Difference between revisions of "Aufgaben:Exercise 2.3: Cosine and Sine Components"

From LNTwww
 
(27 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File: P_ID278_Sig_A_2_3neu.png|right|Spektrum von Cosinus- und Sinusanteilen]]
+
[[File: P_ID278_Sig_A_2_3neu.png|right|frame|Spectra of DC, cosine and sine components]]
  
Gegeben ist das Amplitudenspektrum $X(f)$ eines Signals $x(t)$.
+
Given is the amplitude spectrum  $X(f)$  of a signal  $x(t)$  according to the graph.
Die Normierungsfrequenz sei $f_1 = 4$ kHz. Damit liegen die Frequenzen der Signalanteile bei 0 kHz, 4 kHz und 10 kHz (siehe Grafik).
+
*Let  $f_1 = 4\,\text{kHz}$ be the normalisation frequency.  
Dieses Signal $x(t)$ liegt am Eingang eines linearen Differenzierers, dessen Ausgang wie folgt dargestellt werden kann ($\omega_1 = 2\pi f_1$):
+
*Thus the frequencies of the signal components are  $0\,\text{kHz}$,  $4\,\text{kHz}$  and  $10\,\text{kHz}$.
  
$$y(t)=\frac{1}{\omega_1}\cdot\frac{\rm d \it x(t)}{\rm d \it t}.$$
+
 
 +
This signal  $x(t)$   is at the input of a linear differentiator whose output can be represented with  $\omega_1 = 2\pi f_1$  as follows:
 +
 
 +
:$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm dx(t)}{{\rm dt}.$$
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hint:''
 +
*This exercise belongs to the chapter  [[ Signal_Representation/Harmonic_Oscillation|Harmonic Oscillation]].
 
   
 
   
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Geben Sie $x(t)$ analytisch an. Wie groß ist der Signalwert bei $t = 0$?
+
{Give&nbsp; $x(t)$&nbsp; analytically.&nbsp; What is the signal value at&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
$x(t=0)$ = { 1 } V
+
$x(t=0)\ = \ $ { 1 3% } &nbsp; ${\rm V}$
  
{Wie groß ist die Periodendauer des Signals $x(t)$?
+
{What is the period duration of the signal&nbsp; $x(t)$?
 
|type="{}"}
 
|type="{}"}
$T_0$ = { 0.5 } ms
+
$T_0\ = \ $ { 0.5 3% } &nbsp; ${\rm ms}$
  
{Berechnen Sie das Ausgangssignal $y(t)$ des Differenzierers. Wie groß ist der Signalwert zum Zeitpunkt $t = 0$?
+
{Calculate the output signal&nbsp; $y(t)$&nbsp; of the differentiator.&nbsp; What is the signal value at time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
$y(t=0)$ = { 10 } V
+
$y(t=0)\ = \ $ { 10 3% } &nbsp; ${\rm V}$
  
{Welche der nachfolgenden Aussagen sind bezüglich des Signals $y(t)$ bzw. seines Spektrums $Y(f)$ zutreffend?
+
{Which of the following statements are true regarding the signal&nbsp; $y(t)$&nbsp; or its spectrum&nbsp; $Y(f)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ $y(t)$ hat die gleiche Periodendauer wie das Signal $x(t)$.
+
+ $y(t)$&nbsp; has the same period duration as the signal&nbsp; $x(t)$.
- $Y(f)$ beinhaltet eine Diracfunktion bei der Frequenz $f$ = 0.
+
- $Y(f)$&nbsp; contains a Dirac function at the frequency&nbsp; $f = 0$.
- $Y(f)$ beinhaltet eine Diracfunktion bei $f_1$ mit Gewicht j · 1V.
+
- $Y(f)$&nbsp; contains a Dirac function at&nbsp; $+f_1$&nbsp; with weight&nbsp; $\rm{j} · 1\,{\rm V}$.
+ $Y(f)$ beinhaltet eine Diracfunktion bei –2.5$f_1$ mit Gewicht 5V.
+
+ $Y(f)$&nbsp; contains a Dirac function at&nbsp; $–\hspace{-0.1cm}2.5 \cdot f_1$&nbsp; with weight&nbsp; $5\,{\rm V}$.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Das Zeitsignal hat die folgende Form:
+
'''(1)'''&nbsp; The time signal has the following form:
 
   
 
   
$$x(t)=\rm 3V-2V\cdot \cos(\it \omega_{\rm 1} t)+\rm 4V\cdot \sin(2.5\omega_{\rm 1} \it t).$$
+
:$$x(t)={\rm 3V}-{\rm 2V}\cdot \cos(\omega_{\rm 1} \cdot t)+{\rm 4V} \cdot \sin(2.5 \cdot \omega_{\rm 1} \cdot t).$$
  
Hierbei bezeichnet $\omega_1 = 2\pi f_1$ die Kreisfrequenz des Cosinusanteils. Zum Zeitpunkt $t = 0$ hat das Signal den Wert 1V.
+
[[File:P_ID293__Sig_A_2_3_a.png|right|frame|Sum signal of DC, cosine and sine components]]
  
[[File:P_ID293__Sig_A_2_3_a.png|250px|right|Summensignal aus Cosinus- und Sinusanteilen (ML zu Aufgabe A2.3)]]
+
*Here&nbsp; $\omega_1 = 2\pi f_1$&nbsp; denotes the circular frequency of the cosine component.  
 +
*At time&nbsp; $t = 0$&nbsp; the signal has the value&nbsp; $x(t=0)\hspace{0.15 cm}\underline{=1\,\rm V}$.
  
'''2.''' Die Grundfrequenz $f_0$ ist der kleinste gemeinsame Teiler von $f_1 = 4$ kHz und $2.5 · f_1$ = 10 kHz. Daraus folgt $f_0$ = 2 kHz und $T_0$ = $1/f_0$ = $0.5 ms$.
 
  
'''3.''' Für das Ausgangssignal $y(t)$ des Differenzierers gilt:
+
'''(2)'''&nbsp; The basic frequency&nbsp; $f_0$&nbsp; is the greatest common divisor
 +
*of $f_1 = 4{\,\rm kHz}$ 
 +
*and $2.5 · f_1 = 10{\,\rm kHz}$.
  
$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}x(t)}{{\rm d}t}=\frac{ {\rm -2V}}{\omega_1}\cdot\omega_1 \cdot (-\sin(\omega_1 t))+\frac{\rm 4V}{\omega_1}\cdot 2.5\omega_1\cdot {\rm cos}(2.5\omega_1t).$$
+
 
 +
From this follows&nbsp; $f_0 = 2{\,\rm kHz}$ &nbsp; &rArr; &nbsp;  period duration $T_0 = 1/f_0 \hspace{0.1cm}\underline{= 0.5 {\,\rm ms}}$.
 +
<br clear=all>
 +
'''(3)'''&nbsp; The following applies to the output signal $y(t)$ of the differentiatior:
 +
 
 +
:$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}x(t)}{{\rm d}t}=\frac{ {\rm -2V}}{\omega_1}\cdot\omega_1 \cdot (-\sin(\omega_1 t))+\frac{\rm 4V}{\omega_1}\cdot 2.5\omega_1\cdot {\rm cos}(2.5\omega_1t).$$
 +
 
 +
[[File:P_ID294__Sig_A_2_3_d_neu.png|right|300px|frame|Spectrum with discrete components]]
 
   
 
   
Dies führt zum Ergebnis:
+
*This leads to the solution:
  
$$y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).$$
+
:$$y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).$$
 
   
 
   
[[File:P_ID294__Sig_A_2_3_d_neu.png|250px|right|Spektrum mit diskreten Anteilen (ML zu Aufgabe A2.3)]]
+
*For&nbsp; $t = 0$&nbsp; the value&nbsp; $y(t=0)\hspace{0.15cm}\underline{=10\,\rm V}$ follows.  
 +
*The spectrum&nbsp; $Y(f)$&nbsp; is shown on the right.  
 +
 
  
Für den Nullzeitpunkt ergibt sich der Wert 10 V. Nebenstehend sehen Sie das Spektrum $Y(f)$.
 
  
'''4.''' Die Periodendauer $T_0$ wird durch die Amplitude und die Phase der beiden Anteile nicht verändert. Das bedeutet, dass weiterhin $T_0$ = 0.5 ms gilt.
+
'''(4)'''&nbsp; The <u>solutions 1 and 4</u> are correct:
Der Gleichanteil verschwindet aufgrund der Differentiation. Der Anteil bei $f_1$ ist sinusförmig. Somit hat $X(f)$ einen (imaginären) Dirac bei $f = f_1$, jedoch mit negativem Vorzeichen. Der Cosinusanteil mit der Amplitude 10 V hat die beiden Diracfunktionen bei $\pm 2.5 \cdot f_1$ zur Folge, jeweils mit dem Gewicht 5 V. Richtig sind somit die Lösungsvorschläge 1 und 4.
+
*The period duration $T_0$ is not changed by the amplitude and phase of the two components.  
 +
*This means, that&nbsp; $T_0 = 0.5 {\,\rm ms}$&nbsp;  still applies.  
 +
*The DC component disappears due to the differentiation.  
 +
*The component&nbsp; $f_1$&nbsp; is sinusoidal. Thus&nbsp; $X(f)$&nbsp; has an (imaginary) Dirac at&nbsp; $f = f_1$, but with a negative sign.  
 +
*The cosine component with amplitude&nbsp; ${10\,\rm V}$&nbsp; results in the two Dirac functions at&nbsp; $\pm 2.5 \cdot f_1$&nbsp;, each with weight&nbsp; ${5\,\rm V}$ .  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]]
+
[[Category:Signal Representation: Exercises|^2.3 Harmonic Oscillation^]]

Latest revision as of 17:33, 17 May 2021

Spectra of DC, cosine and sine components

Given is the amplitude spectrum  $X(f)$  of a signal  $x(t)$  according to the graph.

  • Let  $f_1 = 4\,\text{kHz}$ be the normalisation frequency.
  • Thus the frequencies of the signal components are  $0\,\text{kHz}$,  $4\,\text{kHz}$  and  $10\,\text{kHz}$.


This signal  $x(t)$  is at the input of a linear differentiator whose output can be represented with  $\omega_1 = 2\pi f_1$  as follows:

$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d} x(t)}{{\rm d} t}.$$




Hint:




Questions

1

Give  $x(t)$  analytically.  What is the signal value at  $t = 0$?

$x(t=0)\ = \ $

  ${\rm V}$

2

What is the period duration of the signal  $x(t)$?

$T_0\ = \ $

  ${\rm ms}$

3

Calculate the output signal  $y(t)$  of the differentiator.  What is the signal value at time  $t = 0$?

$y(t=0)\ = \ $

  ${\rm V}$

4

Which of the following statements are true regarding the signal  $y(t)$  or its spectrum  $Y(f)$ ?

$y(t)$  has the same period duration as the signal  $x(t)$.
$Y(f)$  contains a Dirac function at the frequency  $f = 0$.
$Y(f)$  contains a Dirac function at  $+f_1$  with weight  $\rm{j} · 1\,{\rm V}$.
$Y(f)$  contains a Dirac function at  $–\hspace{-0.1cm}2.5 \cdot f_1$  with weight  $5\,{\rm V}$.


Solution

(1)  The time signal has the following form:

$$x(t)={\rm 3V}-{\rm 2V}\cdot \cos(\omega_{\rm 1} \cdot t)+{\rm 4V} \cdot \sin(2.5 \cdot \omega_{\rm 1} \cdot t).$$
Sum signal of DC, cosine and sine components
  • Here  $\omega_1 = 2\pi f_1$  denotes the circular frequency of the cosine component.
  • At time  $t = 0$  the signal has the value  $x(t=0)\hspace{0.15 cm}\underline{=1\,\rm V}$.


(2)  The basic frequency  $f_0$  is the greatest common divisor

  • of $f_1 = 4{\,\rm kHz}$
  • and $2.5 · f_1 = 10{\,\rm kHz}$.


From this follows  $f_0 = 2{\,\rm kHz}$   ⇒   period duration $T_0 = 1/f_0 \hspace{0.1cm}\underline{= 0.5 {\,\rm ms}}$.
(3)  The following applies to the output signal $y(t)$ of the differentiatior:

$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}x(t)}{{\rm d}t}=\frac{ {\rm -2V}}{\omega_1}\cdot\omega_1 \cdot (-\sin(\omega_1 t))+\frac{\rm 4V}{\omega_1}\cdot 2.5\omega_1\cdot {\rm cos}(2.5\omega_1t).$$
Spectrum with discrete components
  • This leads to the solution:
$$y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).$$
  • For  $t = 0$  the value  $y(t=0)\hspace{0.15cm}\underline{=10\,\rm V}$ follows.
  • The spectrum  $Y(f)$  is shown on the right.


(4)  The solutions 1 and 4 are correct:

  • The period duration $T_0$ is not changed by the amplitude and phase of the two components.
  • This means, that  $T_0 = 0.5 {\,\rm ms}$  still applies.
  • The DC component disappears due to the differentiation.
  • The component  $f_1$  is sinusoidal. Thus  $X(f)$  has an (imaginary) Dirac at  $f = f_1$, but with a negative sign.
  • The cosine component with amplitude  ${10\,\rm V}$  results in the two Dirac functions at  $\pm 2.5 \cdot f_1$ , each with weight  ${5\,\rm V}$ .