Difference between revisions of "Channel Coding/Some Basics of Algebra"

From LNTwww
 
(59 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Reed–Solomon–Codes und deren Decodierung
+
|Untermenü=Reed–Solomon–Codes and Their Decoding
|Vorherige Seite=Informationstheoretische Grenzen der Kanalcodierung
+
|Vorherige Seite=Information Theoretical Limits of Channel Coding
|Nächste Seite=Erweiterungskörper
+
|Nächste Seite=Extension Field
 
}}
 
}}
  
== Definition eines Galoisfeldes ==
+
== # OVERVIEW OF THE SECOND MAIN CHAPTER # ==
 
<br>
 
<br>
Bevor wir uns der Beschreibung der Reed&ndash;Solomon&ndash;Codes zuwenden können, benötigen wir einige algebraische Grundbegriffe. Beginnen wir mit den Eigenschaften eines  Galoisfeldes GF(<i>q</i>), benannt nach dem Franzosen Évariste Galois, dessen Biografie für einen Mathematiker eher ungewöhnlich ist.<br>
+
This chapter discusses the&nbsp; &raquo;Reed-Solomon codes&laquo;,&nbsp; invented in the early 1960s by&nbsp; [https://en.wikipedia.org/wiki/Irving_S._Reed $\text{Irving Stoy Reed}$]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Gustave_Solomon $\text{Gustave Solomon}$].&nbsp; Unlike binary block codes,&nbsp; these codes are based on a Galois field &nbsp; ${\rm GF}(2^m)$ &nbsp; with&nbsp; $m > 1$.&nbsp; So they work with multi-level symbols instead of binary characters&nbsp; ("bits").
  
{{Definition}}''':''' Ein <b>Galoisfeld</b> GF(<i>q</i>) ist ein endlicher Körper mit <i>q</i> Elementen <i>z</i><sub>0</sub>, <i>z</i><sub>1</sub>, ... , <i>z</i><sub><i>q</i>&ndash;1</sub>, wenn alle acht nachfolgend aufgeführten Aussagen hinsichtlich der Addition (&bdquo;+&rdquo;) und der Multiplikation (&bdquo;&middot;&rdquo;)  zutreffen.  Addition und Multiplikation sind hierbei modulo <i>q</i> zu verstehen.<br>
+
Specifically,&nbsp; this chapter covers:
  
<b>(A)</b>&nbsp;&nbsp;GF(<i>q</i>) ist in sich abgeschlossen &nbsp;&#8658;&nbsp; <span style="font-weight: bold;">Closure</span>:
+
*The basics of&nbsp; &raquo;linear algebra&laquo;: &nbsp; &raquo;set&laquo;, &nbsp; &raquo;group&laquo;, &nbsp; &raquo;ring&laquo;, &nbsp; &raquo;field&laquo;,&nbsp; finite field&laquo;,
  
:<math>\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} z_j \in {\rm GF}(q):
+
*the definition of&nbsp; &raquo;extension fields&laquo; &nbsp; ⇒ &nbsp; ${\rm GF}(2^m)$&nbsp; and the corresponding operations,
 +
 
 +
*the meaning of&nbsp; &raquo;irreducible polynomials&laquo; &nbsp; and&nbsp; &raquo;primitive elements&laquo;,
 +
 
 +
*the&nbsp; &raquo;description and realization possibilities&laquo; &nbsp; of a Reed-Solomon code,
 +
 
 +
*the error correction of such a code at the&nbsp; &raquo;binary ersaure channel&laquo; &nbsp; $\rm (BEC)$,
 +
 
 +
*the decoding using the&nbsp; &raquo;Error Locator Polynomial &nbsp; ⇒ &nbsp; "Bounded Distance Decoding" &nbsp; $\rm (BDD)$,
 +
 
 +
*the&nbsp; &raquo;block error probability&laquo; &nbsp; of Reed-Solomon codes&nbsp; and &nbsp; &raquo;typical applications&laquo;.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
== Definition of a Galois field ==
 +
<br>
 +
Before we can turn to the description of&nbsp; Reed&ndash;Solomon codes,&nbsp; we need some basic algebraic notions.&nbsp; We begin with the properties of the Galois field &nbsp; ${\rm GF}(q)$,&nbsp; named after the Frenchman&nbsp; [https://en.wikipedia.org/wiki/%C3%89variste_Galois $\text{Évariste Galois}$], whose biography is rather unusual for a mathematician.<br>
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;  A &nbsp; $\rm Galois\:field$&nbsp; ${\rm GF}(q)$&nbsp; is a&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Group.2C_ring.2C_field_-_basic_algebraic_concepts|$\text{finite field}$]]&nbsp; with&nbsp; $q$&nbsp; elements&nbsp; $z_0$,&nbsp; $z_1$,&nbsp; ... ,&nbsp; $z_{q-1}$, if the eight statements listed below &nbsp;$\rm (A)$&nbsp; ... &nbsp;$\rm (H)$&nbsp; with respect to&nbsp; "addition" &nbsp; &rArr; &nbsp; "$+$" &nbsp; and&nbsp; "multiplication"&nbsp; &rArr; &nbsp;"$\hspace{0.05cm}\cdot \hspace{0.05cm}$" &nbsp; are true. 
 +
*Addition and multiplication are to be understood here modulo&nbsp; $q$&nbsp;.
 +
 
 +
*The&nbsp; $\rm order$&nbsp; $q$&nbsp; indicates the number of elements of the Galois field.}}
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Criteria of a Galois field:}$&nbsp;
 +
 +
$\rm (A)$&nbsp; ${\rm GF}(q)$&nbsp; is closed $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Closure$:
 +
 
 +
::<math>\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} z_j \in {\rm GF}(q)\text{:}
 
\hspace{0.25cm}(z_i + z_j)\in {\rm GF}(q),\hspace{0.15cm}(z_i \cdot z_j)\in {\rm GF}(q)
 
\hspace{0.25cm}(z_i + z_j)\in {\rm GF}(q),\hspace{0.15cm}(z_i \cdot z_j)\in {\rm GF}(q)
 
\hspace{0.05cm}. </math>
 
\hspace{0.05cm}. </math>
  
<b>(B)</b>&nbsp;&nbsp;Es gibt ein hinsichtlich der Addition neutrales Element <i>N</i><sub>A</sub>, das man oft auch als das <i>Nullelement</i> bezeichnet &nbsp;&#8658;&nbsp; <span style="font-weight: bold;">Identity for &bdquo;+&rdquo;</span>:
+
$\rm (B)$&nbsp; There is a neutral element&nbsp; $N_{\rm A}$&nbsp; with respect to addition,&nbsp; the so-called&nbsp; "zero element" $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Identity \ for \ "\hspace{-0.05cm}+\hspace{0.05cm}"$:
  
:<math>\exists \hspace{0.15cm} z_j \in {\rm GF}(q) :
+
::<math>\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:}
\hspace{0.25cm}z_i + z_j  = z_i \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_j  = N_{\rm A} = {\rm "0"} \hspace{0.25cm}{\rm (Nullelement)}
+
\hspace{0.25cm}z_i + z_j  = z_i \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_j  = N_{\rm A} = \text{ 0} \hspace{0.05cm}.</math>
\hspace{0.05cm}.</math>
 
  
<b>(C)</b>&nbsp;&nbsp;Es gibt ein hinsichtlich der Multiplikation neutrales Element <i>N</i><sub>M</sub>, das  oft auch als das <i>Einselement</i> bezeichnet wird &nbsp;&#8658;&nbsp; <span style="font-weight: bold;">Identity for &bdquo;&middot;&rdquo;</span>:
+
$\rm (C)$&nbsp; There is a neutral element&nbsp; $N_{\rm M}$&nbsp; with respect to multiplication,&nbsp; the so-called&nbsp; "identity element" $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Identity \ for \ "\hspace{-0.05cm}&middot;\hspace{0.05cm}"$:
  
:<math>\exists \hspace{0.15cm} z_j \in {\rm GF}(q) :
+
::<math>\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:}
\hspace{0.25cm}z_i \cdot z_j = z_i \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_j  = N_{\rm M} = {\rm "1"} \hspace{0.25cm}{\rm (Einselement)}
+
\hspace{0.25cm}z_i \cdot z_j = z_i \hspace{0.3cm}\Rightarrow \hspace{0.3cm} z_j  = N_{\rm M} = {1}  
 
\hspace{0.05cm}. </math>
 
\hspace{0.05cm}. </math>
  
<b>(D)</b>&nbsp;&nbsp;Für jedes <i>z<sub>i</sub></i> existiert eine additive Inverse &nbsp;&#8658;&nbsp; <span style="font-weight: bold;">Inverse for &bdquo;+&rdquo;</span>:
+
$\rm (D)$&nbsp; For each&nbsp; $z_i$&nbsp; there exists an&nbsp; "additive inverse" &nbsp; ${\rm Inv_A}(z_i)$  $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Inverse \ for \ "\hspace{-0.05cm}+\hspace{0.05cm}"$:
 
 
:<math>\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q):
 
\hspace{0.25cm}z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {\rm "0"} </math>
 
  
:<math> \Rightarrow \hspace{0.25cm}{\rm kurz:}\hspace{0.15cm}
+
::<math>\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}
 +
\hspace{0.25cm}z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {0}  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{short:}\hspace{0.3cm}
 
{\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}. </math>
 
{\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}. </math>
  
<b>(E)</b>&nbsp;&nbsp;Für jedes <i>z<sub>i</sub></i> mit Ausnahme des Nullelements existiert die multiplikative Inverse &#8658; <span style="font-weight: bold;">Inverse for &bdquo;&middot;&rdquo;</span>:
+
$\rm (E)$&nbsp; For each&nbsp; $z_i$&nbsp; except the zero element,&nbsp; there exists the&nbsp; "multiplicative inverse" &nbsp; ${\rm Inv_M}(z_i)$ $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Inverse \ for \ "\hspace{-0.05cm}\cdot\hspace{0.05cm}"$:
 
 
:<math>\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A}, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q):
 
\hspace{0.25cm}z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {\rm "1"}</math>
 
  
:<math>\Rightarrow \hspace{0.25cm}{\rm kurz:}\hspace{0.15cm}
+
::<math>\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A}, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}
 +
\hspace{0.25cm}z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {1}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{short:}\hspace{0.3cm}
 
{\rm Inv_M}(z_i) = z_i^{-1}
 
{\rm Inv_M}(z_i) = z_i^{-1}
 
\hspace{0.05cm}. </math>
 
\hspace{0.05cm}. </math>
  
<b>(F)</b>&nbsp;&nbsp;Für Addition und Multiplikation gilt jeweils das Kommutativgesetz &nbsp;&#8658;&nbsp; <span style="font-weight: bold;">Commutative Law</span>:
+
$\rm (F)$&nbsp; For addition and multiplication applies in each case the&nbsp; "$\rm Commutative \ Law$":
  
:<math>\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} z_j \in {\rm GF}(q):
+
::<math>\forall \hspace{0.15cm}  z_i,\hspace{0.15cm} z_j \in {\rm GF}(q)\text{:}
 
\hspace{0.25cm}z_i + z_j = z_j + z_i ,\hspace{0.15cm}z_i \cdot z_j = z_j \cdot z_i
 
\hspace{0.25cm}z_i + z_j = z_j + z_i ,\hspace{0.15cm}z_i \cdot z_j = z_j \cdot z_i
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
<b>(G)</b>&nbsp;&nbsp;Für Addition und Multiplikation gilt jeweils das Assoziativgesetz &nbsp;&#8658;&nbsp; <span style="font-weight: bold;">Associative Law</span>:
+
$\rm (G)$&nbsp; For addition and multiplication applies in each case the&nbsp; "$\rm Associative \ Law$":
  
:<math>\forall \hspace{0.15cm}  z_i,\hspace{0.1cm} z_j ,\hspace{0.1cm} z_k \in {\rm GF}(q):
+
::<math>\forall \hspace{0.15cm}  z_i,\hspace{0.1cm} z_j ,\hspace{0.1cm} z_k \in {\rm GF}(q)\text{:}
 
\hspace{0.25cm}(z_i + z_j) + z_k = z_i + (z_j + z_k ),\hspace{0.15cm}(z_i \cdot z_j) \cdot z_k = z_i \cdot (z_j \cdot z_k )
 
\hspace{0.25cm}(z_i + z_j) + z_k = z_i + (z_j + z_k ),\hspace{0.15cm}(z_i \cdot z_j) \cdot z_k = z_i \cdot (z_j \cdot z_k )
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
<b>(H)</b>&nbsp;&nbsp;Für die Kombination &bdquo;Addition &ndash; Multiplikation&rdquo; gilt das Distributivgesetz &nbsp;&#8658;&nbsp; <span style="font-weight: bold;">Distributive Law</span>:
+
$\rm (H)$&nbsp; For the combination&nbsp; "addition &ndash; multiplication"&nbsp; holds the&nbsp; "$\rm Distributive \ Law$":
 
+
::<math>\forall \hspace{0.15cm}  z_i,\hspace{0.15cm} z_j ,\hspace{0.15cm} z_k \in {\rm GF}(q)\text{:}
:<math>\forall \hspace{0.15cm}  z_i,\hspace{0.15cm} z_j ,\hspace{0.15cm} z_k \in {\rm GF}(q):
 
 
\hspace{0.25cm}(z_i + z_j) \cdot z_k = z_i \cdot z_k + z_j \cdot z_k  
 
\hspace{0.25cm}(z_i + z_j) \cdot z_k = z_i \cdot z_k + z_j \cdot z_k  
\hspace{0.05cm}.</math>{{end}}<br>
+
\hspace{0.05cm}.</math>}}<br>
  
Es sei nochmals darauf hingewiesen, dass Addition (&bdquo;+&rdquo;) und Multiplikation (&bdquo;&middot;&rdquo;) modulo <i>q</i> zu verstehen sind. Hierbei bezeichnet die <span style="font-weight: bold;">Ordnung <i>q</i></span>  die Anzahl der Elemente des Galoisfeldes.<br>
 
  
== Beispiele und Eigenschaften von Galoisfeldern ==
+
== Examples and properties of Galois fields ==
 
<br>
 
<br>
Wir überprüfen zunächst, ob für die binäre Zahlenmenge <i>Z</i><sub>2</sub> = {0, 1} &nbsp;&#8658;&nbsp; <i>q</i> = 2 (gültig für den einfachen Binärcode) die auf der letzten Seite genannten acht Kriterien tatsächlich erfüllt werden, so dass man tatsächlich von &bdquo;GF(2)&rdquo; sprechen kann. Sie sehen nachfolgend die Additions&ndash; und Multiplikationstabelle:
+
We first check that for the binary number set&nbsp; $Z_2 = \{0, 1\}$ &nbsp; &#8658; &nbsp; $q=2$ &nbsp; $($valid for the simple binary code$)$
 +
*the eight criteria mentioned in the last section are met,
 +
 +
*so that we can indeed speak of&nbsp; "${\rm GF}(2)$".  
  
:<math>Z_2 = {0, 1 } \hspace{0.35cm} \Rightarrow \hspace{0.35cm}</math>
 
  
<html><style type="text/css">.paddingSpace td {padding:0 15px 0 15px;}</style></html>
+
You can see the addition table and multiplication table below:
<table class="paddingSpace">
 
<td>
 
{| class="wikitable" style="text-align: center; width: 50px; height: 50px;"
 
|-
 
! +
 
! 0
 
! 1
 
|-
 
! 0
 
| 0
 
|| 1
 
|-
 
! 1
 
| 1
 
|| 0
 
|}
 
</td>
 
<td>
 
{| class="wikitable" style="text-align: center; width: 50px; height: 50px;"
 
|-
 
! .
 
! 0
 
! 1
 
|-
 
! 0
 
| 0
 
|| 0
 
|-
 
! 1
 
| 0
 
|| 1
 
|}
 
</td>
 
</table>
 
  
:<math>\hspace{0.35cm} \Rightarrow \hspace{0.35cm}{\rm GF}(2)
+
:$$Z_2 = \{0, 1\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition:      }
\hspace{0.05cm}.</math>
+
\left[ \begin{array}{c|cccccc} + & 0 & 1  \\ \hline
 +
                                                          0 & 0 & 1  \\
 +
                                                          1 & 1 & 0 
 +
\end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication:      }
 +
\left[ \begin{array}{c|cccccc} \cdot & 0 & 1 \\ \hline
 +
                                                          0 & 0 & 0  \\
 +
                                          1 & 0 & 1 
 +
\end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm GF}(2) .
 +
$$
  
Man erkennt aus dieser Darstellung:
+
One can see from this representation:
*Jedes Element der Additions&ndash; und der Multiplikationstabelle von <i>Z</i><sub>2</sub> ist wieder entweder <i>z</i><sub>0</sub> = 0 oder <i>z</i><sub>1</sub> = 1 &nbsp;&#8658;&nbsp; das Kriterium <b>(A)</b> ist erfüllt.<br>
+
#Each element of the addition and multiplication table of&nbsp; $Z_2$&nbsp; is again&nbsp; $z_0 = 0$&nbsp; or&nbsp; $z_0 = 1$ &nbsp; &#8658; &nbsp; the criterion&nbsp; $\rm (A)$&nbsp; is satisfied.<br>
 +
#The set&nbsp; $Z_2$&nbsp; contains the zero element&nbsp; $(\hspace{-0.05cm}N_{\rm A} = z_0 = 0)$&nbsp; and the one element $(\hspace{-0.05cm}N_{\rm M} = z_1 = 1)$&nbsp; &#8658; &nbsp; the criteria&nbsp; $\rm (B)$&nbsp; and&nbsp; $\rm (C)$&nbsp; are satisfied.<br>
 +
#The additive inverses&nbsp; ${\rm Inv_A}(0) = 0$&nbsp; and&nbsp; ${\rm Inv_A}(1) = -1 \ {\rm mod}\  2 = 1$&nbsp; exist and belong to&nbsp; $Z_2$ &nbsp; &#8658; &nbsp; the criterion&nbsp; $\rm (D)$&nbsp; is satisfied.
 +
#Similarly, the multiplicative inverse&nbsp; ${\rm Inv_M}(1) = 1$ &nbsp; &#8658; &nbsp; the criterion&nbsp; $\rm (E)$&nbsp; is satisfied.<br>
 +
#The validity of the commutative law&nbsp; $\rm (F)$&nbsp; in the set&nbsp; $Z_2$&nbsp; can be recognized by the symmetry with respect to the table diagonals.
 +
#The criteria&nbsp; $\rm (G)$&nbsp; and&nbsp; $\rm (H)$&nbsp; are also satisfied here&nbsp; &#8658; &nbsp; all eight criteria are satisfied&nbsp; &#8658; &nbsp; $Z_2 = \rm GF(2)$.<br>
  
*Die Zahlenmenge  <i>Z</i><sub>2</sub> enthält das Nullelement (<i>N</i><sub>A</sub> = <i>z</i><sub>0</sub> = 0) und das Einselement  (<i>N</i><sub>M</sub> = <i>z</i><sub>1</sub> = 1) &nbsp;&#8658;&nbsp; die Kriterien <b>(B)</b> und <b>(C)</b> sind ebenfalls erfüllt.<br>
 
  
*Die additiven Inversen Inv<sub>A</sub>(0) = 0 und Inv<sub>A</sub>(1) = (&ndash;1) mod 2 = 1 existieren und gehören zu  <i>Z</i><sub>2</sub>. Ebenso gibt es die multiplikative Inverse Inv<sub>M</sub>(1) = 1 &nbsp;&#8658;&nbsp; die Kriterien <b>(D)</b> und <b>(E)</b> sind erfüllt.<br>
+
{{GraueBox|TEXT=
 +
$\text{Example 1:}$&nbsp;  The number set&nbsp; $Z_3 = \{0, 1, 2\}$ &nbsp; &#8658; &nbsp; $q = 3$&nbsp; satisfies all eight criteria and is thus a Galois field&nbsp; $\rm GF(3)$:
  
*Die Gültigkeit des Kommutativgesetzes <b>(F)</b> in der Menge <i>Z</i><sub>2</sub> erkennt man an der Symmetrie bezüglich der Tabellendiagonalen. Die Kriterien <b>(G)</b> und <b>(H)</b> werden hier ebenfalls erfüllt.<br><br>
+
:$$Z_3 = \{0, 1, 2\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition:      }
 +
\left[ \begin{array}{c {{!}} cccccc} + & 0 & 1  & 2\\ \hline
 +
                                                          0 & 0 & 1 & 2 \\
 +
                                                          1 & 1 & 2 & 0 \\
 +
                                                          2 & 2 & 0 & 1 
 +
\end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication:      }
 +
\left[ \begin{array}{c {{!}} cccccc} \cdot & 0 & 1  & 2\\ \hline
 +
                                                          0 & 0 & 0 & 0 \\
 +
                                                          1 & 0 & 1 & 2 \\
 +
                                                          2& 0 & 2 & 1
 +
\end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm GF}(3) .
 +
$$}}
  
Die Zahlenmenge <i>Z</i><sub>3</sub> = {0, 1, 2} &nbsp;&#8658;&nbsp; <i>q</i> = 3 erfüllt alle acht Kriterien und ist somit ein Galoisfeld GF(3):
 
  
:<math>Z_3 = \{0, 1, 2 \} \hspace{0.35cm} \Rightarrow \hspace{0.35cm}</math>
+
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp;  In contrast,&nbsp; the number set&nbsp; $Z_4 = \{0, 1, 2, 3\}$ &nbsp; &#8658; &nbsp; $q = 4$&nbsp; is&nbsp; &raquo;'''not'''&laquo;&nbsp; a Galois field.
 +
*The reason for this is that here is no multiplicative inverse to the element&nbsp; $z_2 = 2$.&nbsp; For a Galois field it would have to be true: &nbsp; $2 \cdot {\rm Inv_M}(2) = 1$.
  
<html><style type="text/css">.paddingSpace td {padding:0 15px 0 15px;}</style></html>
+
*But in the multiplication table there is no entry with&nbsp; "$1$"&nbsp; in the third row and third column&nbsp; $($each valid for the multiplicand&nbsp; $z_2 = 2)$.
<table class="paddingSpace">
 
<td>
 
{| class="wikitable" style="text-align: center; width: 50px; height: 50px;"
 
|-
 
! +
 
! 0
 
! 1
 
! 2
 
|-
 
! 0
 
| 0
 
| 1
 
|| 2
 
|-
 
! 1
 
| 1
 
| 2
 
|| 0
 
|-
 
! 2
 
| 2
 
| 0
 
|| 1
 
|}
 
</td>
 
<td>
 
{| class="wikitable" style="text-align: center; width: 50px; height: 50px;"
 
|-
 
! .
 
! 0
 
! 1
 
! 2
 
|-
 
! 0
 
| 0
 
| 0
 
|| 0
 
|-
 
! 1
 
| 0
 
| 1
 
|| 2
 
|-
 
! 2
 
| 0
 
| 2
 
|| 1
 
|}
 
</td>
 
</table>
 
  
:<math>\hspace{0.35cm} \Rightarrow \hspace{0.35cm}{\rm GF}(3)
+
:$$Z_4 = \{0, 1, 2, 3\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition:      }
\hspace{0.05cm}.  </math>
+
\left[ \begin{array}{c {{!}} cccccc} + & 0 & 1  & 2 & 3\\ \hline
 +
                                                          0 & 0 & 1 & 2 & 3\\
 +
                                                          1 & 1 & 2 & 3 & 0\\
 +
                                                          2 & 2 & 3 & 0 & 1\\
 +
                                                          3 & 3 & 0 & 1 & 2
 +
\end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication:      }
 +
\left[ \begin{array}{c {{!}} cccccc} \cdot& 0 & 1 & 2 & 3\\ \hline
 +
                                                          0 & 0 & 0 & 0 & 0\\
 +
                                                          1 & 0 & 1 & 2 & 3\\
 +
                                                          2 & 0 & 2 & 0 & 2\\
 +
                                                          3 & 0 & 3 & 2 & 1
 +
\end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{no }{\rm GF}(4) .
 +
$$}}
  
  
Dagegen ist die Zahlenmenge <i>Z</i><sub>4</sub> = {0, 1, 2, 3} &nbsp;&#8658;&nbsp; <i>q</i> = 4 kein Galoisfeld. Der Grund hierfür ist, dass es hier zum Element <i>z</i><sub>2</sub> = 2 keine multiplikative Inverse gibt. Bei einem Galoisfeld müsste nämlich gelten: <nobr>2 &middot; Inv<sub>M</sub>(2)  = 1.</nobr> In nachfolgender Multiplikationstabelle gibt es aber in der dritten Zeile und in der dritten Spalte  (jeweils gültig für den Multiplikanden <i>z</i><sub>2</sub> = 2) keinen Eintrag mit &bdquo;1&rdquo;.
+
{{BlaueBox|TEXT=
 +
$\text{Generalization (without proof for now):}$
 +
*A Galois field&nbsp; ${\rm GF}(q)$&nbsp; can be formed in the manner described here as&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_and_examples_of_an_algebraic_ring| $\text{ring}$]]&nbsp; of integer sizes modulo&nbsp; $q$&nbsp; only if&nbsp; $q$&nbsp; is a prime number: &nbsp; <br> &nbsp; &nbsp; $q = 2$,&nbsp; $q = 3$,&nbsp; $q = 5$,&nbsp; $q = 7$,&nbsp; $q = 11$, ...<br>
  
:<math>Z_4 = \{0, 1, 2, 3 \} \hspace{0.35cm} \Rightarrow \hspace{0.35cm}</math>
+
*But if the order&nbsp; $q$&nbsp; can be expressed in the form&nbsp; $q = P^m$&nbsp; with a prime&nbsp; $P$&nbsp; and integer&nbsp; $m$,&nbsp; the Galois field&nbsp; ${\rm GF}(q)$&nbsp; can be found via an&nbsp; [[Channel_Coding/Extension_Field#Generalized_definition_of_an_extension_field|$\text{extension field}$]].&nbsp; }}<br>
 
 
<html><style type="text/css">.paddingSpace td {padding:0 15px 0 15px;}</style></html>
 
<table class="paddingSpace">
 
<td>
 
{| class="wikitable" style="text-align: center; width: 50px; height: 50px;"
 
|-
 
! +
 
! 0
 
! 1
 
! 2
 
! 3
 
|-
 
! 0
 
| 0
 
| 1
 
| 2
 
|| 3
 
|-
 
! 1
 
| 1
 
| 2
 
| 3
 
|| 0
 
|-
 
! 2
 
| 2
 
| 3
 
| 0
 
| 1
 
|-
 
! 3
 
| 3
 
| 0
 
| 1
 
| 2
 
|}
 
</td>
 
<td>
 
{| class="wikitable" style="text-align: center; width: 50px; height: 50px;"
 
|-
 
! .
 
! 0
 
! 1
 
! 2
 
! 3
 
|-
 
! 0
 
| 0
 
| 0
 
| 0
 
|| 0
 
|-
 
! 1
 
| 0
 
| 1
 
| 2
 
|| 3
 
|-
 
! 2
 
| 0
 
| 2
 
| 0
 
|| 2
 
|-
 
! 3
 
| 0
 
| 3
 
| 2
 
| 1
 
|}
 
</td>
 
</table>
 
 
 
:<math>\hspace{0.35cm} \Rightarrow \hspace{0.35cm}{\rm kein \hspace{0.15cm}GF}(4)
 
\hspace{0.05cm}. </math>
 
  
 +
== Group, ring, field - basic algebraic concepts ==
 +
<br>
 +
In the first sections,&nbsp; some basic algebraic terms have already been mentioned,&nbsp; without their meanings having been explained in more detail.&nbsp; This is to be made up now in all shortness from view of a communication engineer, whereby we mainly refer to the representation in&nbsp; [Fri96]<ref name='Fri96'>Friedrichs, B.:&nbsp; Kanalcodierung – Grundlagen und Anwendungen in modernen Kommunikationssystemen.&nbsp; Berlin – Heidelberg: Springer, 1996.</ref>&nbsp; and&nbsp;  [KM+08]<ref name='KM+08'>Kötter, R.; Mayer, T.; Tüchler, M.; Schreckenbach, F.; Brauchle, J.:&nbsp; Channel Coding.&nbsp; Lecture manuscript, Chair of Communications Engineering, TU Munich, 2008.</ref>.&nbsp; To summarize:<br>
  
Das Ergebnis dieser Seite soll hier ohne weiteren Beweis verallgemeinert werden:
+
{{BlaueBox|TEXT= 
*Ein Galoisfeld GF(<i>q</i>) kann in der hier beschriebenen Weise als Ring von Integergrößen modulo <i>q</i> nur dann gebildet werden, wenn <i>q</i> eine Primzahl ist: <i>q</i> = 2, <i>q</i> = 3, <i>q</i> = 5, <i>q</i> = 7, <i>q</i> = 11, ...<br>
+
$\text{Definition:}$&nbsp; 
 +
*A&nbsp; $\rm Galois\, field$&nbsp; ${\rm GF}(q)$ is a&nbsp; "field"&nbsp; with a finite number&nbsp; $(q)$&nbsp; of elements &nbsp; &#8658; &nbsp; &raquo;'''finite field'''&laquo;.&nbsp;
  
*Kann man aber die Ordnung <i>q</i> in der Form <i>q</i> = <i>P<sup>m</sup></i> mit einer Primzahl <i>P</i> und ganzzahligem <i>m</i> ausdrücken, so lässt sich das Galoisfeld GF(<i>q</i>) über einen Erweiterungskörper finden.<br>
+
*Each field is again a special case of a&nbsp; "ring",&nbsp; which itself can be represented again as a special case of an&nbsp; "Abelian group".}}<br>
  
== Gruppe, Ring, Körper – algebraische Grundbegriffe ==
+
[[File:EN_KC_T_2_1_S2.png|right|frame|Algebraic relations between group, ring and field|class=fit]]
<br>
+
The diagram illustrates step by step how the following subordinate sets arise from a set&nbsp; $\mathcal{M}$&nbsp; by definition of addition, multiplication and division:
Auf den beiden ersten Seiten sind bereits einige algebraische Grundbegriffe gefallen, ohne dass deren Bedeutungen genauer erläutert wurden. Dies soll nun in aller Kürze aus Sicht eines Nachrichtentechnikers nachgeholt werden, wobei wir uns vorwiegend auf die Darstellung in [Fri96]<ref>Friedrichs, B.: ''Kanalcodierung – Grundlagen und Anwendungen in modernen Kommunikations- systemen.'' Berlin – Heidelberg: Springer, 1996.</ref> und  [KM+08]<ref>Kötter, R.; Mayer, T.; Tüchler, M.; Schreckenbach, F.; Brauchle, J.: ''Channel Coding.'' Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008.</ref> beziehen. Zusammenfassend lässt sich sagen:<br>
+
*Abelian group&nbsp; $\mathcal{G}$ ,  
 +
*ring&nbsp; $\mathcal{R}$,  
 +
*field&nbsp; $\mathcal{F}$,
 +
*finite field&nbsp; $\mathcal{F}_q$&nbsp; or Galois field&nbsp; ${\rm GF}(q)$.
  
{{Definition}}: Ein <b>Galoisfeld</b> GF(<i>q</i>) ist ein Körper (englisch: <i>Field</i>) mit einer begrenzten Anzahl (<i>q</i>) an Elementen &nbsp;&#8658;&nbsp; <i>endlicher Körper</i>. Jeder Körper ist wieder ein Sonderfall eines Rings (gleichlautende englische Bezeichnung), der sich selbst wieder als Spezialfall einer abelschen Gruppe (englisch: <i>Abelian Group</i>) darstellen lässt.{{end}}<br>
 
  
Die folgende Grafik verdeutlicht schrittweise, wie sich aus einer Menge durch Definition von Additition, Multiplikation und Division innerhalb dieser Menge eine <i>Gruppe</i>, ein <i>Ring</i> und ein <i>Körper</i> ergibt. Weiter angegeben sind in der Grafik auch in der Literatur häufig verwendete Schriftzeichen für eine Menge, eine Gruppe, einen Ring, einen Körper und einen endlichen Körper. Aufgrund von Restriktionen durch den HTML&ndash;Zeichensatz benutzen wir in LNTwww die Zeichen <i>M</i>, <i>G</i>, <i>R</i>, <i>K</i> (bzw. <i>F</i>) sowie GF(<i>q</i>).<br>
+
In the next two sections, the algebraic terms mentioned here will be discussed in more detail.  
 +
*For understanding the Reed&ndash;Solomon codes, however, this knowledge is not absolutely necessary.  
  
[[File:P ID2488 KC T 2 1 S2 v1.png|Algebraische Zusammenhänge zwischen Gruppe, Ring und Körper|class=fit]]<br>
+
*So you could jump directly to the chapter&nbsp; [[Channel_Coding/Extension_Field#Verallgemeinerte_Definition_eines_Erweiterungsk.C3.B6rpers| "Extension Field"]]&nbsp;.<br>  
  
Auf den beiden nächsten Seiten werden die hier genannten algebraischen Begriffe noch etwas genauer behandelt. Zum Verstehen der Reed&ndash;Solomon&ndash;Codes sind diese Kenntnisse allerdings nicht unbedingt erforderlich. Sie könnten also auch direkt zum Kapitel Erweiterungskörper springen.<br>
 
  
== Algebraische Gruppe und Beispiele ==
+
== Definition and examples of an algebraic group ==
 
<br>
 
<br>
Für die allgemeinen Definitionen von Gruppe (und später Ring) gehen wir von einer Menge mit unendlich vielen Elementen aus:
+
For the general definitions of&nbsp; "group"&nbsp; (and later&nbsp; "ring")&nbsp; we assume a set with infinitely many elements:
  
:<math>M = \{\hspace{0.1cm}z_1,\hspace{0.1cm} z_2,\hspace{0.1cm} z_3 ,\hspace{0.1cm} ... \hspace{0.1cm}\}\hspace{0.05cm}. </math>
+
::<math>\mathcal{M} = \{\hspace{0.1cm}z_1,\hspace{0.1cm} z_2,\hspace{0.1cm} z_3 ,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}\}\hspace{0.05cm}. </math>
  
{{Definition}}''':''' Eine <b>algebraische Gruppe</b> (<i>G</i>, +) ist eine (beliebige) Teilmenge <i>G</i> &#8834; <i>M</i> zusammen mit einer zwischen allen Elementen definierten additiven Verknüpfung (&bdquo;+&rdquo;), allerdings nur dann, wenn die folgenden Eigenschaften zwingend erfüllt sind:
+
{{BlaueBox|TEXT= 
*Für alle <i>z<sub>i</sub></i>, <i>z<sub>j</sub></i> &#8712; <i>G</i> gilt (<i>z<sub>i</sub></i> + <i>z<sub>j</sub></i>) &#8712; <i>G</i> &nbsp;&#8658;&nbsp; <i>Closure</i>&ndash;Kriterium für &bdquo;+&rdquo;.<br>
+
$\text{Definition:}$&nbsp;  A&nbsp; $\text{algebraic group}$&nbsp; $(\mathcal{G}, +)$&nbsp; is an&nbsp; (arbitrary)&nbsp; subset&nbsp; $\mathcal{G} &#8834; \mathcal{M}$&nbsp; together with an additive linkage&nbsp; $($"$+$"$)$&nbsp; defined between all elements,&nbsp; but only if the following properties are necessarily satisfied:
 +
#For all&nbsp; $z_i, z_j &#8712; \mathcal{G}$&nbsp; holds&nbsp; $(z_i + z_j) &#8712; \mathcal{G}$ &nbsp; &#8658; &nbsp; "Closure&ndash;criterion for&nbsp; $+$".<br>
 +
#There is always a neutral element&nbsp; $N_{\rm A} &#8712; \mathcal{G}$&nbsp; with respect to addition,&nbsp; so that for all&nbsp; $z_i &#8712; \mathcal{G}$ holds: &nbsp; $z_i +N_{\rm A} = z_i$.&nbsp; Given a group of numbers: &nbsp; $N_{\rm A} \equiv 0$.<br>
 +
#For all&nbsp; $z_i &#8712; \mathcal{G}$&nbsp; there is an inverse element&nbsp; ${\rm Inv_A}(z_i) &#8712; \mathcal{G}$&nbsp; with respect to addition:&nbsp; $z_i + {\rm Inv_A}(z_i)= N_{\rm A} $.&nbsp; For a number group:&nbsp; ${\rm Inv_A}(z_i) =- z_i$.<br>
 +
#For all&nbsp; $z_i, z_j, z_k &#8712; \mathcal{G}$&nbsp; holds:&nbsp; $z_i + (z_j + z_k)= (z_i + z_j) + z_k$ &nbsp; &#8658; &nbsp; "Associative law&nbsp; for&nbsp; $+$".<br>
 +
#If in addition for all&nbsp; $z_i, z_j &#8712; \mathcal{G}$&nbsp; the&nbsp; "commutative law"&nbsp; $z_i + z_j= z_j + z_i$&nbsp; is satisfied,&nbsp; one speaks of a&nbsp; "commutative group"&nbsp; or an&nbsp;  "Abelian group",&nbsp; named after the Norwegian mathematician&nbsp; [https://en.wikipedia.org/wiki/Niels_Henrik_Abel $\text{Niels Hendrik Abel}$].}}<br>
  
*Es gibt stets ein hinsichtlich der Addition neutrales Element <i>N</i><sub>A</Sub> &#8712; <i>G</i>, so dass für alle <i>z<sub>i</sub></i> &#8712; <i>G</i> gilt: <i>z<sub>i</sub></i>&nbsp;+&nbsp;<i>N</i><sub>A</Sub>&nbsp;=&nbsp;<i>z<sub>i</sub></i>. Bei einer Zahlengruppe ist <i>N</i><sub>A</sub> = 0.<br>
+
{{GraueBox|TEXT= 
 +
$\text{Examples of algebraic groups:}$
  
*Für alle <i>z<sub>i</sub></i> &#8712; <i>G</i> gibt es zudem ein hinsichtlich der Addition inverses Element Inv<sub>A</Sub>(<i>z<sub>i</sub></i>) &#8712; <i>G</i> mit der Eigenschaft <i>z<sub>i</sub></i> + Inv<sub>A</sub>(<i>z<sub>i</sub></i>) = <i>N</i><sub>A</sub>. Bei einer Zahlengruppe ist Inv<sub>A</sub>(<i>z<sub>i</sub></i>) = &ndash;<i>z<sub>i</sub></i>.<br>
+
'''(1)'''&nbsp; The&nbsp; "set of rational numbers"&nbsp; is defined as the set of all quotients&nbsp; $I/J$&nbsp; with integers&nbsp; $I$&nbsp; and&nbsp; $J &ne; 0$.
 +
:This set is a group&nbsp; $(\mathcal{G}, +)$&nbsp; with respect to addition,&nbsp; since
 +
:*for all&nbsp; $a &#8712; \mathcal{G}$&nbsp; and&nbsp; $b &#8712; \mathcal{G}$&nbsp; also the sum&nbsp; $a+b$&nbsp; belongs to&nbsp; $\mathcal{G}$&nbsp;,<br>
 +
:*the associative law applies,<br>
 +
:*with&nbsp; $ N_{\rm A} = 0$&nbsp; the neutral element of the addition is contained in&nbsp; $\mathcal{G}$&nbsp; and<br>
 +
:*it exists for each&nbsp; $a$&nbsp; the additive inverse&nbsp; ${\rm Inv_A}(a) = -a$&nbsp;.<br>
 +
:Since moreover the commutative law is fulfilled,&nbsp; it is an&nbsp; "abelian group".<br>
  
*Für alle <i>z<sub>i</sub></i>, <i>z<sub>j</sub></i>, <i>z<sub>k</sub></i> &#8712; <i>G</i> gilt: <i>z<sub>i</sub></i> + (<i>z<sub>j</sub></i> + <i>z<sub>k</sub></i>) = (<i>z<sub>i</sub></i> + <i>z<sub>j</sub></i>) + <i>z<sub>k</sub></i> &nbsp;&#8658;&nbsp; Assoziativgesetz für &bdquo;+&rdquo;.<br><br>
+
'''(2)'''&nbsp; The&nbsp; "set of natural numbers" &nbsp; &rArr; &nbsp; $\{0, 1, 2, \text{...}\}$&nbsp; is not an algebraic group with respect to addition, <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; since for no single element&nbsp; $z_i$&nbsp; there exists the additive inverse&nbsp; ${\rm Inv_A}(z_i) = -z_i$&nbsp;.<br>
  
Wird zusätzlich für alle <i>z<sub>i</sub></i>, <i>z<sub>j</sub></i> &#8712; <i>G</i> das Kommutativgesetz <i>z<sub>i</sub></i> + <i>z<sub>j</sub></i> = <i>z<sub>j</sub></i> + <i>z<sub>i</sub></i> erfüllt, so spricht man von einer kommutativen oder einer abelschen Gruppe, benannt nach dem norwegischen Mathematiker Niels Hendrik Abel.{{end}}<br>
+
'''(3)'''&nbsp; The&nbsp; "bounded set of natural numbers" &nbsp; &rArr; &nbsp; $\{0, 1, 2, \text{...}\hspace{0.05cm}, q\hspace{-0.05cm}-\hspace{-0.05cm}1\}$&nbsp; on the other hand then satisfies the conditions on a group&nbsp; $(\mathcal{G}, +)$, <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; if one defines the addition modulo&nbsp; $q$.
  
{{Beispiel}}''':''' Die <i>Menge der rationalen Zahlen</i> ist definiert als die Menge aller Quotienten <i>I</i>/<i>J</i> mit ganzen Zahlen <i>I</i> und <i>J</i> &ne; 0. Diese Menge ist eine Gruppe (<i>G</i>, &bdquo;+&rdquo;) hinsichtlich der Addition, da
+
'''(4)'''&nbsp; On the other hand,&nbsp; $\{1, 2, 3, \text{...}\hspace{0.05cm},q\}$&nbsp; is not a group because the neutral element of addition&nbsp; $(N_{\rm A} = 0)$&nbsp; is missing.}}<br>
*für alle <i>a</i> &#8712; <i>G</i> und <i>b</i> &#8712; <i>G</i> auch die Summe <i>a</i> + <i>b</i> wieder zu <i>G</i> gehört,<br>
 
  
*das Assozitativgesetz gilt,<br>
+
== Definition and examples of an algebraic ring ==
 
 
*mit der 0 das neutrale Element der Addition in <i>G</i> enthalten ist, und<br>
 
 
 
*es für jedes <i>a</i> die additive Inverse <i>b</i> = &ndash; <i>a</i> existiert.<br><br>
 
 
 
Da zudem das Kommutativgesetz erfüllt ist, handelt es sich um eine <i>abelsche Gruppe</i>.<br>
 
 
 
Die <i>Menge der natürlichen Zahlen</i>, {0, 1, 2, ...} ist hinsichtlich Addition keine algebraische Gruppe, da es für kein einziges Element <i>z<sub>i</sub></i> die additive Inverse (&ndash;<i>z<sub>i</sub></i>) gibt.<br>
 
 
 
Die <i>begrenzte natürliche Zahlenmenge</i> {0, 1, 2, ... , <i>q</i> &ndash; 1} erfüllt dagegen dann die Bedingungen an eine Gruppe (<i>G</i>, +), wenn man die Addition modulo <i>q</i> definiert. Dagegen ist {1, 2, 3, ... , <i>q</i>}keine Gruppe, da das neutrale Element der Addition (&bdquo;0&rdquo;) fehlt.{{end}}<br>
 
 
 
== Algebraischer Ring und Beispiele ==
 
 
<br>
 
<br>
Entsprechend der Übersichtsgrafik kommt man von der Gruppe (<i>G</i>, +) durch Definition einer zweiten Rechenoperation &ndash; der Multiplikation (&bdquo;&middot;&rdquo;) &ndash; zum Ring (<i>R</i>, +, &middot;). Man benötigt hierfür also neben einer Additionstabelle auch eine Multiplikationstabelle.<br>
+
According to the&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Group.2C_ring.2C_field_-_basic_algebraic_concepts|$\text{overview graphic}$]]&nbsp;  
 
+
*one gets from the group&nbsp; $(\mathcal{G}, +)$&nbsp;
{{Definition}}''':''' Ein <b>algebraischer Ring </b> ist eine Teilmenge <i>R</i> &#8834; <i>G</i> &#8834; <i>M</i> zusammen mit zwei in dieser Menge definierten Rechenoperationen, der Addition (&bdquo;+&rdquo;) und der Multiplikation (&bdquo;&middot;&rdquo;). Dabei müssen die folgenden Eigenschaften erfüllt werden:
 
*Hinsichtlich der Addition ist  Ring (<i>R</i>, +, &middot;) eine abelsche Gruppe (<i>G</i>, +).<br>
 
  
*Zusätzlich gilt für alle <i>z<sub>i</sub></i>, <i>z<sub>j</sub></i> &#8712; <i>R</i> auch ( <i>z<sub>i</sub></i> &middot; <i>z<sub>j</sub></i>) &#8712; <i>R</i> &nbsp;&#8658;&nbsp; <b>Closure&ndash;Kriterium für &bdquo;<span>&middot;</span>&rdquo;</b>.<br>
+
*by defining a second arithmetic operation&nbsp; "multiplication"&nbsp; ("$\cdot$")&nbsp; to the&nbsp; "ring"&nbsp; $(\mathcal{R}, +, \cdot)$.&nbsp;  
  
*Es gibt ein <b>hinsichtlich Multiplikation neutrales Element</b> <i>N</i><sub>M</sub> &#8712; <i>R</i>, so dass für alle <i>z<sub>i</sub></i> &#8712; <i>R</i> gilt: <i>z<sub>i</sub></i>&nbsp;&middot;&nbsp;<i>N</i><sub>M</sub>&nbsp;=&nbsp;<i>z<sub>i</sub></i>. Bei einem Zahlenring gilt <i>N</i><sub>M</sub> = 1.<br>
 
  
*Für alle <i>z<sub>i</sub></i>, <i>z<sub>j</sub></i>, <i>z<sub>k</sub></i> &#8712; <i>R</i> gilt <i>z<sub>i</sub></i> &middot; (<i>z<sub>j</sub></i> &middot; <i>z<sub>k</sub></i>) = (<i>z<sub>i</sub></i> &middot; <i>z<sub>j</sub></i>) &middot; <i>z<sub>k</sub></i> &nbsp;&#8658;&nbsp; <b>Assoziativgesetz für &bdquo;<span>&middot;</span>&rdquo;</b>.<br>
+
So you need a multiplication table as well as an addition table for this.<br>
  
*Für alle <i>z<sub>i</sub></i>, <i>z<sub>j</sub></i>, <i>z<sub>k</sub></i> &#8712; <i>R</i> gilt <i>z<sub>i</sub></i> &middot; (<i>z<sub>j</sub></i> + <i>z<sub>k</sub></i>) = <i>z<sub>i</sub></i> &middot; <i>z<sub>j</sub></i> + <i>z<sub>i</sub></i> &middot; <i>z<sub>k</sub></i> &nbsp;&#8658;&nbsp; <b>Distributivgesetz für &bdquo;<span>&middot;</span>&rdquo;</b>.<br>{{end}}<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; A&nbsp; $\text{algebraic ring}$ &nbsp; $(\mathcal{R}, +, \cdot)$ &nbsp; is a subset&nbsp; $\mathcal{R} &#8834; \mathcal{G} &#8834; \mathcal{M}$&nbsp; together with two arithmetic operations defined in this set,
 +
*addition&nbsp; ("$+$")&nbsp;  
 +
*and multiplication&nbsp; ("$&middot;$").&nbsp;  
  
Ein Ring (<i>R</i>, +, &middot;) ist nicht notwendigerweise kommutativ. Gilt tatsächlich auch für alle Elemente <i>z<sub>i</sub></i>, <i>z<sub>j</sub></i> &#8712; <i>R</i> das Kommutativgesetz <i>z<sub>i</sub></i> &middot; <i>z<sub>j</sub></i> = <i>z<sub>j</sub></i> &middot; <i>z<sub>i</sub></i> hinsichtlich der Multiplikation, so spricht man in der Fachliteratur von einem <span style="font-weight: bold;">kommutativen Ring</span>. Existiert für jedes Element <i>z<sub>i</sub></i> &#8712; <i>R</i> mit Ausnahme von <i>N</i><sub>A</sub> (neutrales Element der Addition, Nullelement) ein hinsichtlich der Multiplikation inverses Element Inv<sub>M</sub>(<i>z<sub>i</sub></i>), so dass <i>z<sub>i</sub></i> &middot; Inv<sub>M</sub>(<i>z<sub>i</sub></i>) = 1 gilt, so liegt ein <b>Divisionsring</b> (englisch: <i>Division Ring</i>) vor.<br>
 
  
Weiter sollen die folgenden Voraussetzungen gelten:
+
The following properties must be satisfied:
*Der Ring ist <b>nullteilerfrei</b> (englisch: <i>free of zero devisors</i>), wenn aus <i>z<sub>i</sub></i> &middot; <i>z<sub>j</sub></i> = 0 zwingend <i>z<sub>i</sub></i> = 0 oder <i>z<sub>j</sub></i> = 0 folgt. In der abstrakten Algebra ist ein Nullteiler eines Ringes ein vom Nullelement verschiedenes Element <i>z<sub>i</sub></i>, falls es ein Element <i>z<sub>j</sub></i> &ne; 0 gibt, so dass das Produkt <i>z<sub>i</sub></i> &middot; <i>z<sub>j</sub></i> = 0 ist.<br>
+
#In terms of addition,&nbsp; the ring&nbsp; $(\mathcal{R}, +, \cdot)$&nbsp; is an&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_and_examples_of_an_algebraic_group|$\text{Abelian group}$]]&nbsp; $(\mathcal{G}, +)$.<br>
 +
#In addition,&nbsp; for all&nbsp; $z_i, z_j &#8712; \mathcal{R}$&nbsp; also&nbsp; $(z_i \cdot z_j) &#8712; \mathcal{R}$ &nbsp; &#8658; &nbsp; "Closure criterion for&nbsp; $\cdot$".<br>
 +
#There is always also a neutral element&nbsp; $N_{\rm M} &#8712; \mathcal{R}$&nbsp; with respect to multiplication,&nbsp; so that for all&nbsp; $z_i &#8712; \mathcal{R}$&nbsp; holds: &nbsp; $z_i \cdot N_{\rm M} = z_i$.&nbsp; For a number group:&nbsp; $N_{\rm M} \equiv 1$.<br>
 +
#For all&nbsp; $z_i, z_j, z_k &#8712; \mathcal{R}$&nbsp; holds: &nbsp; $z_i + (z_j + z_k)= (z_i + z_j) + z_k$ &nbsp; &#8658; &nbsp; "Associative law&nbsp; for&nbsp; $\cdot $".<br>
 +
#For all&nbsp; $z_i, z_j, z_k &#8712; \mathcal{R}$ holds: &nbsp; $z_i \cdot (z_j + z_k) = z_i \cdot z_j + z_i \cdot z_k$ &nbsp; &#8658; &nbsp; "Distributive law&nbsp; for&nbsp; $\cdot $".}}<br>
  
*Ein kommutativer nullteilerfreier Ring wird als <b>Integritätsring</b> oder <b>Integritätsbereich</b> (englisch: <i>Integral Domain</i>) bezeichnet.<br><br>
+
Further the following agreements shall hold:
 +
*A ring&nbsp; $(\mathcal{R}, +, \cdot)$&nbsp; is not necessarily commutative.&nbsp; If in fact the&nbsp; "commutative law"&nbsp; also holds for all elements&nbsp; $z_i, z_j &#8712; \mathcal{R}$&nbsp; with respect to multiplication&nbsp; $(z_i \cdot z_j= z_j \cdot z_i)$&nbsp; then it is called  in the technical literature a&nbsp; &raquo;'''commutative ring'''&laquo;.
 +
 +
*Exists for each element&nbsp; $z_i &#8712; \mathcal{R}$&nbsp; except&nbsp; $N_{\rm A}$&nbsp; $($neutral element of addition,&nbsp; zero element$)$&nbsp; an element&nbsp; ${\rm Inv_M}(z_i)$&nbsp;  inverse with respect to multiplication such that&nbsp; $z_i \cdot {\rm Inv_M}(z_i) = 1$&nbsp; holds, then there is a&nbsp; &raquo;<b>division ring</b>&laquo;.<br>
  
Vergleicht man die Definitionen von Gruppe, Ring (oben auf dieser Seite), Körper und Galoisfeld, so erkennt man, dass ein Galoisfeld GF(<i>q</i>)
+
*The ring is&nbsp; &raquo;<b>free of zero divisors</b>&laquo;&nbsp; if from&nbsp; $z_i \cdot z_j = 0$&nbsp; follows necessarily&nbsp; $z_i = 0$&nbsp; or&nbsp; $z_j = 0$.&nbsp; In abstract algebra,&nbsp; a zero divisor of a ring is an element&nbsp; $z_i$ different from the zero element if there exists an element&nbsp; $z_j \ne 0$&nbsp; such that the product&nbsp; $z_i \cdot z_j = 0$&nbsp;.<br>
*ein endlicher Körper (englisch: <i>Field</i>) mit <i>q</i> Elementen ist,<br>
 
  
*gleichzeitig als <i>Commutative Division Ring</i> aufgefasst werden kann, und<br>
+
*A commutative ring free of zero divisors is called&nbsp; &raquo;<b>integral domain</b>&laquo;.<br><br>
  
*einen Integritätsbereich (englisch: <i>Integral Domain</i>) beschreibt.<br><br>
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp;  Comparing the definitions of&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_and_examples_of_an_algebraic_group| $\text{group}$]],&nbsp; "ring"&nbsp; (see above), [[Aufgaben:Aufgabe_2.1:_Gruppe,_Ring,_Körper|$\text{field}$]]&nbsp; and&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field|$\text{Galois field}$]],&nbsp; we recognize that a&nbsp; &raquo;'''Galois field'''&laquo;&nbsp; ${\rm GF}(q)$
 +
#is a finite field with&nbsp; $q$&nbsp; elements,<br>
 +
#is at the same time a&nbsp; "commutative division ring",&nbsp; and <br>
 +
#also describes an&nbsp; "integral domain".}}<br><br>
  
== Aufgaben ==
+
== Exercises for the chapter ==
 
<br>
 
<br>
[[Aufgaben:2.1 Gruppe, Ring, Körper|A2.1 Gruppe, Ring, Körper]]
+
[[Aufgaben:Exercise_2.1:_Group,_Ring,_Field|Exercise 2.1: Group, Ring, Field]]
  
[[Zusatzaufgaben:2.1 Welche Tabellen beschreiben Gruppen?]]
+
[[Aufgaben:Exercise_2.1Z:_Which_Tables_Describe_Groups%3F|Exercise 2.1Z: Which Tables Describe Groups?]]
  
[[Aufgaben:2.2 Eigenschaften von Galoisfeldern|A2.2 Eigenschaften von Galoisfeldern]]
+
[[Aufgaben:Exercise_2.2:_Properties_of_Galois_Fields|Exercise 2.2: Properties of Galois Fields]]
  
[[Zusatzaufgaben:2.2 Galoisfeld GF(5)]]
+
[[Aufgaben:Exercise_2.2Z:_Galois_Field_GF(5)|Exercise 2.2Z: Galois Field GF(5)]]
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:09, 19 November 2022

# OVERVIEW OF THE SECOND MAIN CHAPTER #


This chapter discusses the  »Reed-Solomon codes«,  invented in the early 1960s by  $\text{Irving Stoy Reed}$  and  $\text{Gustave Solomon}$.  Unlike binary block codes,  these codes are based on a Galois field   ${\rm GF}(2^m)$   with  $m > 1$.  So they work with multi-level symbols instead of binary characters  ("bits").

Specifically,  this chapter covers:

  • The basics of  »linear algebra«:   »set«,   »group«,   »ring«,   »field«,  finite field«,
  • the definition of  »extension fields«   ⇒   ${\rm GF}(2^m)$  and the corresponding operations,
  • the meaning of  »irreducible polynomials«   and  »primitive elements«,
  • the  »description and realization possibilities«   of a Reed-Solomon code,
  • the error correction of such a code at the  »binary ersaure channel«   $\rm (BEC)$,
  • the decoding using the  »Error Locator Polynomial   ⇒   "Bounded Distance Decoding"   $\rm (BDD)$,
  • the  »block error probability«   of Reed-Solomon codes  and   »typical applications«.



Definition of a Galois field


Before we can turn to the description of  Reed–Solomon codes,  we need some basic algebraic notions.  We begin with the properties of the Galois field   ${\rm GF}(q)$,  named after the Frenchman  $\text{Évariste Galois}$, whose biography is rather unusual for a mathematician.

$\text{Definition:}$  A   $\rm Galois\:field$  ${\rm GF}(q)$  is a  $\text{finite field}$  with  $q$  elements  $z_0$,  $z_1$,  ... ,  $z_{q-1}$, if the eight statements listed below  $\rm (A)$  ...  $\rm (H)$  with respect to  "addition"   ⇒   "$+$"   and  "multiplication"  ⇒  "$\hspace{0.05cm}\cdot \hspace{0.05cm}$"   are true.

  • Addition and multiplication are to be understood here modulo  $q$ .
  • The  $\rm order$  $q$  indicates the number of elements of the Galois field.


$\text{Criteria of a Galois field:}$ 

$\rm (A)$  ${\rm GF}(q)$  is closed $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Closure$:

\[\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}(z_i + z_j)\in {\rm GF}(q),\hspace{0.15cm}(z_i \cdot z_j)\in {\rm GF}(q) \hspace{0.05cm}. \]

$\rm (B)$  There is a neutral element  $N_{\rm A}$  with respect to addition,  the so-called  "zero element" $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Identity \ for \ "\hspace{-0.05cm}+\hspace{0.05cm}"$:

\[\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + z_j = z_i \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_j = N_{\rm A} = \text{ 0} \hspace{0.05cm}.\]

$\rm (C)$  There is a neutral element  $N_{\rm M}$  with respect to multiplication,  the so-called  "identity element" $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Identity \ for \ "\hspace{-0.05cm}·\hspace{0.05cm}"$:

\[\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i \cdot z_j = z_i \hspace{0.3cm}\Rightarrow \hspace{0.3cm} z_j = N_{\rm M} = {1} \hspace{0.05cm}. \]

$\rm (D)$  For each  $z_i$  there exists an  "additive inverse"   ${\rm Inv_A}(z_i)$ $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Inverse \ for \ "\hspace{-0.05cm}+\hspace{0.05cm}"$:

\[\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{short:}\hspace{0.3cm} {\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}. \]

$\rm (E)$  For each  $z_i$  except the zero element,  there exists the  "multiplicative inverse"   ${\rm Inv_M}(z_i)$ $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Inverse \ for \ "\hspace{-0.05cm}\cdot\hspace{0.05cm}"$:

\[\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A}, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {1}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{short:}\hspace{0.3cm} {\rm Inv_M}(z_i) = z_i^{-1} \hspace{0.05cm}. \]

$\rm (F)$  For addition and multiplication applies in each case the  "$\rm Commutative \ Law$":

\[\forall \hspace{0.15cm} z_i,\hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + z_j = z_j + z_i ,\hspace{0.15cm}z_i \cdot z_j = z_j \cdot z_i \hspace{0.05cm}.\]

$\rm (G)$  For addition and multiplication applies in each case the  "$\rm Associative \ Law$":

\[\forall \hspace{0.15cm} z_i,\hspace{0.1cm} z_j ,\hspace{0.1cm} z_k \in {\rm GF}(q)\text{:} \hspace{0.25cm}(z_i + z_j) + z_k = z_i + (z_j + z_k ),\hspace{0.15cm}(z_i \cdot z_j) \cdot z_k = z_i \cdot (z_j \cdot z_k ) \hspace{0.05cm}.\]

$\rm (H)$  For the combination  "addition – multiplication"  holds the  "$\rm Distributive \ Law$":

\[\forall \hspace{0.15cm} z_i,\hspace{0.15cm} z_j ,\hspace{0.15cm} z_k \in {\rm GF}(q)\text{:} \hspace{0.25cm}(z_i + z_j) \cdot z_k = z_i \cdot z_k + z_j \cdot z_k \hspace{0.05cm}.\]



Examples and properties of Galois fields


We first check that for the binary number set  $Z_2 = \{0, 1\}$   ⇒   $q=2$   $($valid for the simple binary code$)$

  • the eight criteria mentioned in the last section are met,
  • so that we can indeed speak of  "${\rm GF}(2)$".


You can see the addition table and multiplication table below:

$$Z_2 = \{0, 1\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c|cccccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm GF}(2) . $$

One can see from this representation:

  1. Each element of the addition and multiplication table of  $Z_2$  is again  $z_0 = 0$  or  $z_0 = 1$   ⇒   the criterion  $\rm (A)$  is satisfied.
  2. The set  $Z_2$  contains the zero element  $(\hspace{-0.05cm}N_{\rm A} = z_0 = 0)$  and the one element $(\hspace{-0.05cm}N_{\rm M} = z_1 = 1)$  ⇒   the criteria  $\rm (B)$  and  $\rm (C)$  are satisfied.
  3. The additive inverses  ${\rm Inv_A}(0) = 0$  and  ${\rm Inv_A}(1) = -1 \ {\rm mod}\ 2 = 1$  exist and belong to  $Z_2$   ⇒   the criterion  $\rm (D)$  is satisfied.
  4. Similarly, the multiplicative inverse  ${\rm Inv_M}(1) = 1$   ⇒   the criterion  $\rm (E)$  is satisfied.
  5. The validity of the commutative law  $\rm (F)$  in the set  $Z_2$  can be recognized by the symmetry with respect to the table diagonals.
  6. The criteria  $\rm (G)$  and  $\rm (H)$  are also satisfied here  ⇒   all eight criteria are satisfied  ⇒   $Z_2 = \rm GF(2)$.


$\text{Example 1:}$  The number set  $Z_3 = \{0, 1, 2\}$   ⇒   $q = 3$  satisfies all eight criteria and is thus a Galois field  $\rm GF(3)$:

$$Z_3 = \{0, 1, 2\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c | cccccc} + & 0 & 1 & 2\\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c | cccccc} \cdot & 0 & 1 & 2\\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2& 0 & 2 & 1 \end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm GF}(3) . $$


$\text{Example 2:}$  In contrast,  the number set  $Z_4 = \{0, 1, 2, 3\}$   ⇒   $q = 4$  is  »not«  a Galois field.

  • The reason for this is that here is no multiplicative inverse to the element  $z_2 = 2$.  For a Galois field it would have to be true:   $2 \cdot {\rm Inv_M}(2) = 1$.
  • But in the multiplication table there is no entry with  "$1$"  in the third row and third column  $($each valid for the multiplicand  $z_2 = 2)$.
$$Z_4 = \{0, 1, 2, 3\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c | cccccc} + & 0 & 1 & 2 & 3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 2 & 3 & 0\\ 2 & 2 & 3 & 0 & 1\\ 3 & 3 & 0 & 1 & 2 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c | cccccc} \cdot& 0 & 1 & 2 & 3\\ \hline 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 1 & 2 & 3\\ 2 & 0 & 2 & 0 & 2\\ 3 & 0 & 3 & 2 & 1 \end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{no }{\rm GF}(4) . $$


$\text{Generalization (without proof for now):}$

  • A Galois field  ${\rm GF}(q)$  can be formed in the manner described here as  $\text{ring}$  of integer sizes modulo  $q$  only if  $q$  is a prime number:  
        $q = 2$,  $q = 3$,  $q = 5$,  $q = 7$,  $q = 11$, ...
  • But if the order  $q$  can be expressed in the form  $q = P^m$  with a prime  $P$  and integer  $m$,  the Galois field  ${\rm GF}(q)$  can be found via an  $\text{extension field}$


Group, ring, field - basic algebraic concepts


In the first sections,  some basic algebraic terms have already been mentioned,  without their meanings having been explained in more detail.  This is to be made up now in all shortness from view of a communication engineer, whereby we mainly refer to the representation in  [Fri96][1]  and  [KM+08][2].  To summarize:

$\text{Definition:}$ 

  • A  $\rm Galois\, field$  ${\rm GF}(q)$ is a  "field"  with a finite number  $(q)$  of elements   ⇒   »finite field«. 
  • Each field is again a special case of a  "ring",  which itself can be represented again as a special case of an  "Abelian group".


Algebraic relations between group, ring and field

The diagram illustrates step by step how the following subordinate sets arise from a set  $\mathcal{M}$  by definition of addition, multiplication and division:

  • Abelian group  $\mathcal{G}$ ,
  • ring  $\mathcal{R}$,
  • field  $\mathcal{F}$,
  • finite field  $\mathcal{F}_q$  or Galois field  ${\rm GF}(q)$.


In the next two sections, the algebraic terms mentioned here will be discussed in more detail.

  • For understanding the Reed–Solomon codes, however, this knowledge is not absolutely necessary.


Definition and examples of an algebraic group


For the general definitions of  "group"  (and later  "ring")  we assume a set with infinitely many elements:

\[\mathcal{M} = \{\hspace{0.1cm}z_1,\hspace{0.1cm} z_2,\hspace{0.1cm} z_3 ,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}\}\hspace{0.05cm}. \]

$\text{Definition:}$  A  $\text{algebraic group}$  $(\mathcal{G}, +)$  is an  (arbitrary)  subset  $\mathcal{G} ⊂ \mathcal{M}$  together with an additive linkage  $($"$+$"$)$  defined between all elements,  but only if the following properties are necessarily satisfied:

  1. For all  $z_i, z_j ∈ \mathcal{G}$  holds  $(z_i + z_j) ∈ \mathcal{G}$   ⇒   "Closure–criterion for  $+$".
  2. There is always a neutral element  $N_{\rm A} ∈ \mathcal{G}$  with respect to addition,  so that for all  $z_i ∈ \mathcal{G}$ holds:   $z_i +N_{\rm A} = z_i$.  Given a group of numbers:   $N_{\rm A} \equiv 0$.
  3. For all  $z_i ∈ \mathcal{G}$  there is an inverse element  ${\rm Inv_A}(z_i) ∈ \mathcal{G}$  with respect to addition:  $z_i + {\rm Inv_A}(z_i)= N_{\rm A} $.  For a number group:  ${\rm Inv_A}(z_i) =- z_i$.
  4. For all  $z_i, z_j, z_k ∈ \mathcal{G}$  holds:  $z_i + (z_j + z_k)= (z_i + z_j) + z_k$   ⇒   "Associative law  for  $+$".
  5. If in addition for all  $z_i, z_j ∈ \mathcal{G}$  the  "commutative law"  $z_i + z_j= z_j + z_i$  is satisfied,  one speaks of a  "commutative group"  or an  "Abelian group",  named after the Norwegian mathematician  $\text{Niels Hendrik Abel}$.


$\text{Examples of algebraic groups:}$

(1)  The  "set of rational numbers"  is defined as the set of all quotients  $I/J$  with integers  $I$  and  $J ≠ 0$.

This set is a group  $(\mathcal{G}, +)$  with respect to addition,  since
  • for all  $a ∈ \mathcal{G}$  and  $b ∈ \mathcal{G}$  also the sum  $a+b$  belongs to  $\mathcal{G}$ ,
  • the associative law applies,
  • with  $ N_{\rm A} = 0$  the neutral element of the addition is contained in  $\mathcal{G}$  and
  • it exists for each  $a$  the additive inverse  ${\rm Inv_A}(a) = -a$ .
Since moreover the commutative law is fulfilled,  it is an  "abelian group".

(2)  The  "set of natural numbers"   ⇒   $\{0, 1, 2, \text{...}\}$  is not an algebraic group with respect to addition,
          since for no single element  $z_i$  there exists the additive inverse  ${\rm Inv_A}(z_i) = -z_i$ .

(3)  The  "bounded set of natural numbers"   ⇒   $\{0, 1, 2, \text{...}\hspace{0.05cm}, q\hspace{-0.05cm}-\hspace{-0.05cm}1\}$  on the other hand then satisfies the conditions on a group  $(\mathcal{G}, +)$,
          if one defines the addition modulo  $q$.

(4)  On the other hand,  $\{1, 2, 3, \text{...}\hspace{0.05cm},q\}$  is not a group because the neutral element of addition  $(N_{\rm A} = 0)$  is missing.


Definition and examples of an algebraic ring


According to the  $\text{overview graphic}$ 

  • one gets from the group  $(\mathcal{G}, +)$ 
  • by defining a second arithmetic operation  "multiplication"  ("$\cdot$")  to the  "ring"  $(\mathcal{R}, +, \cdot)$. 


So you need a multiplication table as well as an addition table for this.

$\text{Definition:}$  A  $\text{algebraic ring}$   $(\mathcal{R}, +, \cdot)$   is a subset  $\mathcal{R} ⊂ \mathcal{G} ⊂ \mathcal{M}$  together with two arithmetic operations defined in this set,

  • addition  ("$+$") 
  • and multiplication  ("$·$"). 


The following properties must be satisfied:

  1. In terms of addition,  the ring  $(\mathcal{R}, +, \cdot)$  is an  $\text{Abelian group}$  $(\mathcal{G}, +)$.
  2. In addition,  for all  $z_i, z_j ∈ \mathcal{R}$  also  $(z_i \cdot z_j) ∈ \mathcal{R}$   ⇒   "Closure criterion for  $\cdot$".
  3. There is always also a neutral element  $N_{\rm M} ∈ \mathcal{R}$  with respect to multiplication,  so that for all  $z_i ∈ \mathcal{R}$  holds:   $z_i \cdot N_{\rm M} = z_i$.  For a number group:  $N_{\rm M} \equiv 1$.
  4. For all  $z_i, z_j, z_k ∈ \mathcal{R}$  holds:   $z_i + (z_j + z_k)= (z_i + z_j) + z_k$   ⇒   "Associative law  for  $\cdot $".
  5. For all  $z_i, z_j, z_k ∈ \mathcal{R}$ holds:   $z_i \cdot (z_j + z_k) = z_i \cdot z_j + z_i \cdot z_k$   ⇒   "Distributive law  for  $\cdot $".


Further the following agreements shall hold:

  • A ring  $(\mathcal{R}, +, \cdot)$  is not necessarily commutative.  If in fact the  "commutative law"  also holds for all elements  $z_i, z_j ∈ \mathcal{R}$  with respect to multiplication  $(z_i \cdot z_j= z_j \cdot z_i)$  then it is called in the technical literature a  »commutative ring«.
  • Exists for each element  $z_i ∈ \mathcal{R}$  except  $N_{\rm A}$  $($neutral element of addition,  zero element$)$  an element  ${\rm Inv_M}(z_i)$  inverse with respect to multiplication such that  $z_i \cdot {\rm Inv_M}(z_i) = 1$  holds, then there is a  »division ring«.
  • The ring is  »free of zero divisors«  if from  $z_i \cdot z_j = 0$  follows necessarily  $z_i = 0$  or  $z_j = 0$.  In abstract algebra,  a zero divisor of a ring is an element  $z_i$ different from the zero element if there exists an element  $z_j \ne 0$  such that the product  $z_i \cdot z_j = 0$ .
  • A commutative ring free of zero divisors is called  »integral domain«.

$\text{Conclusion:}$  Comparing the definitions of  $\text{group}$,  "ring"  (see above), $\text{field}$  and  $\text{Galois field}$,  we recognize that a  »Galois field«  ${\rm GF}(q)$

  1. is a finite field with  $q$  elements,
  2. is at the same time a  "commutative division ring",  and
  3. also describes an  "integral domain".



Exercises for the chapter


Exercise 2.1: Group, Ring, Field

Exercise 2.1Z: Which Tables Describe Groups?

Exercise 2.2: Properties of Galois Fields

Exercise 2.2Z: Galois Field GF(5)

References

  1. Friedrichs, B.:  Kanalcodierung – Grundlagen und Anwendungen in modernen Kommunikationssystemen.  Berlin – Heidelberg: Springer, 1996.
  2. Kötter, R.; Mayer, T.; Tüchler, M.; Schreckenbach, F.; Brauchle, J.:  Channel Coding.  Lecture manuscript, Chair of Communications Engineering, TU Munich, 2008.