Difference between revisions of "Aufgaben:Exercise 2.2: DC Component of Signals"
From LNTwww
(30 intermediate revisions by 5 users not shown) | |||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID273__Sig_A_2_2.png| | + | [[File:P_ID273__Sig_A_2_2.png|right|frame|Square wave signal with/ without DC component]] |
− | + | The graph shows six time signals defined for all times $($from $-\infty$ to $+\infty)$. For all sample signals $x_i(t)$ the associated spectral function can be written as: | |
− | $$X_i(f)=A_0\cdot{\rm \delta}(f)+\Delta X_i(f).$$ | + | :$$X_i(f)=A_0\cdot{\rm \delta}(f)+\Delta X_i(f).$$ |
− | + | Here: | |
− | *$A_0$ | + | *$A_0$ is the DC component of the signal. |
− | *$\Delta X_i(f)$ | + | *$\Delta X_i(f)$ is the spectrum of the residual signal reduced by the DC component: |
+ | :$$\Delta x_i(t) = x_i(t) - A_0.$$ | ||
− | |||
− | |||
− | |||
− | === | + | ''Hint:'' |
+ | *This exercise belongs to the chapter <br>[[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|Direct Current Signal - Limit Case of a Periodic Signal]]. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which of the signals contains a DC component, i.e. for which signals is $A_0 \neq 0$? |
|type="[]"} | |type="[]"} | ||
− | + Signal $x_1(t)$ | + | + Signal $x_1(t),$ |
− | - | + | - signal $x_2(t),$ |
− | + | + | + signal $x_3(t),$ |
− | + | + | + signal $x_4(t),$ |
− | + | + | + signal $x_5(t),$ |
− | + | + | + signal $x_6(t).$ |
− | { | + | {For which of the signals is the „residual spectrum” $\Delta X_i(f) =0$? |
|type="[]"} | |type="[]"} | ||
− | - Signal $x_1(t)$ | + | - Signal $x_1(t),$ |
− | - | + | - signal $x_2(t),$ |
− | - | + | - signal $x_3(t),$ |
− | - | + | - signal $x_4(t),$ |
− | + | + | + signal $x_5(t),$ |
− | - | + | - signal $x_6(t).$ |
− | { | + | {What is the DC component of the signal $x_3(t)$? |
|type="{}"} | |type="{}"} | ||
− | $x_3(t):A_0$ | + | $x_3(t)\hspace{-0.1cm}:\,\,A_0 \ = \ $ { -0.35--0.31 } ${\rm V}$ |
− | { | + | {What is the DC component of the signal $x_4(t)$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $x_4(t)\hspace{-0.1cm}:\,\,A_0\ = \ $ { 0.5 3% } ${\rm V}$ |
− | { | + | {What is the DC component of the signal $x_6(t)$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $x_6(t)\hspace{-0.1cm}:\,\,A_0\ = \ $ { 0.5 3% } ${\rm V}$ |
− | |||
− | |||
− | |||
− | |||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' The correct <u>answers are 1, 3, 4, 5 and 6</u>. |
+ | *All signals except $x_2(t)$ contain a DC signal component. | ||
+ | |||
+ | |||
+ | '''(2)''' Only <u>solution 5 is correct</u>: | ||
+ | *If the DC component $1\text{V}$ is subtracted from the signal $x_5(t)$, the residual signal $\Delta x_5(t) = x5(t) - 1\text{V}$ is zero. | ||
+ | *Accordignly, the spectral function is $\Delta X_5(f) = 0$. | ||
+ | *For all other time courses $\Delta x_i(t)ßne 0$ and thus the associated spectral function $\Delta X_i(f)\ne 0$, too. | ||
+ | |||
− | |||
− | '''3 | + | '''(3)''' Given a periodic signal, averaging over a period duration is sufficient to calculate the DC signal component $A_0$ . |
− | + | *For signal $x_3(t)$ the period duration is $T_0 = 3\,\text{ms}$. This results in the required DC component:$$A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big] | |
− | $$A_0=\rm \frac{1}{3\,ms} | ||
\hspace{0.15cm}\underline{=-0.333\,V}.$$ | \hspace{0.15cm}\underline{=-0.333\,V}.$$ | ||
− | |||
− | '''5.''' | + | |
+ | '''(4)''' The signal $x_4(t)$ can be written as: $x_4(t) = 0.5 \,{\rm V} + Δx_4(t)$. | ||
+ | *Here $Δx_4(t)$ denotes a rectangular pulse with amplitude $0.5 \,{\rm V} $ and duration $4 \,{\rm ms} $, | ||
+ | *which due to its finite duration does not contribute to the DC signal component. | ||
+ | *Therefore $A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}$ applies here. | ||
+ | |||
+ | |||
+ | |||
+ | '''(5)''' The general equation for calculating the DC signal component is: | ||
− | $$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.$$ | + | :$$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.$$ |
− | + | *If one splits this integral into two partial integrals, one obtains: | |
− | $$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{T_{\rm M}/2}1 \rm V\ | + | :$$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }.$$ |
− | + | *Only the second term makes a contribution. From this follows again : $A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}$. | |
{{ML-Fuß}} | {{ML-Fuß}} | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^2.2 Direct Current Signal^]] |
Latest revision as of 17:30, 17 May 2021
The graph shows six time signals defined for all times $($from $-\infty$ to $+\infty)$. For all sample signals $x_i(t)$ the associated spectral function can be written as:
- $$X_i(f)=A_0\cdot{\rm \delta}(f)+\Delta X_i(f).$$
Here:
- $A_0$ is the DC component of the signal.
- $\Delta X_i(f)$ is the spectrum of the residual signal reduced by the DC component:
- $$\Delta x_i(t) = x_i(t) - A_0.$$
Hint:
- This exercise belongs to the chapter
Direct Current Signal - Limit Case of a Periodic Signal.
Questions
Solution
(1) The correct answers are 1, 3, 4, 5 and 6.
- All signals except $x_2(t)$ contain a DC signal component.
(2) Only solution 5 is correct:
- If the DC component $1\text{V}$ is subtracted from the signal $x_5(t)$, the residual signal $\Delta x_5(t) = x5(t) - 1\text{V}$ is zero.
- Accordignly, the spectral function is $\Delta X_5(f) = 0$.
- For all other time courses $\Delta x_i(t)ßne 0$ and thus the associated spectral function $\Delta X_i(f)\ne 0$, too.
(3) Given a periodic signal, averaging over a period duration is sufficient to calculate the DC signal component $A_0$ .
- For signal $x_3(t)$ the period duration is $T_0 = 3\,\text{ms}$. This results in the required DC component:$$A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big] \hspace{0.15cm}\underline{=-0.333\,V}.$$
(4) The signal $x_4(t)$ can be written as: $x_4(t) = 0.5 \,{\rm V} + Δx_4(t)$.
- Here $Δx_4(t)$ denotes a rectangular pulse with amplitude $0.5 \,{\rm V} $ and duration $4 \,{\rm ms} $,
- which due to its finite duration does not contribute to the DC signal component.
- Therefore $A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}$ applies here.
(5) The general equation for calculating the DC signal component is:
- $$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.$$
- If one splits this integral into two partial integrals, one obtains:
- $$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }.$$
- Only the second term makes a contribution. From this follows again : $A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}$.