Difference between revisions of "Aufgaben:Exercise 1.2Z: Linear Distorting System"
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Qualitätskriterien }} right| Modulator, Kanal und Demodulator einer Einrichtun…“) |
|||
Line 10: | Line 10: | ||
Es handelt sich um einen Spalttiefpass, der im [http://en.lntwww.de/Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen Kapitel 1.3] des Buches „Lineare zeitinvariante Systeme” eingehend behandelt wurde. | Es handelt sich um einen Spalttiefpass, der im [http://en.lntwww.de/Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen Kapitel 1.3] des Buches „Lineare zeitinvariante Systeme” eingehend behandelt wurde. | ||
+ | |||
+ | Am Systemeingang liegt das periodische Rechtecksignal $q(t)$ mit der Periodendauer $T_0$ an. Die Dauer der einzelnen Rechtecke und die der Lücken sind jeweils $T_0/2$. Die Höhe der Rechtecke beträgt 2V. | ||
+ | |||
+ | Das Signal $υ(t)$ am Systemausgang wird als Sinkensignal bezeichnet. Dieses ist für zwei verschiedene Parameterwerte der äquivalenten Impulsdauer in der Grafik dargestellt: | ||
+ | :* Das Signal $υ_1(t)$ ergibt sich, wenn die äquivalente Impulsdauer von $h(t)$ genau $Δt_1$ ist. | ||
+ | :* Entsprechend ergibt sich das Signal $υ_2(t)$ mit der äquivalenten Impulsdauer $Δt_2$. | ||
+ | |||
+ | Die Veränderung vom Rechtecksignal $q(t)$ zum dreieck- bzw. trapezförmigen Sinkensignal $υ(t)$ ist auf lineare Verzerrungen zurückzuführen und wird durch das Fehlersignal $ε(t) = υ(t) – q(t)$ erfasst. Mit den Leistungen $P_q$ und $P_ε$ der Signale $q(t)$ und $ε(t)$ kann das Sinken–$\text{SNR}$ berechnet werden: | ||
+ | |||
+ | $$\rho_{v} = \frac{P_{q}}{P_{\varepsilon }} \hspace{0.05cm}.$$ | ||
+ | '''Hinweis:''' Die Aufgabe bezieht sich auf den Theorieteil von [http://en.lntwww.de/Modulationsverfahren/Qualit%C3%A4tskriterien Kapitel 1.2]. Die Leistungen $P_q$ und $P_ε$ sind die quadratischen Mittelwerte der Signale $q(t)$ und $ε(t)$ und können bei periodischen Signalen mit der Periodendauer $T_0$ wie folgt ermittelt werden: | ||
+ | $$P_{q} = \overline{q(t)^2} = \frac{1}{T_{\rm 0}} \cdot \int\limits_{0}^{ T_{\rm 0}} {q(t)^2 }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}, \hspace{0.5cm} P_{\varepsilon} = \overline{\varepsilon(t)^2} = \frac{1}{T_{\rm 0}} \cdot \int\limits_{0}^{ T_{\rm 0}} {\varepsilon(t)^2 }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$ | ||
===Fragebogen=== | ===Fragebogen=== |
Revision as of 18:19, 11 December 2016
Modulator, Kanal und Demodulator einer Einrichtung zur Nachrichtenübertragung können durch ein einziges lineares System mit dem Frequenzgang $$ H(f) = {\rm si }( \pi \cdot f \cdot \Delta t)$$ beschrieben werden. Die dazugehörige Impulsantwort ist rechteckförmig, symmetrisch um $t = 0$ und weist die Höhe $1/Δt$ sowie die Dauer Δt auf: $$ h(t) = \left\{ \begin{array}{c} 1/\Delta t \\ 1/(2\Delta t) \\ 0 \\ \end{array} \right. \begin{array}{*{4}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} t\hspace{0.05cm} \right| < \Delta t/2,} \\ {\left| \hspace{0.005cm}t\hspace{0.05cm} \right| = \Delta t/2,} \\ {\left|\hspace{0.005cm} t \hspace{0.05cm} \right| > \Delta t/2.} \\ \end{array}$$
Es handelt sich um einen Spalttiefpass, der im Kapitel 1.3 des Buches „Lineare zeitinvariante Systeme” eingehend behandelt wurde.
Am Systemeingang liegt das periodische Rechtecksignal $q(t)$ mit der Periodendauer $T_0$ an. Die Dauer der einzelnen Rechtecke und die der Lücken sind jeweils $T_0/2$. Die Höhe der Rechtecke beträgt 2V.
Das Signal $υ(t)$ am Systemausgang wird als Sinkensignal bezeichnet. Dieses ist für zwei verschiedene Parameterwerte der äquivalenten Impulsdauer in der Grafik dargestellt:
- Das Signal $υ_1(t)$ ergibt sich, wenn die äquivalente Impulsdauer von $h(t)$ genau $Δt_1$ ist.
- Entsprechend ergibt sich das Signal $υ_2(t)$ mit der äquivalenten Impulsdauer $Δt_2$.
Die Veränderung vom Rechtecksignal $q(t)$ zum dreieck- bzw. trapezförmigen Sinkensignal $υ(t)$ ist auf lineare Verzerrungen zurückzuführen und wird durch das Fehlersignal $ε(t) = υ(t) – q(t)$ erfasst. Mit den Leistungen $P_q$ und $P_ε$ der Signale $q(t)$ und $ε(t)$ kann das Sinken–$\text{SNR}$ berechnet werden:
$$\rho_{v} = \frac{P_{q}}{P_{\varepsilon }} \hspace{0.05cm}.$$ Hinweis: Die Aufgabe bezieht sich auf den Theorieteil von Kapitel 1.2. Die Leistungen $P_q$ und $P_ε$ sind die quadratischen Mittelwerte der Signale $q(t)$ und $ε(t)$ und können bei periodischen Signalen mit der Periodendauer $T_0$ wie folgt ermittelt werden: $$P_{q} = \overline{q(t)^2} = \frac{1}{T_{\rm 0}} \cdot \int\limits_{0}^{ T_{\rm 0}} {q(t)^2 }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}, \hspace{0.5cm} P_{\varepsilon} = \overline{\varepsilon(t)^2} = \frac{1}{T_{\rm 0}} \cdot \int\limits_{0}^{ T_{\rm 0}} {\varepsilon(t)^2 }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
Fragebogen
Musterlösung