i>u</i>) ist, ergibt sich auch genau die gleiche Wahrscheinlichkeit wie in der Teilaufgabe (c) berechnet:
+
The sketch on the right illustrates the given constellation:  
[[File:P_ID274__Sto_A_4_4_g.png|right|]]
+
*The PDF contour lines&nbsp; (blue)&nbsp; are stretched ellipses due to&nbsp; $\sigma_v > \sigma_u$&nbsp; in vertical direction.
:$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
+
*Drawn in red&nbsp; (shading)&nbsp; is the area whose probability should be calculated in this subtask.
 +
 
 +
 
 +
 
 +
[[File:P_ID266__Sto_A_4_4_e.png|right|frame|"Dirac wall"&nbsp; on the correlation line]]
 +
'''(5)'''&nbsp; Correct are&nbsp; <u>the first and the third suggested solutions</u>:
 +
*Because&nbsp; $\rho_{xy} = 1$&nbsp; there is a deterministic correlation between&nbsp; $x$&nbsp; and&nbsp; $y$
 +
:&#8658; &nbsp; All values lie on the straight line&nbsp; $y =K \cdot x$.
 +
*Because of the standard deviations&nbsp; $\sigma_x = 0.5$&nbsp; and&nbsp; $\sigma_y = 1$&nbsp; it holds&nbsp; $K = 2$.
 +
*On this straight line&nbsp; $y = 2x$ &nbsp; &rArr; &nbsp; all PDF values are infinitely large.
 +
*This means: &nbsp; The joint PDF is here a&nbsp; "Dirac wall".
 +
*As you can see from the sketch,&nbsp; the PDF values are Gaussian distributed on the straight line $y = 2x$.
 +
*The two marginal probability densities are also Gaussian functions,&nbsp; each with zero mean.
 +
*Because of&nbsp; $\sigma_x = \sigma_u$&nbsp; and&nbsp; $\sigma_y = \sigma_v$&nbsp; also holds:
 +
:$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$
  
:<b>7.</b>&nbsp;&nbsp;Das Zufallsereignis „<i>y</i> > 1“ ist identisch mit dem Ereignis „<i>x</i> > 0.5“. Damit ist die gesuchte Wahrscheinlichkeit gleich
 
:$$\it p_{\rm g} = \rm Pr((\it x > \rm 0.5) \cap (\it x < \rm 1)) = \it F_x(\rm 1) - \it F_x(\rm 0.5).  $$
 
  
:Mit der Streuung <i>&sigma;<sub>x</sub></i> = 0.5 folgt weiter:
+
[[File:P_ID274__Sto_A_4_4_g.png|right|frame|Probability calculation for the Dirac wall]]
:$$\it p_{\rm g} = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$
+
'''(6)'''&nbsp; Since the PDF of the random variable&nbsp; $x$&nbsp; is identical to the PDF&nbsp; $f_u(u)$,&nbsp; it also results in exactly the same probability as calculated in the subtask&nbsp; '''(3)''':
 +
:$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
  
:<br><br>
 
  
  
 +
'''(7)'''&nbsp; The random event&nbsp; $y > 1$&nbsp; is identical to the event&nbsp; $x > 0.5$.&nbsp;
 +
*Thus, the wanted probability is equal to:
 +
:$${\rm Pr}\big[(x < 1) ∩ (y > 1)\big] = \rm Pr \big[ (\it x < \rm 1)\cap (\it x > \rm 0.5) \big] = \it F_x \rm( 1) - \it F_x\rm (0.5).  $$
  
 +
*With the standard deviation&nbsp; $\sigma_x = 0.5$&nbsp; it follows further:
 +
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.2 Gaußsche 2D-Zufallsgrößen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.2 Gaussian 2D Random Variables^]]

Latest revision as of 17:37, 9 January 2024

Table:  Gaussian error functions

We consider two-dimensional random variables,  where both components are always assumed to be mean-free.

  • The  »two-dimensional probability density function«  of the random variable  $(u, v)$  is:
$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
  • For another Gaussian two-dimensional random variable  $(x, y)$  the following parameters are known:
$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$
  • In the adjacent table can be found
  1. the values of the  »Gaussian cumulative distribution function«  ${\rm \phi}(x)$  and
  2. the  »complementary function«  ${\rm Q}(x) = 1- {\rm \phi}(x)$.



Hints:



Questions

1

Which of the statements are true with respect to the two-dimensional random variable  $(u, v)$ ?

The random variables  $u$  and  $v$  are uncorrelated.
The random variables  $u$  and  $v$  are statistically independent.

2

Calculate the two standard deviations  $\sigma_u$  and  $\sigma_v$.  Enter the quotient of the two standard deviations as a check.

$\sigma_u/\sigma_v \ = \ $

3

Calculate the probability that  $u$  is less than  $1$.

${\rm Pr}(u < 1)\ = \ $

4

Calculate the probability that the random variable  $u$  is less than  $1$  and at the same time the random variable  $v$  is greater than  $1$.

${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $

5

Which of the statements are true for the two-dimensional random variable  $(x, y)$?

The joint probability density function  $f_{xy}(x, y)$  is always zero outside the straight line  $y = 2x$.
For all pairs of values on the straight line  $y = 2x$  holds:  $f_{xy}(x, y)= 0.5$.
With respect to the edge PDFs:  $f_{x}(x) = f_{u}(u)$  and $f_{y}(y) = f_{v}(v)$ holds.

6

Calculate the probability that  $x$  is less than  $1$.

${\rm Pr}(x < 1)\ = \ $

7

Now calculate the probability that the random variable  $x$  is less than  $1$  and at the same time the random variable  $y$  is greater than  $1$.

${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $


Solution

(1)  Both statements are true:

  • Comparing the given 2D–PDF with the general 2D–PDF
$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
so it can be seen that no term with  $u \cdot v$  occurs in the exponent,  which is only possible with  $\rho_{uv} = 0$.
  • But this means that  $u$  and  $v$  are uncorrelated.
  • For Gaussian random variables,  however,  statistical independence always follows from uncorrelatedness.


(2)  With statistical independence holds:

$$f_{uv}(u, v) = f_u(u)\cdot f_v(v) $$
$$f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , $$
$$\it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
  • By comparing coefficients,  we get  $\sigma_u = 0.5$  and  $\sigma_v = 1$.
  • The quotient is thus  $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.


(3)  Because  $u$  is a continuous random variable:

$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
  • With the mean  $m_u = 0$  and the standard deviation  $\sigma_u = 0.5$  we get:
$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$


$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$

(4)  Due to the statistical independence between  $u$  and  $v$  holds:

$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
  • The probability  ${\rm Pr}(u < 1) =0.9772$  has already been calculated.
  • For the second probability  ${\rm Pr}(v > 1)$  holds for reasons of symmetry:
$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$

The sketch on the right illustrates the given constellation:

  • The PDF contour lines  (blue)  are stretched ellipses due to  $\sigma_v > \sigma_u$  in vertical direction.
  • Drawn in red  (shading)  is the area whose probability should be calculated in this subtask.


"Dirac wall"  on the correlation line

(5)  Correct are  the first and the third suggested solutions:

  • Because  $\rho_{xy} = 1$  there is a deterministic correlation between  $x$  and  $y$
⇒   All values lie on the straight line  $y =K \cdot x$.
  • Because of the standard deviations  $\sigma_x = 0.5$  and  $\sigma_y = 1$  it holds  $K = 2$.
  • On this straight line  $y = 2x$   ⇒   all PDF values are infinitely large.
  • This means:   The joint PDF is here a  "Dirac wall".
  • As you can see from the sketch,  the PDF values are Gaussian distributed on the straight line $y = 2x$.
  • The two marginal probability densities are also Gaussian functions,  each with zero mean.
  • Because of  $\sigma_x = \sigma_u$  and  $\sigma_y = \sigma_v$  also holds:
$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$


Probability calculation for the Dirac wall

(6)  Since the PDF of the random variable  $x$  is identical to the PDF  $f_u(u)$,  it also results in exactly the same probability as calculated in the subtask  (3):

$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$


(7)  The random event  $y > 1$  is identical to the event  $x > 0.5$. 

  • Thus, the wanted probability is equal to:
$${\rm Pr}\big[(x < 1) ∩ (y > 1)\big] = \rm Pr \big[ (\it x < \rm 1)\cap (\it x > \rm 0.5) \big] = \it F_x \rm( 1) - \it F_x\rm (0.5). $$
  • With the standard deviation  $\sigma_x = 0.5$  it follows further:
$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$