Difference between revisions of "Aufgaben:Exercise 3.3Z: Rectangular Pulse and Dirac Delta"

From LNTwww
 
(36 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Einige Sonderfälle impulsartiger Signale
+
{{quiz-Header|Buchseite=Signal_Representation/Special_Cases_of_Impulse_Signals
 
}}
 
}}
  
[[File:P_ID507__Sig_Z_3_3.png|right|Verschiedene Rechteckimpulse]]
+
[[File:P_ID507__Sig_Z_3_3.png|right|frame|Various rectangular pulses]]
Wir betrachten hier eine Vielzahl von symmetrischen Rechteckfunktionen $x_k(t)$. Die Rechtecke unterscheiden sich durch unterschiedliche Amplituden (Höhen)
+
We consider here a multitude of symmetrical rectangular functions  $x_k(t)$.  The individual rectangles differ in amplitudes (heights)
 
:$$A_k  = k \cdot A$$
 
:$$A_k  = k \cdot A$$
und unterschiedliche Impulsdauern (Breiten)
+
and different pulse durations (widths)
 
:$$T_k = T/k.$$
 
:$$T_k = T/k.$$
Hierbei sei k ein beliebiger positiver Wert. Der im Bild rot dargestellte Rechteckimpuls $x_1(t)$ hat die Amplitude $A_1 = \text{A} = 2 \text{V}$ und die Dauer $T_1 = \text{T} = 500 \text{$\mu$s}$. Der blau gezeichnete Impuls x2(t) ist halb so breit ($T_2 = 250 \text{$\mu$s}$), aber doppelt so hoch ($A_2 = 4 \text{V}$).
+
Let  $k$  be any positive value.
  
''Hinweise:''
+
*The rectangular pulse  $x_1(t)$  shown in red has the amplitude   $A_1 = {A} = 2 \,\text{V}$  and the duration  $T_1 = {T} = 500 \,µ\text{s}$.  
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Einige_Sonderfälle_impulsartiger_Signale|Einige Sonderfälle impulsartiger Signale]].
+
*The pulse  $x_2(t)$ shown in blue is half as wide  ⇒   $T_2 =250 \,µ\text{s}$, but twice as high   ⇒   $A_2 = 4 \text{ V}$.
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Gegeben sind weiterhin folgende trigonometrischen Umformungen:
 
  
$$\sin ^2( \alpha ) = {1}/{2} \cdot \left( {1 - \cos ( {2\alpha } )} \right),\hspace{0.5cm} \tan( {\alpha /2} ) = \frac{ {1 - \cos ( \alpha  )}}{ {\sin ( \alpha  )}}.$$
 
  
  
  
<b><u>Hinweis:</u></b> Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [http://en.lntwww.de/Signaldarstellung/Einige_Sonderfälle_impulsartiger_Signale Kapitel 3.2]. Sie können Ihre Ergebnisse anhand zweier Interaktionsmodule überprüfen:
 
  
:* Zeitfunktion und zugehörige Spektralfunktion
 
  
:* Frequenzgang und zugehörige Impulsantwort
 
  
  
===Fragebogen===
+
''Hints:''
 +
*This task belongs to the chapter&nbsp;  [[Signal_Representation/Special_Cases_of_Pulses|Special Cases of Pulses]].
 +
*Use one of the functions&nbsp; $\text{si}(x) = \sin(x)/x$&nbsp; or&nbsp; $\text{sinc}(x) = \sin(\pi x)/(\pi x)$.
 +
 +
*You can check your results using the two interactive applets&nbsp;
 +
:[[Applets:Pulses_and_Spectra|Pulses and Spectra]],
 +
:[[Applets:Frequency_%26_Impulse_Responses|Frequency & Impulse Responses]].
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen treffen bezüglich des Spektrums $X_1(f)$ zu?
+
{Which of the following statements are true regarding the spectrum&nbsp; $X_1(f)$?
 
|type="[]"}
 
|type="[]"}
+ Der Spektralwert $X_1(f = 0)$ ist gleich $10^{–3} \text{V/Hz}$.
+
+ The spectral value&nbsp; $X_1(f = 0)$&nbsp; is equal to&nbsp; $10^{–3} \,\text{V/Hz}$.
+ $X_1(f)$ besitzt Nullstellen im Abstand von $2 \text{kHz}$.
+
+ $X_1(f)$&nbsp; has zeros at the interval of&nbsp; $2 \,\text{kHz}$.
- $X_1(f)$ besitzt Nullstellen im Abstand von $4 \text{kHz}$.
+
- $X_1(f)$&nbsp; has zeros at the interval of&nbsp; $4 \,\text{kHz}$.
  
  
{Welche der folgenden Aussagen treffen bezüglich des Spektrums $X_2(f)$ zu?
+
{Which of the following statements are true regarding the spectrum&nbsp; $X_2(f)$?
 
|type="[]"}
 
|type="[]"}
+ Der Spektralwert $X_2(f = 0)$ ist gleich $10^{–3} \text{V/Hz}$.
+
+ The spectral value is&nbsp; $X_2(f = 0)$&nbsp; is equal to&nbsp; $10^{–3} \,\text{V/Hz}$.
- $X_2(f)$ besitzt Nullstellen im Abstand von $2 \text{kHz}$.
+
- $X_2(f)$&nbsp; has zeros at the interval of&nbsp; $2\, \text{kHz}$.
+ $X_2(f)$ besitzt Nullstellen im Abstand von $4 \text{kHz}$.
+
+ $X_2(f)$&nbsp; has zeros at the interval of&nbsp; $4 \,\text{kHz}$.
  
  
{Es gelte $k = 10$. Berechnen Sie die Frequenz $f_10$ der ersten Nullstelle und den Spektralwert bei $f = 2 \text{kHz}$.
+
{Let&nbsp; $k = 10$.&nbsp; Calculate the frequency&nbsp; $f_{10}$&nbsp; of the first zero and the spectral value at&nbsp; $f = 2 \,\text{kHz}$.
 
|type="{}"}
 
|type="{}"}
$f_{10}$ = { 20 3% } $\text{kHz}$
+
$f_{10} \ = \ ${ 20 3% } &nbsp;$\text{kHz}$
$X_{10}(f = 2 \text{kHz})$ = { 0.984 3% } $\cdot 10^{-3}\ \text{V/Hz}$
+
$X_{10}(f = 2 \text{kHz})\ = \ $ { 0.984 3% } &nbsp;$\text{mV/Hz}$
  
  
{Wie groß wird der Spektralwert bei $f = 2 \text{kHz}$ im Grenzfall $k \rightarrow \infty$? Interpretieren Sie das Ergebnis.
+
{What is the spectral value at&nbsp; $f = 2 \,\text{kHz}$&nbsp; in the limiting case&nbsp; $k \rightarrow \infty$?&nbsp; Interpret the result.
 
|type="{}"}
 
|type="{}"}
$X_{\infty}(f = 2 \text{kHz}$ = { 1 3% } $\cdot 10^{-3}\ \text{V/Hz}$
+
$X_{\infty}(f = 2 \,\text{kHz})\ = \ $ { 1 3% } &nbsp;$\text{mV/Hz}$
  
  
Line 57: Line 62:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solutions===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Der Spektralwert bei der Frequenz $f = 0$ ist nach dem ersten Fourierintegral stets gleich der Fläche unter der Zeitfunktion:
+
'''(1)'''&nbsp; The <u>proposed solutions 1 and 2</u> are correct:
 +
*The spectral value at frequency&nbsp; $f = 0$&nbsp; is always equal to the area under the time function according to&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_First_Fourier_Integral|the first Fourier integral]]&nbsp;:
 
:$$X( f ) = \int_{ - \infty }^{ + \infty } {x( t )}  \cdot {\rm{e}}^{ - {\rm{j2\pi }}ft} \hspace{0.1cm} {\rm d}t \hspace{0.5cm} \Rightarrow \hspace{0.5cm} \;X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x( t )}\hspace{0.1cm}  {\rm d}t.$$
 
:$$X( f ) = \int_{ - \infty }^{ + \infty } {x( t )}  \cdot {\rm{e}}^{ - {\rm{j2\pi }}ft} \hspace{0.1cm} {\rm d}t \hspace{0.5cm} \Rightarrow \hspace{0.5cm} \;X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x( t )}\hspace{0.1cm}  {\rm d}t.$$
Im vorliegenden Fall ist die Impulsfläche stets $A \cdot T = 10^{–3} \text{Vs} = 10^{–3} \text{V/Hz}$. Wegen $T_1 = 500 \text{$\mu$s}$ weist das Spektrum $X_1(f)$ Nulldurchgänge im Abstand $f_1 = 1/T_1 = 2 \text{kHz}$ auf.
+
*In the present case, the pulse area is always&nbsp; $A \cdot T = 10^{–3} \,\text{Vs} = 1\, \text{mV/Hz}$.  
 +
*Because of&nbsp; $T_1 = 500 \,&micro;\text{s}$&nbsp; the spectrum&nbsp; $X_1(f)$&nbsp; has zero crossings at the interval&nbsp; $f_1 = 1/T_1 = 2 \,\text{kHz}$&nbsp;.
 +
 
 +
 
 +
'''(2)'''&nbsp;  The <u>proposed solutions 1 and 3</u> are correct:
 +
*Due to equal pulse areas, the spectral value is not changed at the frequency&nbsp; $f = 0$&nbsp;.
 +
*The equidistant zero crossings now occur at the interval&nbsp; $f_2 = 1/T_2 = 4 \,\text{kHz}$.  
  
Richtig sind somit die <u>Lösungsvorschläge 1 und 2</u>.
 
  
'''2.'''  Aufgrund gleicher Impulsflächen wird der Spektralwert bei der Frequenz $f = 0$ nicht verändert. Die äquidistanten Nulldurchgänge treten nun im Abstand $f_2 = 1/T_2 = 4 \text{kHz}$ auf. Richtig sind somit die <u>Lösungsvorschläge 1 und 3</u>.
 
  
'''3.'''  Nullstellen gibt es bei Vielfachen von $f_{10} = 1/T_{10} = 20 \text{kHz}$, und die Spektralfunktion lautet:
+
'''(3)'''&nbsp; Zero crossings occur at multiples of&nbsp; $f_{10} = 1/T_{10} = 20 \,\text{kHz}$, and the spectral function is:
 
:$$X_{10} ( f ) = X_0  \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }}f/f_{10} } ).$$
 
:$$X_{10} ( f ) = X_0  \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }}f/f_{10} } ).$$
Bei der Frequenz $f = 2 \text{kHz}$ ist das Argument der si-Funktion gleich $\pi/10$ (oder $18°$):
+
*At frequency&nbsp; $f = 2 \,\text{kHz}$ &nbsp; the argument of the&nbsp; $\rm si$-function is equal to&nbsp; $\pi/10$&nbsp; $($or&nbsp; $18^{\circ})$:
:$$X_{10} ( {f = 2\;{\rm{kHz}}}) = 10^{ - 3} \;{\rm{V/Hz}} \cdot \frac{{\sin ( {18^\circ } )}}{{{\rm{\pi /10}}}} \hspace{0.15 cm}\underline{= 0.984 \cdot 10^{ - 3} \;{\rm{V/Hz}}}{\rm{.}}$$
+
:$$X_{10} ( {f = 2\;{\rm{kHz}}}) = 10^{ - 3} \;{\rm{V/Hz}} \cdot \frac{{\sin ( {18^\circ } )}}{{{\rm{\pi /10}}}} \hspace{0.15 cm}\underline{= 0.984 \;{\rm{mV/Hz}}}{\rm{.}}$$
  
'''4.'''  Im Grenzfall $k \rightarrow \infty$ geht der dann unendlich hohe und unendlich schmale Rechteckimpuls in den Diracimpuls über. Dessen Spektrum ist für alle Frequenzen konstant. Damit gilt auch bei der Frequenz $f = 2 \text{kHz}$ der Spektralwert $10^{–3} \text{V/Hz}$.
+
&nbsp;
 +
'''(4)'''&nbsp; In the limiting case&nbsp; $k \rightarrow \infty$&nbsp; the then infinitely high and infinitely narrow&nbsp; [[Signal_Representation/Special_Cases_of_Pulses#Rectangular_pulse|Rectangular pulse]]&nbsp; changes into the&nbsp; [[Signal_Representation/Special_Cases_of_Pulses#Dirac_.28delta.29_impulse|Dirac delta impulse]].  
 +
*Its spectrum is constant for all frequencies.
 +
*Thus the spectral value&nbsp; $X_{\infty}(f = 2 \,\text{kHz})\hspace{0.15 cm}\underline{=1 \text{ mV/Hz}}$&nbsp; also applies at the frequency &nbsp; $f = 2 \,\text{kHz}$&nbsp;.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.2 Special Cases of Pulses^]]

Latest revision as of 17:42, 25 May 2021

Various rectangular pulses

We consider here a multitude of symmetrical rectangular functions  $x_k(t)$.  The individual rectangles differ in amplitudes (heights)

$$A_k = k \cdot A$$

and different pulse durations (widths)

$$T_k = T/k.$$

Let  $k$  be any positive value.

  • The rectangular pulse  $x_1(t)$  shown in red has the amplitude   $A_1 = {A} = 2 \,\text{V}$  and the duration  $T_1 = {T} = 500 \,µ\text{s}$.
  • The pulse  $x_2(t)$ shown in blue is half as wide  ⇒   $T_2 =250 \,µ\text{s}$, but twice as high   ⇒   $A_2 = 4 \text{ V}$.





Hints:

  • This task belongs to the chapter  Special Cases of Pulses.
  • Use one of the functions  $\text{si}(x) = \sin(x)/x$  or  $\text{sinc}(x) = \sin(\pi x)/(\pi x)$.
  • You can check your results using the two interactive applets 
Pulses and Spectra,
Frequency & Impulse Responses.



Questions

1

Which of the following statements are true regarding the spectrum  $X_1(f)$?

The spectral value  $X_1(f = 0)$  is equal to  $10^{–3} \,\text{V/Hz}$.
$X_1(f)$  has zeros at the interval of  $2 \,\text{kHz}$.
$X_1(f)$  has zeros at the interval of  $4 \,\text{kHz}$.

2

Which of the following statements are true regarding the spectrum  $X_2(f)$?

The spectral value is  $X_2(f = 0)$  is equal to  $10^{–3} \,\text{V/Hz}$.
$X_2(f)$  has zeros at the interval of  $2\, \text{kHz}$.
$X_2(f)$  has zeros at the interval of  $4 \,\text{kHz}$.

3

Let  $k = 10$.  Calculate the frequency  $f_{10}$  of the first zero and the spectral value at  $f = 2 \,\text{kHz}$.

$f_{10} \ = \ $

 $\text{kHz}$
$X_{10}(f = 2 \text{kHz})\ = \ $

 $\text{mV/Hz}$

4

What is the spectral value at  $f = 2 \,\text{kHz}$  in the limiting case  $k \rightarrow \infty$?  Interpret the result.

$X_{\infty}(f = 2 \,\text{kHz})\ = \ $

 $\text{mV/Hz}$


Solutions

(1)  The proposed solutions 1 and 2 are correct:

  • The spectral value at frequency  $f = 0$  is always equal to the area under the time function according to  the first Fourier integral :
$$X( f ) = \int_{ - \infty }^{ + \infty } {x( t )} \cdot {\rm{e}}^{ - {\rm{j2\pi }}ft} \hspace{0.1cm} {\rm d}t \hspace{0.5cm} \Rightarrow \hspace{0.5cm} \;X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x( t )}\hspace{0.1cm} {\rm d}t.$$
  • In the present case, the pulse area is always  $A \cdot T = 10^{–3} \,\text{Vs} = 1\, \text{mV/Hz}$.
  • Because of  $T_1 = 500 \,µ\text{s}$  the spectrum  $X_1(f)$  has zero crossings at the interval  $f_1 = 1/T_1 = 2 \,\text{kHz}$ .


(2)  The proposed solutions 1 and 3 are correct:

  • Due to equal pulse areas, the spectral value is not changed at the frequency  $f = 0$ .
  • The equidistant zero crossings now occur at the interval  $f_2 = 1/T_2 = 4 \,\text{kHz}$.


(3)  Zero crossings occur at multiples of  $f_{10} = 1/T_{10} = 20 \,\text{kHz}$, and the spectral function is:

$$X_{10} ( f ) = X_0 \cdot {\mathop{\rm si}\nolimits} ( {{\rm{\pi }}f/f_{10} } ).$$
  • At frequency  $f = 2 \,\text{kHz}$   the argument of the  $\rm si$-function is equal to  $\pi/10$  $($or  $18^{\circ})$:
$$X_{10} ( {f = 2\;{\rm{kHz}}}) = 10^{ - 3} \;{\rm{V/Hz}} \cdot \frac{{\sin ( {18^\circ } )}}{{{\rm{\pi /10}}}} \hspace{0.15 cm}\underline{= 0.984 \;{\rm{mV/Hz}}}{\rm{.}}$$

  (4)  In the limiting case  $k \rightarrow \infty$  the then infinitely high and infinitely narrow  Rectangular pulse  changes into the  Dirac delta impulse.

  • Its spectrum is constant for all frequencies.
  • Thus the spectral value  $X_{\infty}(f = 2 \,\text{kHz})\hspace{0.15 cm}\underline{=1 \text{ mV/Hz}}$  also applies at the frequency   $f = 2 \,\text{kHz}$ .