Difference between revisions of "Aufgaben:Exercise 4.14Z: Offset QPSK vs. MSK"
Line 28: | Line 28: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Wie groß ist die Bitdauer des Quellensignals? |
− | |type=" | + | |type="{}"} |
− | + | $T_B$ = { 1 3% } $μs$ | |
− | |||
− | { | + | {Wie groß ist die Symboldauer der Offset–QPSK? |
+ | |type="{}"} | ||
+ | $O–QPSK: T$ = { 2 3% } $μs$ | ||
+ | |||
+ | {Geben Sie nachfolgende Amplitudenkoeffizienten der Offset–QPSK an. | ||
+ | |type="{}"} | ||
+ | $O–QPSK: a_{I3}$ = { 1 3% } | ||
+ | $a_{Q3}$ = { 1 3% } | ||
+ | $a_{I4}$ = { -1 3% } | ||
+ | $a_{Q4}$ = { +1 3% } | ||
+ | |||
+ | {Wie groß ist die Symboldauer der MSK? | ||
|type="{}"} | |type="{}"} | ||
− | $ | + | $MSK: T$ = { 1 3% } $μs$ |
+ | {Geben Sie die nachfolgenden Amplitudenkoeffizienten der MSK an. | ||
+ | |type="{}"} | ||
+ | $ MSK: a_5$ = { -1 3% } | ||
+ | $a_6$ = { 1 3% } | ||
+ | $a_7$ = { -1 3% } | ||
+ | $a_8$ = { 1 3% } | ||
Line 44: | Line 60: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' | + | '''1.''' Aus der oberen Skizze kann man $T_B = 1 μs$ ablesen. |
− | '''2.''' | + | |
− | '''3.''' | + | '''2.''' Bei QPSK bzw. Offset–QPSK ist aufgrund der Seriell–Parallel–Wandlung die Symboldauer T doppelt so groß wie die Bitdauer: |
− | '''4.''' | + | $$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm \mu s}} \hspace{0.05cm}.$$ |
− | '''5.''' | + | |
− | + | '''3.''' Entsprechend der aus der Skizze für die ersten Bit erkennbaren Zuordnung gilt: | |
− | + | $$ a_{\rm I3} = q_5 \hspace{0.15cm}\underline {= +1},\hspace{0.2cm}a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},$$ | |
+ | $$a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},\hspace{0.2cm}a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.$$ | ||
+ | |||
+ | '''4.''' Bei der MSK ist die Symboldauer T gleich der Bitdauer: | ||
+ | $$T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm \mu s}} \hspace{0.05cm}.$$ | ||
+ | '''5.''' Entsprechend der angegebenen Umcodiervorschrift gilt mit $a_4 = –1$: | ||
+ | $$q_5 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},$$ | ||
+ | $$q_6 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},$$ | ||
+ | $$ q_7 = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1}, $$ | ||
+ | $$q_8 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.$$ | ||
+ | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 15:03, 6 January 2017
Eine Realisierungsmöglichkeit für die MSK bietet die Offset–QPSK (kurz: O–QPSK), wie aus den Blockschaltbildern im Theorieteil hervorgeht.
Beim normalen O–QPSK–Betrieb werden jeweils zwei Bit der Quellensymbolfolge 〈$q_k$〉 einem Bit $a_{Iν}$ im Inphasezweig und sowie einem Bit $a_{Qν}$ im Quadraturzweig zugeordnet.
Die Grafik zeigt diese Seriell–Parallel–Wandlung in den drei oberen Diagrammen für die ersten vier Bit des grün gezeichneten Quellensignals. Dabei ist zu beachten:
- Die Darstellung der O–QPSK gilt für einen rechteckigen Grundimpuls. Mögliche Werte der Koeffizienten $a_{Iν}$ und $a_{Qν}$ sind ±1.
- Durchläuft der Index k der Quellensymbole die Werte 1 bis 8, so nimmt die Variable ν nur die Werte 1 ... 4 an.
- Die Skizze berücksichtigt den Zeitversatz (Offset) für den Quadraturzweig.
Bei der MSK–Realisierung mittels O–QPSK ist eine Umcodierung erforderlich. Hierbei gilt mit $q_k$ ∈ {+1, –1} und $a_k$ ∈ {+1, –1}: $$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.$$ Beispielsweise erhält man unter der Annahme $a-0 = +1$: $$a_1 = a_0 \cdot q_1 = +1,\hspace{0.2cm}a_2 = -a_1 \cdot q_2 = +1,$$ $$a_3 = a_2 \cdot q_3 = -1,\hspace{0.2cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.$$ Weiter ist zu berücksichtigen:
- Die Koeffizienten $a_0 = +1$, $a_2 = +1$, $a_4 = –1$ sowie die noch zu berechnenden Koeffizienten a6 und a8 werden dem Signal $s_I(t)$ zugeordnet.
- Dagegen werden die Koeffizienten $a_1 = +1$ und $a_3 = –1$ sowie alle weiteren Koeffizienten mit ungeradem Index dem Signal sQ(t) beaufschlagt.
Hinweis: Die Aufgabe gehört zu Kapitel 4.4. In Aufgabe A4.13 wird die zugehörige Phasenfunktion $ϕ(t)$ ermittelt, wobei wiederum der (auf 1 normierte) MSK–Grundimpuls zugrunde gelegt wird: $$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}. \\ \end{array}$$
Fragebogen
Musterlösung
2. Bei QPSK bzw. Offset–QPSK ist aufgrund der Seriell–Parallel–Wandlung die Symboldauer T doppelt so groß wie die Bitdauer: $$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm \mu s}} \hspace{0.05cm}.$$
3. Entsprechend der aus der Skizze für die ersten Bit erkennbaren Zuordnung gilt: $$ a_{\rm I3} = q_5 \hspace{0.15cm}\underline {= +1},\hspace{0.2cm}a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},$$ $$a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},\hspace{0.2cm}a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.$$
4. Bei der MSK ist die Symboldauer T gleich der Bitdauer: $$T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm \mu s}} \hspace{0.05cm}.$$ 5. Entsprechend der angegebenen Umcodiervorschrift gilt mit $a_4 = –1$: $$q_5 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},$$ $$q_6 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},$$ $$ q_7 = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1}, $$ $$q_8 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.$$