Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.3: Sinusoidal Characteristic"

From LNTwww
 
(31 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Nichtlineare Verzerrungen
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Nonlinear_Distortion
 
}}
 
}}
  
[[File:P_ID894__LZI_A_2_3.png|right|Sinusförmige Kennlinie]]
+
[[File:P_ID894__LZI_A_2_3.png|right|frame|Sinusoidal characteristic curve]]
Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet.
+
We consider a system with input  x(t)  and output  y(t).  For simplicity of description, the signals are considered to be dimensionless.
  
Der Zusammenhang zwischen dem Eingangssignal x(t) und dem Ausgangssignal y(t) ist im Bereich zwischen π/2 und +π/2 durch die folgende Kennlinie gegeben.
+
The relationship between the input signal  x(t)  and the output signal  y(t)  is given by the following characteristic curve in the range between  π/2  and  +π/2:
$$g(x) =  \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} -
+
:$$g(x) =  \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} -
  \hspace{0.05cm}...$$
+
  \hspace{0.05cm}\text{...}$$
  
Der zweite Teil dieser Gleichung beschreibt dabei die Reihenentwicklung der Sinusfunktion. Als Näherungen für die nichtlineare Kennlinie werden in dieser Aufgabe verwendet:
+
The second part of this equation describes the series expansion of the sine function.  
g1(x)=x,
 
g3(x)=xx3/6,
 
g5(x)=xx3/6+x5/120.
 
  
Es wird stets das Eingangssignal $x(t) = A \cdot \cos(\omega_0 \cdot t)$ vorausgesetzt, wobei für die (dimensionslose) Signalamplitude die Werte $A = 0.5,A = 1.0$ und $A = 1.5$ zu betrachten sind.
+
As approximations for the nonlinear characteristic curve the following is used in this task:
 +
:$$g_1(x) = x\hspace{0.05cm},$$
 +
:$$ g_3(x) = x- x^{3}\hspace{-0.1cm}/6\hspace{0.05cm},$$
 +
:$$g_5(x) = x- x^3\hspace{-0.1cm}/{6}+x^5\hspace{-0.1cm}/{120}\hspace{0.05cm}.$$
  
''Hinweise:''  
+
*The input signal  x(t)=Acos(ω0t)  is always assumed. 
*Die Aufgabe bezieht sich auf das Kapitel Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]].
+
*The values  A=0.5,  A=1.0  and  A=1.5  are to be considered for the (dimensionless) signal amplitude.
*Die sich ergebenden Signalverläufe für x(t) und y(t) sind im  Beispiel auf der Seite [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen#Beschreibung_nichtlinearer_Systeme|Beschreibung nichtlinearer Systeme]] grafisch dargestellt.
+
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
 
*Alle hier abgefragten Leistungen beziehen sich auf den Widerstand R=1 Ω und haben somit die Einheit V2
+
 
*Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:
+
 
$$\cos^3(\alpha) =  {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha)
+
 
 +
 
 +
 
 +
 
 +
''Please note:''  
 +
*The task belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion|Nonlinear Distortions]].
 +
*The resulting signal curves for  x(t)  and  y(t)  are shown graphically on the page  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion#Description_of_nonlinear_systems|Description of nonlinear systems]] .
 +
*All powers required here refer to the resistance  R=1 Ω  and thus have the unit  V2.
 +
*The following trigonometric relations are assumed to be known:
 +
:$$\cos^3(\alpha) =  {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha)
 
  \hspace{0.05cm}, $$
 
  \hspace{0.05cm}, $$
$$ \cos^5(\alpha) =  {10}/{16} \cdot \cos(\alpha) + {5}/{16} \cdot \cos(3\alpha)
+
:$$ \cos^5(\alpha) =  {10}/{16} \cdot \cos(\alpha) + {5}/{16} \cdot \cos(3\alpha)
 
  + {1}/{16} \cdot \cos(5\alpha)\hspace{0.05cm}.$$
 
  + {1}/{16} \cdot \cos(5\alpha)\hspace{0.05cm}.$$
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welchen Klirrfaktor K erhält man mit der Kennliniennäherung g1(x) unabhängig von der Amplitude A des Eingangssignals?
+
{What distortion factor&nbsp; K&nbsp; is obtained with the approximation&nbsp; $\underline{g_1(x)}$&nbsp; of the characteristic curve independent of the amplitude&nbsp; A&nbsp; of the input signal?
 
|type="{}"}
 
|type="{}"}
$g_1(x)\hspace{-0.08cm}:\ \ K \ = 0.\ \%$
+
$K \ = \ 0.\ \%$
  
  
{Berechnen Sie den Klirrfaktor K für das Eingangssignal x(t)=Acos(ω0t) und die Näherung g3(x). Welche Werte ergeben sich für A=0.5 und A=1.0?
+
{Compute the distortion factor&nbsp; K&nbsp; for the input signal&nbsp; x(t)=Acos(ω0t)&nbsp; and the approximation&nbsp; $\underline{g_3(x)}$. <br>What values arise as a result for&nbsp; A=0.5&nbsp; and&nbsp; A=1.0?
 
|type="{}"}
 
|type="{}"}
$g_3(x),\ A = 0.5\hspace{-0.08cm}:\ \ K \ = { 1.08 3% }\ \%$
+
$A = 0.5\hspace{-0.08cm}:\ \ K \ = \ { 1.08 3% }\ \%$
$g_3(x),\ A = 1.0\hspace{-0.08cm}:\ \ K \ = { 4.76 3% }\ \%$
+
$A = 1.0\hspace{-0.08cm}:\ \ K \ = \ { 4.76 3% }\ \%$
  
  
{Wie lautet der Klirrfaktor für A=1.0 unter Berücksichtigung der Näherung g5(x)?
+
{What is the distortion factor for&nbsp; $\underline{A = 1.0}$&nbsp; considering the approximation&nbsp; $\underline{g_5(x)}$?
 
|type="{}"}
 
|type="{}"}
$g_5(x),\ A = 1.0\hspace{-0.08cm}:\ \ K = { 4.45 3% }\ \%$
+
$K \ = \ { 4.45 3% }\ \%$
  
  
{Welche der folgenden Aussagen treffen zu? Hierbei bezeichnet K den Klirrfaktor der Sinusfunktion g(x), während Kg3 und Kg5 auf den Näherungen g3(x) und g5(x)   basieren.
+
{Which of the following statements are true?&nbsp; Here,&nbsp; K&nbsp; denotes the distortion factor of the sine function&nbsp; g(x). <br>Kg3&nbsp; and&nbsp; Kg5&nbsp; are based on the approximations&nbsp; g3(x)&nbsp; and&nbsp; g5(x), respectively.
 
|type="[]"}
 
|type="[]"}
+ Kg5 stellt im Allgemeinen eine bessere Näherung für K dar als Kg3.
+
+ Kg5&nbsp; generally represents a better approximation for&nbsp; K&nbsp; than&nbsp; Kg3.
- Für A=1.0 ist $K_{\rm g3}kleineralsK_{\rm g5}$.
+
- $K_{\rm g3} < K_{\rm g5}$ holds for&nbsp; $A = 1.0$.
+ Für $A = 0.5$ wird Kg3Kg5 gelten.
+
+ Kg3Kg5 will hold for&nbsp; A=0.5.
  
  
Line 59: Line 68:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Die sehr ungenaue Näherung <i>g</i><sub>1</sub>(<i>x</i>) = <i>x</i> ist linear in <i>x</i> und führt deshalb auch nicht zu nichtlinearen Verzerrungen. Damit ergibt sich der Klirrfaktor <u><i>K</i> = 0</u>.
+
'''(1)'''&nbsp; The very inaccurate approximation&nbsp; $g_1(x) = x$&nbsp; is linear in&nbsp; $x$&nbsp; and therefore does not result in nonlinear distortions. Hence, the distortion factor is $\underline{K = 0}$.
 +
 
 +
 
  
:<b>2.</b>&nbsp;&nbsp;Das analytische Spektrum (nur positive Frequenzen) des Eingangssignals lautet:
+
'''(2)'''&nbsp; The analytical spectrum&nbsp; (positive frequencies only)&nbsp; of the input signal is:
 
:X+(f)=Aδ(ff0).
 
:X+(f)=Aδ(ff0).
  
:Am Ausgang der nichtlinearen Kennlinie <i>g</i><sub>3</sub>(<i>x</i>) liegt dann folgendes Signal an:
+
*Then, the following signal is applied to the output of the nonlinear characteristic curve&nbsp; $g_3(x)$&nbsp;:
 
:$$y(t) = A \cdot {\rm cos}(\omega_0  t ) - \frac{A^3}{6} \cdot
 
:$$y(t) = A \cdot {\rm cos}(\omega_0  t ) - \frac{A^3}{6} \cdot
 
{\rm cos}^3(\omega_0  t )=
 
{\rm cos}^3(\omega_0  t )=
\\ = A \cdot {\rm cos}(\omega_0  t ) - \frac{3}{4} \cdot \frac{A^3}{6} \cdot
+
A \cdot {\rm cos}(\omega_0  t ) - \frac{3}{4} \cdot \frac{A^3}{6} \cdot
 
{\rm cos}(\omega_0  t )- \frac{1}{4} \cdot \frac{A^3}{6} \cdot
 
{\rm cos}(\omega_0  t )- \frac{1}{4} \cdot \frac{A^3}{6} \cdot
{\rm cos}(3\omega_0  t ) = \\ = A_1 \cdot {\rm cos}(\omega_0  t )
+
{\rm cos}(3\omega_0  t ) = A_1 \cdot {\rm cos}(\omega_0  t )
 
+ A_3 \cdot {\rm cos}(3\omega_0  t ).$$
 
+ A_3 \cdot {\rm cos}(3\omega_0  t ).$$
  
:Für die Koeffizienten <i>A</i><sub>1</sub> und <i>A</i><sub>3</sub> erhält man durch Koeffizientenvergleich:
+
*For the coefficients&nbsp; A1&nbsp; and A3 the following is obtained by comparison of coefficients:
:$$A_1 = A  - \frac{A^3}{8},  \hspace{0.5cm}A_3 =  - \frac{A^3}{24}.$$
+
:$$A_1 = A  - {A^3}\hspace{-0.1cm}/{8},  \hspace{0.5cm}A_3 =  - {A^3}\hspace{-0.1cm}/{24}.$$
  
:Mit <i>A</i> = 0.5 ergibt sich <i>A</i><sub>1</sub> &asymp; 0.484 und <i>A</i><sub>3</sub> &asymp; 0.005. Somit lautet der Klirrfaktor:
+
*Using&nbsp; $A = 0.5$&nbsp; the following is obtained:&nbsp; $A_1 \approx 0.484$&nbsp; and&nbsp; $A_3 \approx 0.005$.&nbsp; Thus, the distortion factor is:
:$$K = K_3 = \frac{|A_3|}{A_1}= \frac{0.005}{0.484} \hspace{0.15cm}\underline{ =  1.08\%}.$$
+
:$$K = K_3 ={|A_3|}/{A_1}= {0.005}/{0.484} \hspace{0.15cm}\underline{ =  1.08\%}.$$
  
:Anzumerken ist, dass bei der Näherung <i>g</i><sub>3</sub>(<i>x</i>) nur der kubische Anteil <i>K</i><sub>3</sub> des Klirrfaktors wirksam ist. Für <i>A</i> = 1 und <i>A</i> = 1.5 ergeben sich folgende Zahlenwerte:
+
:Note that for the approximation&nbsp; $g_3(x)&nbsp; only the cubic part&nbsp;K_3$&nbsp; of the distortion factor is effective.  
 +
 
 +
*For&nbsp; $A = 1.0&nbsp; and&nbsp;A = 1.5$&nbsp; the following numerical values:
 
:$$A = 1.0: A_1 \approx 0.875, \hspace{0.2cm} A_3 \approx
 
:$$A = 1.0: A_1 \approx 0.875, \hspace{0.2cm} A_3 \approx
-0.041\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{K \approx 4.76\%},$$
+
-0.041\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{K \approx 4.76\%}\; \; \Rightarrow \; \; K_{g3},$$
 
:$$A = 1.5: A_1 \approx 1.078, \hspace{0.2cm} A_3 \approx
 
:$$A = 1.5: A_1 \approx 1.078, \hspace{0.2cm} A_3 \approx
 
-0.140\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}{K \approx 13 \%}.$$
 
-0.140\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}{K \approx 13 \%}.$$
  
:<b>3.</b>&nbsp;&nbsp;In ähnlicher Weise wie beim Unterpunkt 2) gilt nun
+
 
 +
 
 +
'''(3)'''&nbsp; Similarly as in subtask&nbsp; '''(2)''',&nbsp;
 
:$$y(t) = A_1 \cdot {\rm cos}(\omega_0  t ) + A_3 \cdot {\rm
 
:$$y(t) = A_1 \cdot {\rm cos}(\omega_0  t ) + A_3 \cdot {\rm
cos}(3\omega_0  t )+ A_5 \cdot {\rm cos}(5\omega_0  t )$$
+
cos}(3\omega_0  t )+ A_5 \cdot {\rm cos}(5\omega_0  t )$$  
  
:mit folgenden Koeffizienten:
+
:holds with the following coefficients:
:$$A_1 = A  - \frac{A^3}{8} + \frac{A^5}{192},\hspace{0.3cm}
+
:$$A_1 = A  - {A^3}\hspace{-0.1cm}/{8} + {A^5}\hspace{-0.1cm}/{192},\hspace{0.3cm}
A_3 =  - \frac{A^3}{24} + \frac{A^5}{384},\hspace{0.3cm}
+
A_3 =  - {A^3}\hspace{-0.1cm}/{24} + {A^5}\hspace{-0.1cm}/{384},\hspace{0.3cm}
A_5 = \frac{A^5}{1920}.$$
+
A_5 = {A^5}\hspace{-0.1cm}/{1920}.$$
  
:Daraus ergeben sich mit <i>A</i> = 1 die Zahlenwerte:
+
*From this, the following numerical values arise a result with&nbsp; $A=1$&nbsp;:
 
:$$A_1 \approx 1 -0.125 +0.005 = 0.880,\hspace{0.3cm}
 
:$$A_1 \approx 1 -0.125 +0.005 = 0.880,\hspace{0.3cm}
 
A_3 \approx  -0.042 +0.003 = -0.039,\hspace{0.3cm}
 
A_3 \approx  -0.042 +0.003 = -0.039,\hspace{0.3cm}
 
A_5 \approx 0.0005$$
 
A_5 \approx 0.0005$$
:$$\Rightarrow \hspace{0.3cm}K_3 = \frac{|A_3|}{A_1}= 0.0443,\hspace{0.3cm}K_5 =
+
:$$\Rightarrow \hspace{0.3cm}K_3 = {|A_3|}/{A_1}= 0.0443,\hspace{0.3cm}K_5 =
\frac{|A_5|}{A_1}= 0.0006 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K = \sqrt{K_3^2 + K_5^2}  \hspace{0.15cm}\underline{\approx 4.45\%}.$$
+
{|A_5|}/{A_1}= 0.0006 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K = \sqrt{K_3^2 + K_5^2}  \hspace{0.15cm}\underline{\approx 4.45\%}
 
+
\; \; \Rightarrow \; \; K_{g5}.$$
:<b>4.</b>&nbsp;&nbsp;Der Ansatz <i>g</i><sub>5</sub>(<i>x</i>) ist im gesamten Bereich eine bessere Näherung für die Sinusfunktion <i>g</i>(<i>x</i>) als die Näherung <i>g</i><sub>3</sub>(<i>x</i>). Deshalb ist der in der Teilaufgabe c) berechnete Wert <i>K</i><sub>c</sub> eine bessere Näherung für den tatsächlichen Klirrfaktor <i>K</i> als <i>K<sub>b</sub></i> &ndash; die erste Aussage ist somit richtig.
 
  
:Dagegen ist die zweite Aussage falsch, wie schon die Berechnung gezeigt hat <i>K<sub>b</sub></i> = 4.76 % ist größer als <i>K<sub>c</sub></i>  = 4.45 %. Der Grund hierfür ist, dass <i>g</i><sub>3</sub>(<i>x</i>) unterhalb von <i>g</i><sub>5</sub>(<i>x</i>) liegt und damit auch eine größere Abweichung vom linearen Verlauf vorliegt.
 
  
:Für <i>A</i> = 0.5 wird <i>K<sub>c</sub></i> &asymp; <i>K<sub>b</sub></i> gelten. Schon die Kennlinie auf der Angabenseite zeigt, dass für |<i>x</i>| &#8804; 0.5 die beiden Funktionen <i>g</i><sub>3</sub>(<i>x</i>) und <i>g</i><sub>5</sub>(<i>x</i>) innerhalb der Zeichengenauigkeit nicht zu unterscheiden sind. Damit ergeben sich auch gleiche Klirrfaktoren. Richtig sind also die <u>Lösungsvorschläge 1 und 3</u>
+
'''(4)'''&nbsp; <u>Approaches 1 and 3</u>&nbsp; are correct:
 +
*The approach&nbsp; g5(x)&nbsp; is a better approximation for the sine function&nbsp; g(x)&nbsp; than the approximation&nbsp; g3(x) in the entire domain.
 +
*Thus, the value&nbsp; Kg5&nbsp; computed in the subtask&nbsp; '''(3)'''&nbsp; is a better approximation for the actual distortion factor than&nbsp; Kg3. <br>Therefore, the first statement is correct.
 +
*The second statement is false as already shown by the computation for&nbsp; A=1&nbsp;: &nbsp; Kg34.76%&nbsp; is greater than&nbsp; Kg54.45%.
 +
*The reason for this is that&nbsp; g3(x)&nbsp; is below&nbsp; g5(x)&nbsp; and thus there is also a greater deviation from the linear curve.
 +
*For&nbsp; $A=0.5&nbsp;,&nbsp;K_{g5} \approx K_{g3} = 1.08 \%$&nbsp; will hold.  
 +
*The characteristic curve on the information page shows that for&nbsp; $|x| \le 0.5&nbsp; the functions&nbsp;g_3(x)&nbsp; and&nbsp;g_5(x)$&nbsp; are indistinguishable within the accuracy of drawing.  
 +
*This also results in&nbsp; (nearly)&nbsp; the same distortion factors.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^2.2 Nichtlineare Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nonlinear Distortions^]]

Latest revision as of 15:12, 29 September 2021

Sinusoidal characteristic curve

We consider a system with input  x(t)  and output  y(t).  For simplicity of description, the signals are considered to be dimensionless.

The relationship between the input signal  x(t)  and the output signal  y(t)  is given by the following characteristic curve in the range between  π/2  and  +π/2:

g(x)=sin(x)=xx33!+x55!...

The second part of this equation describes the series expansion of the sine function.

As approximations for the nonlinear characteristic curve the following is used in this task:

g1(x)=x,
g3(x)=xx3/6,
g5(x)=xx3/6+x5/120.
  • The input signal  x(t)=Acos(ω0t)  is always assumed. 
  • The values  A=0.5A=1.0  and  A=1.5  are to be considered for the (dimensionless) signal amplitude.





Please note:

  • The task belongs to the chapter  Nonlinear Distortions.
  • The resulting signal curves for  x(t)  and  y(t)  are shown graphically on the page  Description of nonlinear systems .
  • All powers required here refer to the resistance  R=1 Ω  and thus have the unit  V2.
  • The following trigonometric relations are assumed to be known:
cos3(α)=3/4cos(α)+1/4cos(3α),
cos5(α)=10/16cos(α)+5/16cos(3α)+1/16cos(5α).


Questions

1

What distortion factor  K  is obtained with the approximation  g1(x)_  of the characteristic curve independent of the amplitude  A  of the input signal?

K = 

 %

2

Compute the distortion factor  K  for the input signal  x(t)=Acos(ω0t)  and the approximation  g3(x)_.
What values arise as a result for  A=0.5  and  A=1.0?

A=0.5:  K = 

 %
A=1.0:  K = 

 %

3

What is the distortion factor for  A=1.0_  considering the approximation  g5(x)_?

K = 

 %

4

Which of the following statements are true?  Here,  K  denotes the distortion factor of the sine function  g(x).
Kg3  and  Kg5  are based on the approximations  g3(x)  and  g5(x), respectively.

Kg5  generally represents a better approximation for  K  than  Kg3.
Kg3<Kg5 holds for  A=1.0.
Kg3Kg5 will hold for  A=0.5.


Solution

(1)  The very inaccurate approximation  g1(x)=x  is linear in  x  and therefore does not result in nonlinear distortions. Hence, the distortion factor is K=0_.


(2)  The analytical spectrum  (positive frequencies only)  of the input signal is:

X+(f)=Aδ(ff0).
  • Then, the following signal is applied to the output of the nonlinear characteristic curve  g3(x) :
y(t)=Acos(ω0t)A36cos3(ω0t)=Acos(ω0t)34A36cos(ω0t)14A36cos(3ω0t)=A1cos(ω0t)+A3cos(3ω0t).
  • For the coefficients  A1  and A3 the following is obtained by comparison of coefficients:
A1=AA3/8,A3=A3/24.
  • Using  A=0.5  the following is obtained:  A10.484  and  A30.005.  Thus, the distortion factor is:
K=K3=|A3|/A1=0.005/0.484=1.08%_.
Note that for the approximation  g3(x)  only the cubic part  K3  of the distortion factor is effective.
  • For  A=1.0  and  A=1.5  the following numerical values:
A=1.0:A10.875,A30.041K4.76%_Kg3,
A=1.5:A11.078,A30.140K13%.


(3)  Similarly as in subtask  (2)

y(t)=A1cos(ω0t)+A3cos(3ω0t)+A5cos(5ω0t)
holds with the following coefficients:
A1=AA3/8+A5/192,A3=A3/24+A5/384,A5=A5/1920.
  • From this, the following numerical values arise a result with  A=1 :
A110.125+0.005=0.880,A30.042+0.003=0.039,A50.0005
K3=|A3|/A1=0.0443,K5=|A5|/A1=0.0006K=K23+K254.45%_Kg5.


(4)  Approaches 1 and 3  are correct:

  • The approach  g5(x)  is a better approximation for the sine function  g(x)  than the approximation  g3(x) in the entire domain.
  • Thus, the value  Kg5  computed in the subtask  (3)  is a better approximation for the actual distortion factor than  Kg3.
    Therefore, the first statement is correct.
  • The second statement is false as already shown by the computation for  A=1 :   Kg34.76%  is greater than  Kg54.45%.
  • The reason for this is that  g3(x)  is below  g5(x)  and thus there is also a greater deviation from the linear curve.
  • For  A=0.5 ,  Kg5Kg3=1.08%  will hold.
  • The characteristic curve on the information page shows that for  |x|0.5  the functions  g3(x)  and  g5(x)  are indistinguishable within the accuracy of drawing.
  • This also results in  (nearly)  the same distortion factors.