Difference between revisions of "Digital Signal Transmission/Approximation of the Error Probability"
Line 245: | Line 245: | ||
::<math>{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) \hspace{0.05cm}.</math> | ::<math>{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) \hspace{0.05cm}.</math> | ||
+ | == Fehlerwahrscheinlichkeitsberechnung im nichtbinären Fall (1) == | ||
+ | <br> | ||
+ | Mit den Definitionen der letzten Seite gilt für die Wahrscheinlichkeit einer korrekten Entscheidung: | ||
+ | :<math>{\rm Pr}({ \cal C} ) \hspace{-0.1cm} = \hspace{-0.1cm} \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm} m_i ) = </math> | ||
+ | :::<math> \hspace{-0.1cm} = \hspace{-0.1cm} \sum_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot | ||
+ | \int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho } | ||
+ | \hspace{0.05cm}.</math> | ||
+ | Für den AWGN–Kanal gilt dabei entsprechend [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#N.E2.80.93dimensionales_Gau.C3.9Fsches_Rauschen_.281.29 Kapitel 4.2]: | ||
+ | :<math>{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) = \frac{1}{(\sqrt{2\pi} \cdot \sigma_n)^N} \cdot | ||
+ | \int_{I_i} {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_i ||^2 \right ] \,{\rm d} \boldsymbol {\rho }\hspace{0.05cm}.</math> | ||
+ | Dieses Integral muss im allgemeinen Fall numerisch berechnet werden. Nur bei einigen wenigen, einfach beschreibbaren Entscheidungsregionen {<i>I<sub>i</sub></i>} ist eine analytische Lösung möglich.<br> | ||
+ | {{Beispiel}}''':''' Beim AWGN–Kanal liegt eine 2D–Gaußglocke um den Sendepunkt <b><i>s</i></b><sub><i>i</i></sub>, in der linken Grafik erkennbar an den konzentrischen Höhenlinien. Etwas willkürlich ist zudem die Entscheidungsgerade <i>G</i> eingezeichnet. Rechts dargestellt ist in einem anderen Koordinatensystem (verschoben und gedreht) allein die WDF der Rauschkomponente. | ||
+ | [[File:P ID2026 Dig T 4 3 S5b version1.png|Zur Berechnung der Fehlerwahrscheinlichkeit bei AWGN|class=fit]]<br> | ||
+ | Die Grafik lässt sich wie folgt interpretieren: | ||
+ | *Die Wahrscheinlichkeit, dass der Empfangsvektor nicht in das Gebiet <i>I<sub>i</sub></i> fällt, sondern in das rot hinterlegte Gebiet <i>I<sub>k</sub></i>, ist Q(<i>A</i>/<i>σ<sub>n</sub></i>). <i>A</i> ist der Abstand zwischen <b><i>s</i></b><sub><i>i</i></sub> und <i>G</i> und <i>σ<sub>n</sub></i> der Effektivwert (Wurzel aus der Varianz) des AWGN–Rauschens. Q(<i>x</i>) ist die Gaußsche Fehlerfunktion.<br> | ||
+ | |||
+ | *Entsprechend ist die Wahrscheinlichkeit für das Ereignis <i>r</i> ∈ <i>I<sub>i</sub></i> gleich dem Komplementärwert | ||
+ | |||
+ | ::<math>{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm} m_i ) = | ||
+ | 1 - {\rm Q} (A/\sigma_n)\hspace{0.05cm}.</math> | ||
+ | {{end}}<br> | ||
Revision as of 16:51, 28 December 2016
Contents
- 1 Optimale Entscheidung bei binärer Übertragung (1)
- 2 Optimale Entscheidung bei binärer Übertragung (2)
- 3 Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (1)
- 4 Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (2)
- 5 Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (3)
- 6 Nicht gleichwahrscheinliche Binärsymbole – Schwellenoptimierung (1)
- 7 Nicht gleichwahrscheinliche Binärsymbole – Schwellenoptimierung (2)
- 8 Entscheidungsregionen im nichtbinären Fall (M > 2)
- 9 Fehlerwahrscheinlichkeitsberechnung im nichtbinären Fall (1)
Optimale Entscheidung bei binärer Übertragung (1)
Wir gehen hier von einem Übertragungssystem aus, das wie folgt charakterisiert werden kann: r = s + n:
- Der das Übertragungssystem vollständig beschreibende Vektorraum wird von N = 2 zueinander orthogonalen Basisfunktionen φ1(t) und φ2(t) aufgespannt.
- Demzufolge ist auch die Wahrscheinlichkeitsdichtefunktion des additiven und weißen Gaußschen Rauschens zweidimensional anzusetzen, gekennzeichnet durch den Vektor n = (n1, n2).
- Es gibt nur zwei mögliche Sendesignale (M = 2), die durch die beiden Vektoren s0 = (s01, s02) und s1 = (s11, s12) beschrieben werden:
- \[s_0(t) \hspace{-0.1cm} = \hspace{-0.1cm} s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm},\]
- \[s_1(t) \hspace{-0.1cm} = \hspace{-0.1cm} s_{11} \cdot \varphi_1(t) + s_{12} \cdot \varphi_2(t) \hspace{0.05cm}.\]
- Die beiden Nachrichten m0 ⇔ s0 und m1 ⇔ s1 sind nicht notwendigermaßen gleichwahrscheinlich.
- Aufgabe des Entscheiders ist es nun, für den gegebenen Empfangsvektor r einen Schätzwert nach der MAP–Entscheidungsregel anzugeben. Diese lautet im vorliegenden Fall:
- \[\hat{m} = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } |m_i ) ] \hspace{0.15cm} \in \hspace{0.15cm}\{ m_i\}\hspace{0.3cm}{\rm mit}\hspace{0.3cm} \boldsymbol{ r } = \boldsymbol{ \rho } = (\rho_1, \rho_2) \hspace{0.05cm}.\]
Im hier betrachteten Sonderfall N = 2 und M = 2 partitioniert der Entscheider den zweidimensionalen Raum in die zwei disjunkten Gebiete I0 und I1, wie in der nachfolgenden Grafik verdeutlicht. Liegt der Empfangswert in I0, so wird als Schätzwert m0 ausgegeben, andernfalls m1.
Die Herleitung und Bildbeschreibung folgt auf der nächsten Seite.
Optimale Entscheidung bei binärer Übertragung (2)
Beim AWGN–Kanal und M = 2 lautet somit die Entscheidungsregel: Man entscheide sich immer dann für die Nachricht m0, falls folgende Bedingung erfüllt ist:
\[{\rm Pr}( m_0) \cdot {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_0 ||^2 \right ] > {\rm Pr}( m_1) \cdot {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_1 ||^2 \right ] \hspace{0.05cm}.\]
Die Grenzlinie zwischen den beiden Entscheidungsregionen I0 und I1 erhält man, wenn man in obiger Gleichung das Größerzeichen durch das Gleichheitszeichen ersetzt und die Gleichung etwas umformt:
\[|| \boldsymbol{ \rho } - \boldsymbol{ s }_0 ||^2 - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}[{\rm Pr}( m_0)] = || \boldsymbol{ \rho } - \boldsymbol{ s }_1 ||^2 - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}[{\rm Pr}( m_1)] \]
\[\Rightarrow \hspace{0.3cm} || \boldsymbol{ s }_1 ||^2 - || \boldsymbol{ s }_0 ||^2 + 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.\]
Aus dieser Gleichung erkennt man:
- Die Grenzkurve zwischen den Regionen I0 und I1 ist eine Gerade, da die Bestimmungsgleichung linear im Empfangsvektor ρ = (ρ1, ρ2) ist.
- Bei gleichwahrscheinlichen Symbolen verläuft die Grenze genau in der Mitte zwischen s0 und s1 und um 90° verdreht gegenüber der Verbindungslinie zwischen den Sendepunkten (linke Grafik):
- \[|| \boldsymbol{ s }_1 ||^2 - || \boldsymbol{ s }_0 ||^2 = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.\]
- Für Pr(m0) > Pr(m1) ist die Entscheidungsgrenze in Richtung des unwahrscheinlicheren Symbols (s1) verschoben, und zwar um so mehr, je größer die AWGN–Streuung σn ist.
Die grün–durchgezogene Entscheidungsgrenze im rechten Bild sowie die Entscheidungsregionen I0 (rot) und I1 (blau) gelten für die Streuung σn = 1 und die gestrichelten Grenzlinien für σn = 0 bzw. σn = 2.
Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (1)
Wir gehen weiterhin von einem Binärsystem aus (M = 2), betrachten aber nun den einfachen Fall, dass dieses durch eine einzige Basisfunktion beschrieben werden kann (N = 1). Die Fehlerwahrscheinlichkeit hierfür wurde bereits in Kapitel 1.2 berechnet.
Mit der für Kapitel 4 gewählten Nomenklatur und Darstellungsform ergibt sich folgende Konstellation:
- Der Empfangswert r = s + n – nunmehr ein Skalar – setzt sich aus dem Sendesignal s ∈ {s0, s1} und dem Rauschterm n zusammen. Die Abszisse ρ bezeichnet eine Realisierung von r.
- Die Abszisse ist auf die Bezugsgröße E1/2 normiert, wobei die Normierungsenergie E keine herausgehobene physikalische Bedeutung hat.
- Der Rauschterm n ist gaußverteilt mit dem Mittelwert 0 und der Varianz σn2. Die Wurzel aus der Varianz (σn) wird als Effektivwert oder Streuung bezeichnet.
- Die Entscheidergrenze G unterteilt den gesamten Wertebereich von r in die beiden Teilbereiche I0 (in dem unter anderem s0 liegt) und I1 (mit dem Signalwert s1).
- Ist ρ > G, so liefert der Entscheider den Schätzwert m0, andernfalls m1. Hierbei ist vorausgesetzt, dass die Nachricht mi mit dem Sendesignal si eineindeutig zusammenhängt: mi ⇔ si.
Die Grafik zeigt die bedingten (eindimensionalen) Wahrscheinlichkeitsdichtefunktionen pr|m0 und pr|m1 für den hier betrachteten AWGN–Kanal, wobei gleiche Symbolwahrscheinlichkeiten vorausgesetzt sind: Pr(m0) = Pr(m1) = 0.5. Dementsprechend ist die (optimale) Entscheidergrenze G = 0.
Man erkennt aus dieser Darstellung:
- Ist m = m0 und damit s = s0 = 2 · E 1/2, so kommt es nur dann zu einer Fehlentscheidung, wenn η, die Realisierung der Rauschgröße n, kleiner ist als –2 · E 1/2.
- In diesem Fall ist ρ < 0, wobei ρ eine Realisierung des Empfangswertes r bezeichnet.
Die Bildbeschreibung wird auf der nächsten Seite fortgesetzt.
Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (2)
Kommen wir nun zur Berechnung der Fehlerwahrscheinlichkeit:
- Bei AWGN–Rauschen mit dem Effektivwert (Streuung) σn erhält man in diesem Fall, wie bereits in Kapitel 1.2 mit anderer Nomenklatur berechnet wurde:
- \[{\rm Pr}({ \cal E} | m_0) \hspace{-0.1cm} = \hspace{-0.1cm} \int_{-\infty}^{G = 0} p_{r \hspace{0.05cm}|\hspace{0.05cm}m_0 } ({ \rho } |m_0 ) \,{\rm d} \rho = \int_{-\infty}^{- s_0 } p_{{ n} \hspace{0.05cm}|\hspace{0.05cm}m_0 } ({ \eta } |m_0 ) \,{\rm d} \eta = \]
- \[\hspace{-0.05cm} = \hspace{-0.1cm}\int_{-\infty}^{- s_0 } p_{{ n} } ({ \eta } ) \,{\rm d} \eta = \int_{ s_0 }^{\infty} p_{{ n} } ({ \eta } ) \,{\rm d} \eta = {\rm Q} \left ( {s_0 }/{\sigma_n} \right ) \hspace{0.05cm}.\]
- Bei der Herleitung der Gleichung wurde berücksichtigt, dass das AWGN–Rauschen η unabhängig vom Signal (m0 oder m1) ist und eine symmetrische WDF besitzt. Verwendet wurde zudem das komplementäre Gaußsche Fehlerintegral
- \[{\rm Q}(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u \hspace{0.05cm}.\]
- Entsprechend gilt für m = m1 ⇔ s = s1 = –2 · E 1/2:
- \[{\rm Pr}({ \cal E} | m_1) = \int_{0}^{\infty} p_{{ r} \hspace{0.05cm}|\hspace{0.05cm}m_1 } ({ \rho } |m_1 ) \,{\rm d} \rho = \int_{- s_1 }^{\infty} p_{{ n} } (\boldsymbol{ \eta } ) \,{\rm d} \eta = {\rm Q} \left ( {- s_1 }/{\sigma_n} \right ) \hspace{0.05cm}.\]
- Mit dem Abstand d = s1 – s0 der zwei Signalraumpunkte lassen sich die beiden Ergebnisse zusammenfassen, wobei noch Pr(m0) + Pr(m1) = 1 zu berücksichtigen ist:
- \[{\rm Pr}({ \cal E} | m_0) = {\rm Pr}({ \cal E} | m_1) = {\rm Q} \left ( {d}/(2{\sigma_n}) \right )\]
- \[\Rightarrow \hspace{0.3cm}{\rm Pr}({ \cal E} ) \hspace{-0.1cm} = \hspace{-0.1cm} {\rm Pr}(m_0) \cdot {\rm Pr}({ \cal E} | m_0) + {\rm Pr}(m_1) \cdot {\rm Pr}({ \cal E} | m_1)=\]
- \[ \hspace{0.2cm}\hspace{-0.1cm} = \hspace{-0.1cm} \left [ {\rm Pr}(m_0) + {\rm Pr}(m_1) \right ] \cdot {\rm Q} \left ( {d}/(2{\sigma_n}) \right ) = {\rm Q} \left ( {d}/(2{\sigma_n}) \right ) \hspace{0.05cm}.\]
Diese Gleichung gilt unter der Voraussetzung G = 0 ganz allgemein, also auch für Pr(m0) ≠ Pr(m1). Bei nicht gleichwahrscheinlichen Symbolen lässt sich allerdings die Symbolfehlerwahrscheinlichkeit durch eine andere Entscheidergrenze verkleinern.
Hinweis: Die hier genannte Gleichung gilt auch dann, wenn die Signalraumpunkte keine Skalare sind, sondern durch die Vektoren s0 und s1 beschrieben werden. Der Abstand d ergibt sich dann als die Norm des Differenzvektors:
\[d = || \hspace{0.05cm} \boldsymbol{ s}_1 - \boldsymbol{ s}_0 \hspace{0.05cm} || \hspace{0.05cm}.\]
Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (3)
Betrachten wir nun nochmals die Signalraumkonstellation von der ersten Seite dieses Kapitels mit den Werten s0/E 1/2 = (3.6, 0.8) und s1/E 1/2 = (0.4, 3.2). Hier beträgt der Abstand der Signalraumpunkte
\[d = || s_1 - s_0 || = \sqrt{E \cdot (0.4 - 3.6)^2 + E \cdot (3.2 - 0.8)^2} = 4 \cdot \sqrt {E} \hspace{0.05cm},\]
also der genau gleiche Wert wie für s0/E1/2 = (2, 0) und s1/E1/2 = (–2, 0). Die AWGN–Rauschvarianz beträgt jeweils σn2 = N0/2.
Die Abbildungen zeigen diese beiden Konstellationen und lassen folgende Gemeinsamkeiten bzw. Unterschiede erkennen:
- Wie bereits gesagt, sind sowohl der Abstand der Signalpunkte von der Entscheidungsgeraden (d/2 = 2 · E1/2) als auch der AWGN–Kennwert σn in beiden Fällen gleich.
- Daraus folgt: Die beiden Anordnungen führen zur gleichen Fehlerwahrscheinlichkeit, wenn man den Parameter E (eine Art Normierungsenergie) konstant lässt:
- \[{\rm Pr} ({\rm Symbolfehler}) = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( {d}/(2{\sigma_n}) \right )\hspace{0.05cm}.\]
- Bei gegebener mittlerer Energie pro Symbol (Es) ist jedoch die linke Konstellation (Es = 4 · E) der rechten (Es = 24 · E) deutlich überlegen: Die gleiche Fehlerwahrscheinlichkeit ergibt sich mit weniger Energie.
Auf diesen Sachverhalt wird in der Aufgabe Z4.6 noch im Detail eingegangen. Die Kreise in obiger Grafik veranschaulichen die zirkuläre Symmetrie von 2D–AWGN–Rauschen.
Nicht gleichwahrscheinliche Binärsymbole – Schwellenoptimierung (1)
Gilt Pr(m0) ≠ Pr(m1), so kann man durch eine Verschiebung der Entscheidungsgrenze G eine etwas kleinere Fehlerwahrscheinlichkeit erreichen. Die nachfolgenden Ergebnisse werden ausführlich in der Musterlösung zur Aufgabe A4.7 hergeleitet:
- Bei ungleichen Symbolwahrscheinlichkeiten liegt die optimale Entscheidungsgrenze Gopt zwischen den Regionen I0 und I1 näher beim unwahrscheinlicheren Symbol.
- Die normierte optimale Verschiebung gegenüber der Grenze G = 0 bei gleichwahrscheinlichen Symbolen beträgt
- \[\gamma_{\rm opt} = \frac{G_{\rm opt}}{s_0 } = 2 \cdot \frac{ \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} \hspace{0.05cm}.\]
- Die Fehlerwahrscheinlichkeit ist dann gleich
- \[{\rm Pr}({ \cal E} ) = {\rm Pr}(m_0) \cdot {\rm Q} \left[ {d}/(2{\sigma_n}) \cdot (1 - \gamma_{\rm opt}) \right ] + {\rm Pr}(m_1) \cdot {\rm Q} \left [ {d}/(2{\sigma_n}) \cdot (1 + \gamma_{\rm opt}) \right ]\hspace{0.05cm}.\]
\[\boldsymbol{ s }_0 = (2 \cdot \sqrt{E}, \hspace{0.1cm} 0), \hspace{0.2cm} \boldsymbol{ s }_1 = (- 2 \cdot \sqrt{E}, \hspace{0.1cm} 0), \hspace{0.2cm} \Rightarrow \hspace{0.2cm} d = 2 \cdot \sqrt{E}, \hspace{0.2cm} \sigma_n = \sqrt{E} \hspace{0.05cm}.\]
Bei gleichwahrscheinlichen Symbolen ergibt sich die optimale Entscheidergrenze zu Gopt = 0. Damit erhält man für die Fehlerwahrscheinlichkeit:
\[{\rm Pr}({ \cal E} ) = {\rm Q} \left ( {d}/(2{\sigma_n}) \right ) = {\rm Q} (2) \approx 2.26\% \hspace{0.05cm}.\]
Die Beschreibung der unteren Grafik folgt auf der nächsten Seite.
Nicht gleichwahrscheinliche Binärsymbole – Schwellenoptimierung (2)
\[{\rm Pr}( m_0) = 3/4\hspace{0.05cm},\hspace{0.3cm}{\rm Pr}( m_1) = 1/4\hspace{0.05cm}.\]
Die weiteren Systemgrößen seien gegenüber der oberen Grafik unverändert:
\[\boldsymbol{ s }_0 = (2 \cdot \sqrt{E}, \hspace{0.1cm} 0), \hspace{0.2cm} \boldsymbol{ s }_1 = (- 2 \cdot \sqrt{E}, \hspace{0.1cm} 0), \hspace{0.2cm} \Rightarrow \hspace{0.2cm} d = 2 \cdot \sqrt{E}, \hspace{0.2cm} \sigma_n = \sqrt{E} \hspace{0.05cm}.\]
In diesem Fall beträgt der optimale (normierte) Verschiebungsfaktor
\[\gamma = 2 \cdot \frac{ \sigma_n^2}{d^2} \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_1)}{{\rm Pr}( m_0)} = 2 \cdot \frac{ E}{16 \cdot E} \cdot {\rm ln} \hspace{0.15cm} \frac{1/4}{3/4 } \approx - 0.14 \hspace{0.05cm},\]
was einer Verschiebung um 14% hin zum unwahrscheinlicheren Symbol s1 (also nach links) bedeutet. Dadurch wird die Fehlerwahrscheinlichkeit geringfügig kleiner als bei gleichwahrscheinlichen Symbolen:
\[{\rm Pr}({ \cal E} ) \hspace{-0.1cm} = \hspace{-0.1cm} 0.75 \cdot {\rm Q} \left ( 2 \cdot 1.14 \right ) + 0.25 \cdot {\rm Q} \left ( 2 \cdot 0.86 \right ) = \]
- \[ \hspace{-0.2cm} = \hspace{-0.1cm}0.75 \cdot 0.0113 + 0.25 \cdot 0.0427 \approx 1.92\% \hspace{0.05cm}.\]
Man erkennt aus diesen Zahlenwerten: Durch die Schwellenverschiebung wird nun zwar das Symbol s1 stärker verfälscht, das wahrscheinlichere Symbol s0 jedoch überproportional weniger.
Das Ergebnis sollte nicht zu Fehlinterpretationen führen. Im unsymmetrischen Fall ⇒ Pr(m0) ≠ Pr(m1) ergibt sich zwar eine kleinere Fehlerwahrscheinlichkeit als für Pr(m0) = Pr(m1) = 0.5, aber mit jedem Symbol kann auch nur weniger Information übertragen werden, bei den gewählten Zahlenwerten 0.81 bit/Symbol statt 1 bit/Symbol. Aus informationstheoretischer Sicht ist Pr(m0) = Pr(m1) optimal.
Anmerkung: Bei Pr(m0) ≠ Pr(m1) müssen nun die absoluten Wahrscheinlichkeitsdichefunktionen Pr(mi) · pr|mi(ρ | mi) betrachtet werden. Der formale Parameter ρ gibt dabei wieder eine Realisierung der AWGN–Zufallsgröße r = s + n an. Im Folgenden wird dieser Sachverhalt berücksichtigt.
Entscheidungsregionen im nichtbinären Fall (M > 2)
Allgemein partitionieren die Entscheidungsregionen Ii den N–dimensionalen reellen Raum in M zueinander disjunkte Gebiete. Ii ist definiert als die Menge aller Punkte, die zum Schätzwert mi führen:
\[\boldsymbol{ \rho } \in I_i \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm} \hat{m} = m_i, \hspace{0.15cm}{\rm wobei}\]
\[I_i = \left \{ \boldsymbol{ \rho } \in { \cal R}^N \hspace{0.05cm} | \hspace{0.05cm} {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } |m_i ) > {\rm Pr}( m_k) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } |m_k )\hspace{0.15cm} \forall k \ne i \right \} \hspace{0.05cm}.\]
Die Form der Entscheidungsregionen Ii (i = 0, ... , M –1) im N–dimensionalen Raum hängen von den bedingten Wahrscheinlichkeitsdichtefunktionen pr|m ab, also vom betrachteten Kanal. In vielen Fällen – so auch beim AWGN–Kanal – sind die Entscheidungsgrenzen zwischen je zwei Signalpunkten Gerade, was die weiteren Betrachtungen deutlich vereinfacht.
\[\boldsymbol{ s }_0 = (2,\hspace{0.05cm} 2), \hspace{0.2cm} \hspace{0.01cm} \boldsymbol{ s }_1 = (1,\hspace{0.05cm} 3), \hspace{0.01cm} \hspace{0.2cm} \boldsymbol{ s }_2 = (1,\hspace{0.05cm} -1) \hspace{0.05cm}.\]
Es sind nun zwei Fälle zu unterscheiden:
- Bei gleichen Symbolwahrscheinlichkeiten,
- \[{\rm Pr}( m_0) = {\rm Pr}( m_1) ={\rm Pr}( m_2) = 1/3 \hspace{0.05cm},\]
- verlaufen die Grenzen zwischen jeweils zwei Regionen stets geradlinig, mittig und rechtwinklig zu den Verbindungsgeraden.
- Bei ungleichen Symbolwahrscheinlichkeiten sind die Entscheidungsgrenzen dagegen jeweils in Richtung des unwahrscheinlicheren Symbols (parallel) zu verschieben, und zwar umso weiter, je größer die AWGN–Streuung σn ist.
Nachdem die Entscheidungsregionen Ii festliegen, kann man die Symbolfehlerwahrscheinlichkeit des Gesamtsystems berechnen. Auf den nächsten Seiten benutzen wir folgende Bezeichnungen, wobei wir aufgrund der Einschränkungen durch den verwendeten HTML–Zeichensatz im Fließtext manchmal andere Namen als in Gleichungen verwenden müssen:
- Symbolfehlerwahrscheinlichkeit:
- \[{\rm Pr}({ \cal E} ) = {\rm Pr(Symbolfehler)} \hspace{0.05cm},\]
- Wahrscheinlichkeit für korrekte Entscheidung:
- \[{\rm Pr}({ \cal C} ) = 1 - {\rm Pr}({ \cal E} ) = {\rm Pr(korrekte \hspace{0.15cm} Entscheidung)} \hspace{0.05cm},\]
- Bedingte Wahrscheinlichkeit einer korrekten Entscheidung unter der Bedingung m = mi:
- \[{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) \hspace{0.05cm}.\]
Fehlerwahrscheinlichkeitsberechnung im nichtbinären Fall (1)
Mit den Definitionen der letzten Seite gilt für die Wahrscheinlichkeit einer korrekten Entscheidung:
\[{\rm Pr}({ \cal C} ) \hspace{-0.1cm} = \hspace{-0.1cm} \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \sum\limits_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm} m_i ) = \]
- \[ \hspace{-0.1cm} = \hspace{-0.1cm} \sum_{i = 0}^{M-1} {\rm Pr}(m_i) \cdot \int_{I_i} p_{{ \boldsymbol{ r }} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol {\rho } \hspace{0.05cm}|\hspace{0.05cm} m_i ) \,{\rm d} \boldsymbol {\rho } \hspace{0.05cm}.\]
Für den AWGN–Kanal gilt dabei entsprechend Kapitel 4.2:
\[{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Pr}({ \cal E} \hspace{0.05cm}|\hspace{0.05cm} m_i) = \frac{1}{(\sqrt{2\pi} \cdot \sigma_n)^N} \cdot \int_{I_i} {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_i ||^2 \right ] \,{\rm d} \boldsymbol {\rho }\hspace{0.05cm}.\]
Dieses Integral muss im allgemeinen Fall numerisch berechnet werden. Nur bei einigen wenigen, einfach beschreibbaren Entscheidungsregionen {Ii} ist eine analytische Lösung möglich.
Die Grafik lässt sich wie folgt interpretieren:
- Die Wahrscheinlichkeit, dass der Empfangsvektor nicht in das Gebiet Ii fällt, sondern in das rot hinterlegte Gebiet Ik, ist Q(A/σn). A ist der Abstand zwischen si und G und σn der Effektivwert (Wurzel aus der Varianz) des AWGN–Rauschens. Q(x) ist die Gaußsche Fehlerfunktion.
- Entsprechend ist die Wahrscheinlichkeit für das Ereignis r ∈ Ii gleich dem Komplementärwert
- \[{\rm Pr}({ \cal C}\hspace{0.05cm}|\hspace{0.05cm} m_i ) = {\rm Pr}(\boldsymbol{ r } \in I_i\hspace{0.05cm}|\hspace{0.05cm} m_i ) = 1 - {\rm Q} (A/\sigma_n)\hspace{0.05cm}.\]