Difference between revisions of "Channel Coding/Decoding of Linear Block Codes"

From LNTwww
Line 96: Line 96:
 
:<math>\underline{s} \hspace{-0.15cm} =  \hspace{-0.15cm}(0, 1, 1)\hspace{0.10cm} \Rightarrow\hspace{0.10cm} u_4{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm};\hspace{0.82cm}\underline{s} = (1, 1, 1)\hspace{0.10cm} \Rightarrow\hspace{0.10cm} u_2{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm}. </math>{{end}}<br>
 
:<math>\underline{s} \hspace{-0.15cm} =  \hspace{-0.15cm}(0, 1, 1)\hspace{0.10cm} \Rightarrow\hspace{0.10cm} u_4{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm};\hspace{0.82cm}\underline{s} = (1, 1, 1)\hspace{0.10cm} \Rightarrow\hspace{0.10cm} u_2{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm}. </math>{{end}}<br>
  
 +
== Verallgemeinerung der Syndromdecodierung (1) ==
 +
<br>
 +
Wir fassen die Ergebnisse der letzten Seiten zusammen, wobei wir weiterhin vom BSC&ndash;Kanalmodell ausgehen. Das bedeutet: <i><u>y</u></i> und <i><u>e</u></i> sind Elemente von GF(2<sup><i>n</i></sup>), während die möglichen Codeworte <i><u>x</u><sub>i</sub></i> zum Code <i>C</i> gehören, der einen (<i>n</i> &ndash; <i>k</i>)&ndash;dimensionalen Untervektorraum von GF(2<sup><i>n</i></sup>) darstellt. Dann gilt:
  
 +
*Die Syndromdecodierung ist eine Realisierungsmöglichkeit der Maximum&ndash;Likelihood&ndash;Detektion von Blockcodes. Man entscheidet sich für das Codewort mit der geringsten Hamming&ndash;Distanz zum Empfangswort:
  
 +
::<math>\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}.</math>
  
 +
*Die Syndromdecodierung  ist aber auch die Suche nach dem wahrscheinlichsten Fehlervektor <i><u>e</u></i>, der die Bedingung <i><u>e</u></i> &middot; <b>H</b><sup>T</sup> = <i><u>s</u></i> erfüllt. Das <i>Syndrom</i> liegt dabei durch <i><u>s</u></i>&nbsp;=&nbsp;<i><u>y</u></i>&nbsp;&middot;&nbsp;<b>H</b><sup>T</sup> fest.
  
 +
*Mit dem Hamming&ndash;Gewicht <i>w</i><sub>H</sub>(<i><u>e</u></i>) kann die zweite Interpretation auch wie folgt mathematisch formuliert werden:
  
 +
::<math>\underline{z} = \underline{y} + {\rm arg} \min_{\underline{e}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} {\rm GF}(2^n)} \hspace{0.1cm}
 +
w_{\rm H}(\underline{e}_{\hspace{0.03cm}i})\hspace{0.05cm}.</math>
  
 +
Zu beachten ist, dass der Fehlervektor <i><u>e</u></i> ebenso wie der Empfangsvektor <i><u>y</u></i> ein Element von GF(2<sup><i>n</i></sup>) ist im Gegensatz zum Syndrom <i><u>s</u></i>&nbsp;&#8712;&nbsp;GF(2<sup><i>m</i></sup>)  mit der Anzahl <i>m</i>&nbsp;=&nbsp;<i>n</i>&nbsp;&ndash;&nbsp;<i>k</i> der Prüfgleichungen. Das bedeutet,
 +
*dass die Zuordnung zwischen Syndrom <i><u>s</u></i> und Fehlervektor <i><u>e</u></i> nicht eindeutig ist, sondern<br>
  
 +
*dass jeweils 2<sup><i>k</i></sup> Fehlervektoren zum gleichen Syndrom <i><u>s</u></i> führen, die man zu einer Nebenklasse (englisch: <i>Coset</i>) zusammenfasst.<br>
 +
:[[File:P ID2361 KC T 1 5 S3 v2.png|Aufteilung der 2<sup><i>k</i></sup> Fehlervektoren in <i>Cosets</i>|class=fit]]<br>
  
 +
Die Grafik verdeutlicht diesen Sachverhalt am Beispiel <i>n</i> = 5 und <i>k</i> = 2 &#8658; <i>m</i> = <i>n</i> &ndash; <i>k</i> = 3.
 +
*Die insgesamt 2<sup><i>n</i></sup> = 32 möglichen Fehlervektoren <i><u>e</u></i> werden in 2<sup><i>m</i></sup> = 8 Nebenklassen <i>&Psi;</i><sub>0</sub>, ... , <i>&Psi;</i><sub>7</sub> aufgeteilt, auch &bdquo;<i>Cosets</i>&rdquo; genannt. Explizit gezeichnet sind hier nur die Cosets <i>&Psi;</i><sub>0</sub> und <i>&Psi;</i><sub>5</sub>.<br>
  
 +
*Alle 2<sup><i>k</i></sup> = 4 Fehlervektoren des Cosets <i>&Psi;<sub>&mu;</sub></i> führen zum gleichen Syndrom <i><u>s</u></i><sub><i>&mu;</i></sub>. Zudem hat jede Nebenklasse einen Anführer <i><u>e</u></i><sub><i>&mu;</i></sub>, nämlich denjenigen mit dem minimalen Hamming&ndash;Gewicht.<br><br>
  
 +
Die Vorgehensweise bei der Syndromdecodierung wird auf den nächsten Seiten nochmals ausführlich an einem Beispiel erläutert.<br>
  
 +
== Verallgemeinerung der Syndromdecodierung (2) ==
 +
<br>
 +
Die Syndromdecodierung wird hier am Beispiel eines systematischen (5,&nbsp;2,&nbsp;3)&ndash;Codes beschrieben:
  
 +
:<math>\mathcal{C} = \{ (0, 0, 0, 0, 0) \hspace{0.05cm},\hspace{0.15cm}(0, 1, 0, 1, 1) \hspace{0.05cm},\hspace{0.15cm}(1, 0, 1, 1, 0)  \hspace{0.05cm},\hspace{0.15cm}(1, 1, 1, 0, 1) \}\hspace{0.05cm}.</math>
  
 +
Generatormatrix und Prüfmatrix lauten:
 +
 +
:<math>{ \boldsymbol{\rm G}}
 +
=  \begin{pmatrix}
 +
1 &0 &1 &1 &0 \\
 +
0 &1 &0 &1 &1
 +
\end{pmatrix} \hspace{0.05cm}, \hspace{0.4cm} { \boldsymbol{\rm H}}
 +
=  \begin{pmatrix}
 +
1 &0 &1 &0 &0 \\
 +
1 &1 &0 &1 &0 \\
 +
0 &1 &0 &0 &1
 +
\end{pmatrix} \hspace{0.05cm}.</math>
 +
 +
Die Tabelle fasst das Endergebnis zusammen.<br>
 +
 +
[[File:P ID2362 KC T 1 5 S3b v2.png|Beispielhafte (5, 2, 3)–Syndromtabelle  mit Nebenklassen|class=fit]]<br>
 +
 +
Zur Herleitung dieser Tabelle ist anzumerken:
 +
*Die Zeile 1 bezieht sich auf das Syndrom <i><u>s</u></i><sub>0</sub> = (0, 0, 0) und die dazugehörige Nebenklasse <i>&Psi;</i><sub>0</sub>. Am wahrscheinlichsten ist hier die Fehlerfolge (0, 0, 0, 0, 0) &#8658; kein Bitfehler, die wir als Nebenklassenanführer <i><u>e</u></i><sub>0</sub> bezeichnen. Auch die weiteren Einträge in der ersten Zeile, nämlich (1, 0, 1, 1, 0 ),  (0, 1, 0, 1, 1) und (1, 1, 1, 0, 1 ), liefern jeweils das Syndrom <i><u>s</u></i><sub>0</sub> = (0, 0, 0), ergeben sich aber nur mit mindestens drei Bitfehlern und sind entsprechend unwahrscheinlich.<br>
 +
 +
*In den Zeilen 2 bis 6 beinhaltet der jeweilige Nebenklassenanführer <i><u>e</u></i><sub><i>&mu;</i></sub> genau eine einzige Eins. Dementsprechend ist <i><u>e</u></i><sub><i>&mu;</i></sub> stets das wahrscheinlichste Fehlermuster der Klasse <i>&Psi;<sub>&mu;</sub></i> (<i>&mu;</i> = 1, ... , 5). Die &bdquo;Mitläufer&rdquo; ergeben sich erst bei mindestens zwei Übertragungsfehlern.<br>
 +
 +
*Das Syndrom <i><u>s</u></i><sub>6</sub> = (1, 0, 1) ist mit nur einem Bitfehler nicht möglich. Bei der Erstellung obiger Tabelle wurden daraufhin alle &bdquo;5 über 2&rdquo; = 10 Fehlermuster <i><u>e</u></i> mit Gewicht <i>w</i><sub>H</sub>(<i><u>e</u></i>)  = 2 betrachtet. Die zuerst gefundene Folge mit  Syndrom <i><u>s</u></i><sub>6</sub> = (1, 0, 1) wurde als <i><u>e</u></i><sub>6</sub> = (1, 1, 0, 0, 0)  ausgewählt. Bei anderer Probierreihenfolge hätte sich auch die Folge (0, 0, 1, 0, 1) aus <i>&Psi;</i><sub>6</sub> ergeben können.<br>
 +
 +
*Ähnlich wurde bei der Bestimmung des Anführers <i><u>e</u></i><sub>7</sub> = (0, 1, 1, 0, 0) der Nebenklasse <i>&Psi;</i><sub>7</sub> vorgegangen, die durch das einheitliche Syndrom <i><u>s</u></i><sub>7</sub> = (1, 1, 1) gekennzeichnet ist. Auch in der Klasse <i>&Psi;</i><sub>7</sub> gibt es eine weitere Folge mit Hamming&ndash;Gewicht <i>w</i><sub>H</sub>(<i><u>e</u></i>)  = 2, nämlich (1, 0, 0, 0, 1).<br><br>
 +
 +
Die Beschreibung wird auf der nächsten Seite fortgesetzt.<br>
  
  
 
{{Display}}
 
{{Display}}

Revision as of 22:45, 9 January 2017

Blockschaltbild und Voraussetzungen


Wir gehen von dem bereits im Kapitel 1.2 gezeigten Blockschaltbild aus, wobei als Kanalmodell meist der Binary Symmetric Channel (BSC) verwendet wird. Zur Codewortschätzung verwenden wir den Maximum–Likelihood–Entscheider (ML), der für binäre Codes ⇒ x ∈ GF(2n) das gleiche Ergebnis liefert wie der MAP–Empfänger.

Blockschaltbild zu Kapitel 1.5 und 1.6

Die Aufgabe des Kanaldecoders kann wie folgt beschrieben werden:

  • Der Vektor υ nach der Decodierung (an der Sinke) soll möglichst gut mit dem Informationswort u übereinstimmen. Das heißt: Die Blockfehlerwahrscheinlichkeit soll möglichst klein sein:
\[{ \rm Pr(Blockfehler)} = { \rm Pr}( \underline{v} \ne \underline{u}) \stackrel{!}{=} { \rm Minimum}\hspace{0.05cm}.\]
  • Aufgrund der deterministischen Zuweisungen x = enc(u) bzw. υ = enc–1(z) gilt aber auch:
\[{ \rm Pr(Blockfehler)} = { \rm Pr}( \underline{z} \ne \underline{x}) \stackrel{!}{=} { \rm Minimum}\hspace{0.05cm}.\]
  • Gesucht ist somit das zum gegebenen Empfangswort y = x + e am wahrscheinlichsten gesendete Codewort xi, das als Ergebnis z weiter gegeben wird:
\[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}|\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.\]
  • Beim BSC–Kanal gilt sowohl xi ∈ GF(2n) als auch y ∈ GF(2n), so dass die ML–Regel auch mit der Hamming–Distanz dH(y, xi) geschrieben werden kann:
\[\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}.\]

Prinzip der Syndromdecodierung


Vorausgesetzt wird hier ein (n, k)–Blockcode mit der Prüfmatrix H und den systematischen Codeworten

\[\underline{x}\hspace{0.05cm} = (x_1, x_2, ... \hspace{0.05cm}, x_i, ... \hspace{0.05cm}, x_n) = (u_1, u_2, ... \hspace{0.05cm}, u_k, p_1, ... \hspace{0.05cm}, p_{n-k})\hspace{0.05cm}. \]

Mit dem Fehlervektor e gilt dann für das Empfangswort:

\[\underline{y} = \underline{x} + \underline{e} \hspace{0.05cm}, \hspace{0.4cm} \underline{y} \in \hspace{0.1cm} {\rm GF}(2^n) \hspace{0.05cm}, \hspace{0.1cm} \underline{x} \in \hspace{0.1cm} {\rm GF}(2^n) \hspace{0.05cm}, \hspace{0.1cm} \underline{e} \in \hspace{0.1cm} {\rm GF}(2^n) \hspace{0.05cm}.\]

Ein Bitfehler an der Position i, das heißt yixi, wird ausgedrückt durch den Fehlerkoeffizienten ei = 1.

: Das Syndrom s = (s0, s1, ... , sm–1) berechnet sich (als Zeilen– bzw. Spaltenvektor) aus dem Empfangswort y und der Prüfmatrix H in folgender Weise:

\[\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T}\hspace{0.3cm}{\rm bzw.}\hspace{0.3cm} \underline{s}^{\rm T} = { \boldsymbol{\rm H}} \cdot \underline{y}^{\rm T}\hspace{0.05cm}.\]

Die Vektorlänge von s ist gleich m = nk (Zeilenzahl von H).


Das Syndrom s zeigt folgende Charakteristika:

  • Wegen x · HT = 0 hängt s nicht vom Codewort x ab, sondern allein vom Fehlervektor e:
\[\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} = \hspace{0.05cm} \underline{x} \cdot { \boldsymbol{\rm H}}^{\rm T} + \hspace{0.05cm} \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T} = \hspace{0.05cm} \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T} \hspace{0.05cm}.\]
  • Bei hinreichend wenig Bitfehlern liefert s einen eindeutigen Hinweis auf die Fehlerpositionen und ermöglicht so eine vollständige Fehlerkorrektur.

: Ausgehend vom systematischen (7, 4, 3)–Hamming–Code erhält man beispielsweise für den Empfangsvektor y = (0, 1, 1, 1, 0, 0, 1) das folgende Ergebnis:

\[{ \boldsymbol{\rm H}} \cdot \underline{y}^{\rm T} = \begin{pmatrix} 1 &1 &1 &0 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &1 &0 &1 &0 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \underline{s}^{\rm T} \hspace{0.05cm}.\]

Vergleicht man das Syndrom mit den Prüfgleichungen des Hamming–Codes, so erkennt man, dass

  • am wahrscheinlichsten das vierte Symbol (x4 = u4) des Codewortes verfälscht wurde,
  • der Codewortschätzer somit das Ergebnis z = (0, 1, 1, 0, 0, 0, 1) liefern wird.
  • die Entscheidung nur dann richtig ist, wenn bei der Übertragung nur ein Bit verfälscht wurde.

Nachfolgend sind die erforderlichen Korrekturen für den (7, 4, 3)–Hamming–Code angegeben, die sich aus dem errechneten Syndrom s entsprechend den Spalten der Prüfmatrix ergeben:

\[\underline{s} \hspace{-0.15cm} = \hspace{-0.15cm} (0, 0, 0) \hspace{0.10cm} \Rightarrow\hspace{0.10cm}{\rm keine\hspace{0.15cm} Korrektur}\hspace{0.05cm};\hspace{0.4cm}\underline{s} = (1, 0, 0)\hspace{0.10cm} \Rightarrow\hspace{0.10cm}p_1{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm};\] \[\underline{s} \hspace{-0.15cm} = \hspace{-0.15cm}(0, 0, 1)\hspace{0.10cm} \Rightarrow\hspace{0.10cm} p_3{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm};\hspace{0.82cm}\underline{s} = (1, 0, 1)\hspace{0.10cm} \Rightarrow\hspace{0.10cm} u_1{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm};\] \[\underline{s} \hspace{-0.15cm} = \hspace{-0.15cm}(0, 1, 0)\hspace{0.10cm} \Rightarrow\hspace{0.10cm} p_2{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm};\hspace{0.82cm}\underline{s} = (1, 1, 0)\hspace{0.10cm} \Rightarrow\hspace{0.10cm} u_3{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm};\]

\[\underline{s} \hspace{-0.15cm} = \hspace{-0.15cm}(0, 1, 1)\hspace{0.10cm} \Rightarrow\hspace{0.10cm} u_4{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm};\hspace{0.82cm}\underline{s} = (1, 1, 1)\hspace{0.10cm} \Rightarrow\hspace{0.10cm} u_2{\rm \hspace{0.15cm} invertieren}\hspace{0.05cm}. \]


Verallgemeinerung der Syndromdecodierung (1)


Wir fassen die Ergebnisse der letzten Seiten zusammen, wobei wir weiterhin vom BSC–Kanalmodell ausgehen. Das bedeutet: y und e sind Elemente von GF(2n), während die möglichen Codeworte xi zum Code C gehören, der einen (nk)–dimensionalen Untervektorraum von GF(2n) darstellt. Dann gilt:

  • Die Syndromdecodierung ist eine Realisierungsmöglichkeit der Maximum–Likelihood–Detektion von Blockcodes. Man entscheidet sich für das Codewort mit der geringsten Hamming–Distanz zum Empfangswort:
\[\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}.\]
  • Die Syndromdecodierung ist aber auch die Suche nach dem wahrscheinlichsten Fehlervektor e, der die Bedingung e · HT = s erfüllt. Das Syndrom liegt dabei durch s = y · HT fest.
  • Mit dem Hamming–Gewicht wH(e) kann die zweite Interpretation auch wie folgt mathematisch formuliert werden:
\[\underline{z} = \underline{y} + {\rm arg} \min_{\underline{e}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} {\rm GF}(2^n)} \hspace{0.1cm} w_{\rm H}(\underline{e}_{\hspace{0.03cm}i})\hspace{0.05cm}.\]

Zu beachten ist, dass der Fehlervektor e ebenso wie der Empfangsvektor y ein Element von GF(2n) ist im Gegensatz zum Syndrom s ∈ GF(2m) mit der Anzahl m = n – k der Prüfgleichungen. Das bedeutet,

  • dass die Zuordnung zwischen Syndrom s und Fehlervektor e nicht eindeutig ist, sondern
  • dass jeweils 2k Fehlervektoren zum gleichen Syndrom s führen, die man zu einer Nebenklasse (englisch: Coset) zusammenfasst.
Aufteilung der 2k Fehlervektoren in Cosets

Die Grafik verdeutlicht diesen Sachverhalt am Beispiel n = 5 und k = 2 ⇒ m = nk = 3.

  • Die insgesamt 2n = 32 möglichen Fehlervektoren e werden in 2m = 8 Nebenklassen Ψ0, ... , Ψ7 aufgeteilt, auch „Cosets” genannt. Explizit gezeichnet sind hier nur die Cosets Ψ0 und Ψ5.
  • Alle 2k = 4 Fehlervektoren des Cosets Ψμ führen zum gleichen Syndrom sμ. Zudem hat jede Nebenklasse einen Anführer eμ, nämlich denjenigen mit dem minimalen Hamming–Gewicht.

Die Vorgehensweise bei der Syndromdecodierung wird auf den nächsten Seiten nochmals ausführlich an einem Beispiel erläutert.

Verallgemeinerung der Syndromdecodierung (2)


Die Syndromdecodierung wird hier am Beispiel eines systematischen (5, 2, 3)–Codes beschrieben:

\[\mathcal{C} = \{ (0, 0, 0, 0, 0) \hspace{0.05cm},\hspace{0.15cm}(0, 1, 0, 1, 1) \hspace{0.05cm},\hspace{0.15cm}(1, 0, 1, 1, 0) \hspace{0.05cm},\hspace{0.15cm}(1, 1, 1, 0, 1) \}\hspace{0.05cm}.\]

Generatormatrix und Prüfmatrix lauten:

\[{ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &1 &1 &0 \\ 0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.4cm} { \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &1 &0 &0 \\ 1 &1 &0 &1 &0 \\ 0 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.\]

Die Tabelle fasst das Endergebnis zusammen.

Beispielhafte (5, 2, 3)–Syndromtabelle mit Nebenklassen

Zur Herleitung dieser Tabelle ist anzumerken:

  • Die Zeile 1 bezieht sich auf das Syndrom s0 = (0, 0, 0) und die dazugehörige Nebenklasse Ψ0. Am wahrscheinlichsten ist hier die Fehlerfolge (0, 0, 0, 0, 0) ⇒ kein Bitfehler, die wir als Nebenklassenanführer e0 bezeichnen. Auch die weiteren Einträge in der ersten Zeile, nämlich (1, 0, 1, 1, 0 ), (0, 1, 0, 1, 1) und (1, 1, 1, 0, 1 ), liefern jeweils das Syndrom s0 = (0, 0, 0), ergeben sich aber nur mit mindestens drei Bitfehlern und sind entsprechend unwahrscheinlich.
  • In den Zeilen 2 bis 6 beinhaltet der jeweilige Nebenklassenanführer eμ genau eine einzige Eins. Dementsprechend ist eμ stets das wahrscheinlichste Fehlermuster der Klasse Ψμ (μ = 1, ... , 5). Die „Mitläufer” ergeben sich erst bei mindestens zwei Übertragungsfehlern.
  • Das Syndrom s6 = (1, 0, 1) ist mit nur einem Bitfehler nicht möglich. Bei der Erstellung obiger Tabelle wurden daraufhin alle „5 über 2” = 10 Fehlermuster e mit Gewicht wH(e) = 2 betrachtet. Die zuerst gefundene Folge mit Syndrom s6 = (1, 0, 1) wurde als e6 = (1, 1, 0, 0, 0) ausgewählt. Bei anderer Probierreihenfolge hätte sich auch die Folge (0, 0, 1, 0, 1) aus Ψ6 ergeben können.
  • Ähnlich wurde bei der Bestimmung des Anführers e7 = (0, 1, 1, 0, 0) der Nebenklasse Ψ7 vorgegangen, die durch das einheitliche Syndrom s7 = (1, 1, 1) gekennzeichnet ist. Auch in der Klasse Ψ7 gibt es eine weitere Folge mit Hamming–Gewicht wH(e) = 2, nämlich (1, 0, 0, 0, 1).

Die Beschreibung wird auf der nächsten Seite fortgesetzt.