Difference between revisions of "Aufgaben:Exercise 4.14: Phase Progression of the MSK"
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choic…“) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:|right|]] | + | [[File:P_ID1740__Mod_A_4_13.png|right|]] |
+ | Eine Realisierungsmöglichkeit für die MSK bietet die Offset–QPSK, wie aus dem Blockschaltbild im Theorieteil hervorgeht. Hierzu ist zunächst eine Umcodierung der Quellensymbole $q_k$ ∈ {+1, –1} in die ebenfalls binären Amplitudenkoeffizienten $a_k$ ∈ {+1, –1} vorzunehmen. Diese Umcodierung wird in der [http://en.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren#Realisierung_der_MSK_als_Offset.E2.80.93QPSK_.281.29 Aufgabe Z4.13] eingehend behandelt. | ||
+ | Die Grafik zeigt unten die beiden äquivalenten Tiefpass–Signale $s_I(t)$ und $s_Q(t)$ in den beiden Zweigen, die sich nach dieser Umcodierung | ||
+ | $$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k $$ | ||
+ | aus dem oben skizzierten Quellensignal $q(t)$ für den Inphase– und den Quadraturzweig ergeben. Berücksichtigt ist hierbei der MSK–Grundimpuls | ||
+ | $$ g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$ | ||
+ | Dieser ist ebenso wie die Signale $s_I(t)$ und $s_Q(t)$ auf 1 normiert. Für das äquivalente Tiefpass–Signal gilt entsprechend dem [http://en.lntwww.de/Signaldarstellung/%C3%84quivalentes_Tiefpass-Signal_und_zugeh%C3%B6rige_Spektralfunktion Kapitel 4.3] im Buch „Signaldarstellung”: | ||
+ | $$ s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}$$ | ||
+ | mit dem Betrag | ||
+ | $$|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)} $$ | ||
+ | und der Phase | ||
+ | $$ \phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.$$ | ||
+ | Das physikalische MSK–Sendesignal ergibt sich dann zu | ||
+ | $$ s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.$$ | ||
+ | '''Hinweis:''' Die Aufgabe gehört zum [http://en.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren Kapitel 4.4]. Gehen Sie davon aus, dass $ϕ(t = 0) = ϕ_0 = 0$ ist. | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Welche Aussagen gelten für die Hüllkurve $|s_{TP}(t)|$? |
|type="[]"} | |type="[]"} | ||
− | - | + | - Die Hüllkurve schwankt cosinusförmig. |
− | + | + | + Die Hüllkurve ist konstant. |
+ | + Die Hüllkurve ist unabhängig von der gesendeten Folge. | ||
+ | {Es gelte $T = 1 μs$. Berechnen Sie den Phasenverlauf im Intervall 0 ≤ t ≤ T. Welche Phasenwerte ergeben sich bei t = T/2 und t = T? | ||
+ | |type="{}"} | ||
+ | $ϕ(t = T/2)$ = { 45 3% } $Grad$ | ||
+ | $ϕ(t = T)$ = { 90 3% } $Grad$ | ||
− | { | + | {Bestimmen Sie die Phasenwerte bei t = 2T, t = 3T und t = 4T. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $ϕ(t = 2T)$ = { 0 3% } $Grad$ |
− | + | $ϕ(t = 3T)$ = { -90 3% } $Grad$ | |
+ | $ϕ(t = 4T)$ = { -180 3% } $Grad$ | ||
+ | {Skizzieren und interpretieren Sie den Phasenverlauf $ϕ(t)$ im Bereich von 0 bis 8T. Welche Phasenwerte ergeben sich zu den folgenden Zeiten? | ||
+ | |type="{}"} | ||
+ | $ϕ(5T)$ = { -90 3% } $Grad$ | ||
+ | $ϕ(6T)$ = { 0 3% } $Grad$ | ||
+ | $ϕ(7T)$ = { -90 3% } $Grad$ | ||
+ | $ϕ(8T)$ = { 3% } $Grad$ | ||
</quiz> | </quiz> | ||
Line 25: | Line 51: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' | + | '''1.''' Aus der oberen Skizze kann man $T_B = 1 μs$ ablesen. |
− | '''2.''' | + | |
− | '''3.''' | + | '''2.''' Bei QPSK bzw. Offset–QPSK ist aufgrund der Seriell–Parallel–Wandlung die Symboldauer T doppelt so groß wie die Bitdauer: |
− | '''4.''' | + | $$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm \mu s}} \hspace{0.05cm}.$$ |
− | '''5.''' | + | |
− | + | '''3.''' Entsprechend der aus der Skizze für die ersten Bit erkennbaren Zuordnung gilt: | |
− | + | $$ a_{\rm I3} = q_5 \hspace{0.15cm}\underline {= +1},\hspace{0.2cm}a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},$$ | |
+ | $$a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},\hspace{0.2cm}a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.$$ | ||
+ | |||
+ | '''4.''' Bei der MSK ist die Symboldauer T gleich der Bitdauer: | ||
+ | $$T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm \mu s}} \hspace{0.05cm}.$$ | ||
+ | '''5.''' Entsprechend der angegebenen Umcodiervorschrift gilt mit $a_4 = –1$: | ||
+ | $$q_5 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},$$ | ||
+ | $$q_6 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},$$ | ||
+ | $$ q_7 = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1}, $$ | ||
+ | $$q_8 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 14:42, 6 January 2017
Eine Realisierungsmöglichkeit für die MSK bietet die Offset–QPSK, wie aus dem Blockschaltbild im Theorieteil hervorgeht. Hierzu ist zunächst eine Umcodierung der Quellensymbole $q_k$ ∈ {+1, –1} in die ebenfalls binären Amplitudenkoeffizienten $a_k$ ∈ {+1, –1} vorzunehmen. Diese Umcodierung wird in der Aufgabe Z4.13 eingehend behandelt.
Die Grafik zeigt unten die beiden äquivalenten Tiefpass–Signale $s_I(t)$ und $s_Q(t)$ in den beiden Zweigen, die sich nach dieser Umcodierung $$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k $$ aus dem oben skizzierten Quellensignal $q(t)$ für den Inphase– und den Quadraturzweig ergeben. Berücksichtigt ist hierbei der MSK–Grundimpuls $$ g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$ Dieser ist ebenso wie die Signale $s_I(t)$ und $s_Q(t)$ auf 1 normiert. Für das äquivalente Tiefpass–Signal gilt entsprechend dem Kapitel 4.3 im Buch „Signaldarstellung”: $$ s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}$$ mit dem Betrag $$|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)} $$ und der Phase $$ \phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.$$ Das physikalische MSK–Sendesignal ergibt sich dann zu $$ s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.$$ Hinweis: Die Aufgabe gehört zum Kapitel 4.4. Gehen Sie davon aus, dass $ϕ(t = 0) = ϕ_0 = 0$ ist.
Fragebogen
Musterlösung
2. Bei QPSK bzw. Offset–QPSK ist aufgrund der Seriell–Parallel–Wandlung die Symboldauer T doppelt so groß wie die Bitdauer: $$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm \mu s}} \hspace{0.05cm}.$$
3. Entsprechend der aus der Skizze für die ersten Bit erkennbaren Zuordnung gilt: $$ a_{\rm I3} = q_5 \hspace{0.15cm}\underline {= +1},\hspace{0.2cm}a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},$$ $$a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},\hspace{0.2cm}a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.$$
4. Bei der MSK ist die Symboldauer T gleich der Bitdauer: $$T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm \mu s}} \hspace{0.05cm}.$$ 5. Entsprechend der angegebenen Umcodiervorschrift gilt mit $a_4 = –1$: $$q_5 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},$$
$$q_6 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},$$
$$ q_7 = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1}, $$ $$q_8 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.$$