Difference between revisions of "Aufgaben:Exercise 1.4Z: Sum of Ternary Quantities"
From LNTwww
Line 40: | Line 40: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | : | + | [[File:P_ID99__Sto_Z_1_4_a.png|frame|]] |
− | : | + | :In der nebenstehenden Grafik sind die drei zum Ereignis $„x > 0“$ gehörenden Felder violett umrandet, während die Felder für $„s > 0“$ gelb hinterlegt sind. Alle gesuchten Wahrscheinlichkeiten können hier mit Hilfe der klassischen Definition ermittelt werden. |
− | : | + | :<br><br><b>1.</b> Dieses Ereignis ist durch die gelb hinterlegten Felder gekennzeichnet: |
− | : | + | :$$\rm Pr (\it s > \rm 0) = \rm 4/9 \hspace{0.15cm}\underline { \approx \rm 0.444}.$$ |
− | : | + | :<b>2.</b> Hier gilt folgender Sachverhalt: |
− | : | + | $$\rm Pr((\it x > \rm 0) \cap (\it s>\rm 0) ) = \rm Pr(\it x > \rm 0) =\rm 3/9\hspace{0.15cm}\underline { \approx \rm 0.333}. $$ |
− | : | + | :<b>3.</b> Mit den Ergebnissen aus (a) und (b) folgt: |
+ | :$$\rm Pr(\it x > \rm 0 \hspace{0.05cm}| \hspace{0.05cm} \it s > \rm 0) = \frac{{\rm Pr} ((\it x > \rm 0) \cap (\it s > \rm 0))}{{\rm Pr}(\it s > \rm 0)}= \frac{3/9}{4/9}\hspace{0.15cm}\underline {= 0.75}.$$ | ||
+ | :<b>4.</b> Analog zur Teilfrage (c) gilt nun: | ||
+ | :$$\rm Pr(\it s > \rm 0 \hspace{0.05cm} | \hspace{0.05cm} \it x > \rm 0)=\frac{Pr((\it x > \rm 0) \cap (\it s > \rm 0))}{Pr(\it x >\rm 0)}=\rm \frac{3/9}{3/9}\hspace{0.15cm}\underline {= 1}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 11:29, 31 August 2016
Gegeben seien die ternären Zufallsgrößen
- $x ∈ {–2, 0, +2}$,
- $y ∈ {–1, 0, +1}$.
Diese beiden Ternärwerte treten jeweils mit gleicher Wahrscheinlichkeit auf. Daraus wird als eine neue Zufallsgröße die Summe $s = x + y$ gebildet.
Nebenstehendes Schema zeigt, dass die Summe s alle ganzzahligen Werte zwischen –3 und +3 annehmen kann\[ s \in \{-3, -2, -1, 0, +1, +2, +3\}\],
Hinweis: Diese Aufgabe bezieht sich auf den Lehrstoff von Kapitel 1.3. Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
Fragebogen
Musterlösung
- In der nebenstehenden Grafik sind die drei zum Ereignis $x > 0$ gehörenden Felder violett umrandet, während die Felder für $s > 0$ gelb hinterlegt sind. Alle gesuchten Wahrscheinlichkeiten können hier mit Hilfe der klassischen Definition ermittelt werden.
1. Dieses Ereignis ist durch die gelb hinterlegten Felder gekennzeichnet:- $$\rm Pr (\it s > \rm 0) = \rm 4/9 \hspace{0.15cm}\underline { \approx \rm 0.444}.$$
- 2. Hier gilt folgender Sachverhalt:
$$\rm Pr((\it x > \rm 0) \cap (\it s>\rm 0) ) = \rm Pr(\it x > \rm 0) =\rm 3/9\hspace{0.15cm}\underline { \approx \rm 0.333}. $$
- 3. Mit den Ergebnissen aus (a) und (b) folgt:
- $$\rm Pr(\it x > \rm 0 \hspace{0.05cm}| \hspace{0.05cm} \it s > \rm 0) = \frac{{\rm Pr} ((\it x > \rm 0) \cap (\it s > \rm 0))}{{\rm Pr}(\it s > \rm 0)}= \frac{3/9}{4/9}\hspace{0.15cm}\underline {= 0.75}.$$
- 4. Analog zur Teilfrage (c) gilt nun:
- $$\rm Pr(\it s > \rm 0 \hspace{0.05cm} | \hspace{0.05cm} \it x > \rm 0)=\frac{Pr((\it x > \rm 0) \cap (\it s > \rm 0))}{Pr(\it x >\rm 0)}=\rm \frac{3/9}{3/9}\hspace{0.15cm}\underline {= 1}.$$