Difference between revisions of "Aufgaben:Exercise 4.1Z: Transmission Behavior of Short Cables"

From LNTwww
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige Ergebnisse der Leitungstheorie
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory
 
}}
 
}}
  
[[File:P_ID1798__LZI_Z_4_1.png|right|Kurzer Leitungsabschnitt]]
+
[[File:EN_LZI_Z_4_1.png|right|frame|Short line section]]
Wir gehen von einer homogenen und reflektionsfrei abgeschlossenen Leitung der Länge $l$ aus, so dass für die Spektralfunktion am Ausgang gilt:
+
We assume a homogeneous and reflection-free terminated line of length  $l$  so that the following applies to the spectral function at the output:
$$U_2(f)  =  U_1(f) \cdot  {\rm e}^{-\hspace{0.02cm}\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l}  \hspace{0.05cm}.$$
+
:$$U_2(f)  =  U_1(f) \cdot  {\rm e}^{-\hspace{0.02cm}\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l}  \hspace{0.05cm}.$$
Hierbei beschreibt $\gamma(f)$ das Übertragungsmaß einer extrem kurzen Leitung der infinitesimalen Länge $dx$, das mit den Belägen $R'$, $L'$, $G'$' und $C'$ (siehe Grafik) wie folgt dargestellt werden kann:
+
Here  $\gamma(f)$  describes the  '''complex propagation function'''  of an extremely short line of infinitesimal length  $dx$,  which can be represented with the parameters  $R\hspace{0.05cm}'$,  $L\hspace{0.05cm}'$,  $G\hspace{0.08cm}'$ and  $C\hspace{0.08cm}'$ (see diagram) as follows:
$$\gamma(f)  =  \sqrt{(R' + {\rm j}  \cdot 2\pi f \cdot  L')  \cdot  (G' + {\rm j}  \cdot  2\pi f \cdot  C')} =
+
:$$\gamma(f)  =  \sqrt{(R\hspace{0.05cm}' + {\rm j}  \cdot 2\pi f \cdot  L\hspace{0.05cm}')  \cdot  (G\hspace{0.08cm}' + {\rm j}  \cdot  2\pi f \cdot  C\hspace{0.08cm}')} =
 
  \alpha (f) + {\rm j}  \cdot \beta (f)\hspace{0.05cm}.$$
 
  \alpha (f) + {\rm j}  \cdot \beta (f)\hspace{0.05cm}.$$
Der Realteil von $\gamma(f)$ ergibt das Dämpfungsmaß $\alpha(f)$, der Imaginärteil das Phasenmaß $\beta(f)$. Nach einiger Rechnung kann man für diese Größen schreiben:
+
The real part of  $\gamma(f)$  results in
$$\alpha(f)  =  \sqrt{{1}/{2}\cdot \left (R' G' - \omega^2 \cdot L'  C'\right)+
+
*The real part of  $\gamma(f)$  results in the attenuation function $\alpha(f)$  (per unit length).
   {1}/{2}\sqrt{(R'^2 + \omega^2 \cdot L'^2) \cdot (G'^2 + \omega^2 \cdot C'^2)}}
+
*The imaginary part of  $\gamma(f)$  results in the phase function  $\beta(f)$ (per unit length).  
  \hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
+
 
 +
 
 +
After some calculation one can write for these sizes:
 +
:$$\alpha(f)  =  \sqrt{{1}/{2}\cdot \left (R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' - \omega^2 \cdot L\hspace{0.05cm}\cdot C\hspace{0.08cm}'\right)+
 +
   {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}}
 +
  \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
 
  f},$$
 
  f},$$
$$\beta(f)  =  \sqrt{{1}/{2}\cdot \left (-R' G' + \omega^2 \cdot L'  C'\right)+
+
:$$\beta(f)  =  \sqrt{{1}/{2}\cdot \left (-R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' + \omega^2 \cdot L\hspace{0.05cm}'  C\hspace{0.08cm}'\right)+
   {1}/{2}\sqrt{(R'^2 + \omega^2 \cdot L'^2) \cdot (G'^2 + \omega^2 \cdot C'^2)}}
+
   {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}}
  \hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
+
  \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
Beim Dämpfungsmaß ist zusätzlich die Pseudoeinheit „Neper (Np)” hinzuzufügen und beim Phasenmaß „Radian (rad)”.
 
  
Da die Leitungsbeläge jeweils auf die Leitungslänge bezogen sind, weisen $\alpha(f)$ bzw. $\beta(f)$ die Einheiten „Np/km” bzw. „rad/km” auf.
+
*For the attenuation function  $a(f)$  the pseudo unit  "Neper"  (Np)  has to be added additionally and for the phase function  $b(f)$  "Radian"  (rad).  
 +
*Since the primary line parameters are each related to the line length,  $\alpha(f)$  and  $\beta(f)$  have the units  "Np/km"  and  "rad/km",  respectively.
  
Eine weitere wichtige Beschreibungsgröße neben $\gamma(f)$ ist der Wellenwiderstand $Z_{\rm W}(f)$, der an jedem Ort den Zusammenhang zwischen Spannung und Strom der beiden laufenden Wellen angibt. Es gilt:
 
$$Z_{\rm W}(f)  =  \sqrt{\frac {R' + {\rm j}  \cdot \omega  L'}{G' + {\rm j}  \cdot \omega  C'}}
 
\hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
 
  
''Hinweise:''  
+
Another important descriptive quantity besides  $\gamma(f)$  is the  '''wave impedance'''  $Z_{\rm W}(f)$,  which gives the relationship between voltage and current of the two running waves at each location.  It holds:
*Die Aufgabe gehört zum Kapitel   [[Lineare_zeitinvariante_Systeme/Einige_Ergebnisse_der_Leitungstheorie|Einige Ergebnisse der Leitungstheorie]].
+
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}'}{G\hspace{0.08cm}' + {\rm j}  \cdot \omega  C\hspace{0.08cm}'}}
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
\hspace{0.1cm}\bigg |_{\hspace{0.05cm} \omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
*Verwenden Sie für die numerischen Berechnungen jeweils die Zahlenwerte
+
 
$$R\hspace{0.03cm}' = 100\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
+
 
  G\hspace{0.03cm}' = 1\,\,{\rm \mu S}/{ {\rm km}}\hspace{0.05cm},\hspace{0.3cm}
+
 
  2\pi  L' = 2\,\,{\rm mH}/{ {\rm km}}  \hspace{0.05cm},\hspace{0.3cm}
+
 
  2\pi  C\hspace{0.03cm}' = 200\,\,{\rm nF}/{ {\rm km}}
+
 
 +
Notes:
 +
*The exercise belongs to the chapter    [[Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory|Some Results from Line Transmission Theory]].
 +
 +
*Use the following values for the numerical calculations:
 +
:$$R\hspace{0.05cm}' = 100\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
 +
  G\hspace{0.08cm}' = 1\,\,{\rm µ S}/{ {\rm km}}\hspace{0.05cm},\hspace{0.3cm}
 +
  2\pi  L\hspace{0.03cm}' = 2\,\,{\rm mH}/{ {\rm km}}  \hspace{0.05cm},\hspace{0.3cm}
 +
  2\pi  C\hspace{0.08cm}' = 200\,\,{\rm nF}/{ {\rm km}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie $\alpha(f)$, $\beta(f)$ und $Z_{\rm W}(f)$ für die Frequenz $f = 0$ (Gleichstrom) an.
+
{Specify &nbsp;$\alpha(f)$, &nbsp;$\beta(f)$ and &nbsp;$Z_{\rm W}(f)$&nbsp; for frequency &nbsp;$f = 0$&nbsp; ("direct current").
 
|type="{}"}
 
|type="{}"}
$\alpha(f = f_0) \ =$  { 0.01 3% } $\ \rm Np/km$
+
$\alpha(f =0) \ =$  { 0.01 3% } $\ \rm Np/km$
$\beta(f = f_0) \ =$ { 0. } $\ \rm rad/km$
+
$\beta(f = 0) \ =$ { 0. } $\ \rm rad/km$
$Z_W(f = f_0) \ =$  { 10 3% } $\ \rm k \Omega$
+
$Z_{\rm W}(f = 0) \ =$  { 10000 3% } $\ \rm \Omega$
  
  
{Berechnen Sie das Dämpfungsmaß $\alpha(f)$ für $f = 100\ \rm  kHz$.
+
{Calculate the attenuation function &nbsp;$\alpha(f)$&nbsp; (per unit length)&nbsp; for &nbsp;$f = 100\ \rm  kHz$.
 
|type="{}"}
 
|type="{}"}
$\alpha(f = 100\ \rm  kHz) \ =$  { 0.486 3% } $\ \rm Np/km$
+
$\alpha(f = 100\ \rm  kHz) \ = \ $  { 0.486 3% } $\ \rm Np/km$
  
  
{Geben Sie für $f  &#8594; \infty$ gültige Näherungen für $Z_{\rm W}(f)$ und $\alpha(f)$ an.
+
{Give the approximations of &nbsp;$Z_{\rm W}(f)$&nbsp; and &nbsp;$\alpha(f)$,&nbsp; valid for &nbsp;$f &#8594; \infty$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$ Z_W(f &#8594; \infty) \ =$  { 100 3% } $\ \rm \Omega$
+
$ Z_{\rm W}(f &#8594; \infty) \ = \ $  { 100 3% } $\ \rm \Omega$
$\alpha(f &#8594; \infty)\ =$ { 0.5 3% } $\ \rm Np/km$
+
$\alpha(f &#8594; \infty) \ = \ $ { 0.5 3% } $\ \rm Np/km$
  
  
{Leiten Sie mit $\omega L' \ll R'$ und $\omega C' \gg G'$ eine $\alpha(f)$&ndash; Näherung für (nicht zu) kleine Frequenzen ab. Welches Dämpfungsmaß ergibt sich für $ f = 1 \ \rm kHz$ und $ f = 4 \ \rm kHz$.
+
{Use &nbsp;$\omega L\hspace{0.03cm}' \ll R\hspace{0.05cm}'$&nbsp; and &nbsp;$\omega C\hspace{0.08cm}' \gg G\hspace{0.08cm}'$&nbsp; to derive an &nbsp;$\alpha(f)$&nbsp;  approximation for&nbsp; (not too)&nbsp; small frequencies. <br>What is the attenuation function per unit length for &nbsp;$ f = 1 \ \rm kHz$&nbsp; and &nbsp;$ f = 4 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
$\alpha(f = 1\  \rm kHz) \ =$  { 0.1 3% } $\ \rm Np/km$
+
$\alpha(f = 1\  \rm kHz) \ = \ $  { 0.1 3% } $\ \rm Np/km$
$\alpha(f = 4\  \rm kHz) \ =$ { 0.2 3% } $\ \rm Np/km$
+
$\alpha(f = 4\  \rm kHz) \ = \ $ { 0.2 3% } $\ \rm Np/km$
  
  
{Geben Sie für den gleichen Frequenzbereich eine geeignete Näherung für den Wellenwiderstand  $Z_{\rm W}(f)$ an. Welcher Wert ergibt sich für $ f = 1 \ \rm kHz$?
+
{For the same frequency range,&nbsp; give a suitable approximation for the wave impedance &nbsp;$Z_{\rm W}(f)$&nbsp;. <br>What value results for &nbsp;$ f = 1 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
${\rm Re}\{Z_W(f = 1\ \rm kHz)\} \ = $ { 500 3% } $\ \rm \Omega$
+
${\rm Re}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = \ $ { 500 3% } $\ \rm \Omega$
${\rm Im}\{Z_W(f = 1\ \rm kHz)\} \ = $ { -515--485 } $\ \rm \Omega$
+
${\rm Im}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = $ { -515--485 } $\ \rm \Omega$
  
  
Line 72: Line 84:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Setzt man in die gegebenen Gleichungen die Frequenz <i>f</i> = 0 ein, so erhält man
+
'''(1)'''&nbsp; If you insert the frequency&nbsp; $f = 0$&nbsp; into the given equations, we obtain
:$$\alpha(f = 0)    =  [1\,{\rm Np}] \cdot \sqrt{\frac {1}{2}\cdot R' \cdot G'+ \frac {1}{2}\cdot R' \cdot
+
:$$\alpha(f = 0)    =  [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{{1}/{2}\hspace{-0.03cm}\cdot \hspace{-0.03cm}  R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm}  G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm}
  G'} =  [1\,{\rm Np}] \cdot \sqrt{ R' \cdot G'} = \\ =  [1\,{\rm Np}] \cdot \sqrt{ 100\,{\rm \Omega/km} \cdot 10^{-6}\,{\rm (\Omega \cdot km})^{-1}}
+
  G\hspace{0.03cm}'} =  [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm}  \sqrt{ R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm}  G\hspace{0.03cm}'} =   [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm}  \sqrt{ 100\,{\rm \Omega/km} \hspace{-0.03cm}\cdot \hspace{-0.03cm}  10^{-6}\,{\rm (\Omega \hspace{-0.03cm}\cdot \hspace{-0.03cm}  km})^{-1}}
 
  \hspace{0.15cm}\underline{= 0.01\,{\rm Np}/{ {\rm km}}
 
  \hspace{0.15cm}\underline{= 0.01\,{\rm Np}/{ {\rm km}}
 
  }\hspace{0.05cm},$$
 
  }\hspace{0.05cm},$$
:$$\beta(f = 0)  =  [1\,{\rm rad}] \cdot \sqrt{-\frac {1}{2}\cdot R' \cdot G'+ \frac {1}{2}\cdot R' \cdot
+
:$$\beta(f = 0)  =  [1\,{\rm rad}] \cdot \sqrt{-{1}/{2}\cdot R\hspace{0.03cm}' \cdot G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \cdot
  G'} \hspace{0.15cm}\underline{=  0 }\hspace{0.05cm},$$
+
  G\hspace{0.03cm}'} \hspace{0.15cm}\underline{=  0 }\hspace{0.05cm},$$
:$$Z_{\rm W}(f = 0)  =  \sqrt{\frac {R'}{G'}} =  \sqrt{\frac {100\,{\rm \Omega/km}}{{\rm 10^{-6}/(\Omega \cdot km})}}\hspace{0.15cm}\underline{=  10\, {\rm
+
:$$Z_{\rm W}(f = 0)  =  \sqrt{\frac {R\hspace{0.03cm}'}{G\hspace{0.03cm}'}} =  \sqrt{\frac {100\,{\rm \Omega/km}}{{\rm 10^{-6}/(\Omega \cdot km})}}\hspace{0.15cm}\underline{=  10\, {\rm
 
k \Omega}}\hspace{0.05cm}.$$
 
k \Omega}}\hspace{0.05cm}.$$
:Die Gleichsignaldämpfung wird relevant, wenn das Nutzsignal im Basisband übertragen werden soll und einen Gleichanteil besitzt, oder wenn der Netzabschluss beim Teilnehmer von der Ortsvermittlungsstelle aus mit Leistung versorgt werden muss (Fernspeisung).
 
  
:<b>2.</b>&nbsp;&nbsp;Mit <i>f</i> = 10<sup>5</sup> Hz und den angegebenen Werten gilt
+
The DC signal attenuation becomes relevant,
 +
*if the useful signal is to be transmitted in the baseband and has a DC component,&nbsp; or
 +
*if the network termination at the participant must be supplied with power from the local exchange&nbsp; ("remote power supply").
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; With&nbsp; $f = 10^{5} \ \rm  Hz$&nbsp; and the specified values,&nbsp; the following holds:
 
:$$f \cdot  2\pi  L'  =  10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot
 
:$$f \cdot  2\pi  L'  =  10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot
 
10^{-3}\,\frac{\rm \Omega \cdot s}{ {\rm km}}= 200 \,\frac{\rm
 
10^{-3}\,\frac{\rm \Omega \cdot s}{ {\rm km}}= 200 \,\frac{\rm
 
\Omega
 
\Omega
}{ {\rm km}} \hspace{0.05cm},\\
+
}{ {\rm km}} \hspace{0.05cm},\hspace{1.05cm}
 
f \cdot  2\pi  C'  =  10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot
 
f \cdot  2\pi  C'  =  10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot
 
10^{-7}\,\frac{\rm  s}{ {\rm \Omega \cdot km}}= 0.02
 
10^{-7}\,\frac{\rm  s}{ {\rm \Omega \cdot km}}= 0.02
 
\,\frac{\rm 1 }{ {\rm \Omega \cdot km}} \hspace{0.05cm}.$$
 
\,\frac{\rm 1 }{ {\rm \Omega \cdot km}} \hspace{0.05cm}.$$
:Damit ergibt sich für das Dämpfungsmaß in Np/km:
+
This results in the following for the attenuation function in "Np/km":
:$$\frac{\alpha(f = 100\,{\rm kHz})}{\rm Np/km} =$$
+
:$$\alpha(f = 100\,{\rm kHz})
:$$ =  \sqrt{\frac {1}{2}\cdot \left (100 \cdot 10^{-6} - 200 \cdot 0.02 \right)+
+
=  \sqrt{ {1}/{2}\cdot \left (100 \cdot 10^{-6} - 200 \cdot 0.02 \right)+
\frac {1}{2}\sqrt{(100^2 + 200^2) \cdot (10^{-12} + 0.02^2)}} =\\
+
  {1}/{2} \cdot  \sqrt{(100^2 + 200^2) \cdot (10^{-12} + 0.02^2)}} $$
  \approx  \sqrt{\frac {1}{2}\cdot \left (10^{-4} - 4 \right)+
+
:$$ \Rightarrow \; \;  \alpha(f = 100\,{\rm kHz}) \approx  \sqrt{{1}/{2}\cdot \left (10^{-4} - 4 \right)+
  \frac {1}{2}\sqrt{5 \cdot 10^{4} \cdot 4 \cdot 10^{-4}}} \approx \sqrt {-2 + \frac{\sqrt{20}}{
+
  {1}/{2}\cdot \sqrt{5 \cdot 10^{4} \cdot 4 \cdot 10^{-4}}} \approx \sqrt {-2 + \frac{\sqrt{20}}{
  2}}
+
  2}} \hspace{0.15cm}\underline{\approx 0.486 \ {\rm Np/km}} \hspace{0.05cm}.$$
\hspace{0.15cm}\underline{\approx 0.486} \hspace{0.05cm}.$$
 
  
:<b>3.</b>&nbsp;&nbsp;Der Grenzübergang bezüglich des Wellenwiderstands für <i>f</i> &#8594; &#8734; ergibt sich, wenn man im Zähler <i>R</i>' und im Nenner <i>G</i>' gegenüber den jeweils zweiten Term vernachlässigt:
+
 
 +
'''(3)'''&nbsp; The limit for&nbsp; $f &#8594; \infty$&nbsp; results if one neglects the second terms in the numerator&nbsp; $R\hspace{0.03cm}'$&nbsp; and in the denominator&nbsp; $G\hspace{0.08cm}'$&nbsp;:
 
:$$\lim_{f \rightarrow \infty} \hspace{0.1cm} Z_{\rm W}(f)
 
:$$\lim_{f \rightarrow \infty} \hspace{0.1cm} Z_{\rm W}(f)
  = \lim_{\omega \rightarrow \infty} \hspace{0.1cm}  \sqrt{\frac {R' + {\rm j}  \cdot \omega L'}{G' + {\rm j}  \cdot \omega  C'}}
+
  = \lim_{\omega \rightarrow \infty} \hspace{0.1cm}  \sqrt{\frac {R\hspace{0.03cm}' + {\rm j}  \cdot \omega L'}{G' + {\rm j}  \cdot \omega  C\hspace{0.03cm}'}}
  =\sqrt{\frac {2 \pi L' }{2 \pi C'}}=\sqrt{\frac {2 \cdot 10^{-3}\,{\rm \Omega \cdot s} }
+
  =\sqrt{\frac {2 \pi L\hspace{0.03cm}' }{2 \pi C\hspace{0.03cm}'}}=\sqrt{\frac {2 \cdot 10^{-3}\,{\rm \Omega \cdot s} }
 
  {2 \cdot 10^{-73}\,{\rm s/\Omega} }} \hspace{0.15cm}\underline{= 100\,{\rm \Omega }}\hspace{0.05cm}.$$
 
  {2 \cdot 10^{-73}\,{\rm s/\Omega} }} \hspace{0.15cm}\underline{= 100\,{\rm \Omega }}\hspace{0.05cm}.$$
:Die Näherung für die Dämpfungsfunktion ist schwieriger herzuleiten. Ausgehend von
+
*The approximation for the attenuation function is more difficult to derive.&nbsp; Starting from
:$$\alpha(\omega)  =  \sqrt{\frac {1}{2}\cdot \left (R' G' - \omega^2 \cdot L'  C'\right)+
+
:$$\alpha(\omega)  =  \sqrt{ {1}/{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}'  C\hspace{0.03cm}'\right)+
\frac {1}{2}\sqrt{(R'^2 + \omega^2 \cdot L'^2) \cdot (G'^2 + \omega^2 \cdot C'^2)}}$$
+
  {1}/{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot C\hspace{0.03cm}\hspace{0.03cm}'^2)}}$$  
:$$\Rightarrow \hspace{0.3cm} 2 \cdot \alpha^2(\omega)    =  R' G' + \omega^2 \cdot L'
+
:then also the following applies:
 +
:$$2 \cdot \alpha^2(\omega)    =  R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L'
 
  C'\cdot
 
  C'\cdot
  \left [-1 +\sqrt{(1 + \frac{R'^2}{ \omega^2 \cdot L'^2}) \cdot (1 + \frac{G'^2}{ \omega^2 \cdot C'^2})} \hspace{0.1cm}
+
  \left [-1 +\sqrt{(1 + \frac{R\hspace{0.03cm}'^2}{ \omega^2 \cdot L\hspace{0.03cm}'^2}) \cdot (1 + \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2})} \hspace{0.1cm}
\right]\approx \\
 
  \approx  R' G' + \omega^2 \cdot L'
 
C'\cdot
 
\left [-1 +\sqrt{1 + \frac{R'^2}{ \omega^2 \cdot L'^2}+ \frac{G'^2}{ \omega^2 \cdot C'^2}} \hspace{0.1cm}
 
 
  \right]$$
 
  \right]$$
:kommt man über die für kleine <i>x</i> gültige Näherung (1 + <i>x</i>)<sup>0.5</sup> &asymp; 1 + <i>x</i>/2 zum Zwischenergebnis:
+
:$$\Rightarrow \; \; 2 \cdot \alpha^2(\omega)      \approx  R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L'
:$$2 \cdot \alpha^2(\omega \rightarrow \infty)    =  R' G' + \omega^2 \cdot L'
+
C\hspace{0.03cm}'\cdot
  C'\cdot
+
\left [-1 +\sqrt{1 + \frac{R'^2}{ \omega^2 \cdot L'^2}+ \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2}} \hspace{0.1cm}
  \left [ -1 +1 + \frac{1}{2} \cdot  \left ( \frac{R'^2}{ \omega^2 \cdot L'^2}+ \frac{G'^2}{ \omega^2 \cdot C'^2}
+
\right].$$
 +
*Using the approximation&nbsp; $\sqrt{1 + x}\approx 1+x/2$&nbsp; valid for small&nbsp; $x$,&nbsp; one arrives at the intermediate result for (infinitely) large frequencies:
 +
:$$2 \cdot \alpha^2(\omega \rightarrow \infty)    =  R\hspace{0.03cm}' G\hspace{0.05cm}' + \omega^2 \cdot L'
 +
  C\hspace{0.05cm}'\cdot
 +
  \left [ -1 +1 + {1}/{2} \cdot  \left ( \frac{R\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2}+ \frac{G\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2}
 
  \right) \hspace{0.1cm}
 
  \right) \hspace{0.1cm}
  \right] = \\  =  \frac{2 \cdot  R'  G'  C'  L'+ R'\hspace{0.03cm}^2  C'\hspace{0.03cm}^2+
+
  \right] $$
   G'\hspace{0.03cm}^2  L'\hspace{0.03cm}^2}{2 \cdot C'  L'
+
:$$\Rightarrow \hspace{0.3cm}  2 \cdot \alpha^2(\omega \rightarrow \infty) =  \frac{2 \cdot  R\hspace{0.03cm}'  G\hspace{0.03cm}'  C\hspace{0.03cm}'  L'+ R\hspace{0.03cm}'\hspace{0.03cm}^2  C\hspace{0.03cm}'\hspace{0.03cm}^2+
   }=
+
   G\hspace{0.03cm}'\hspace{0.03cm}^2  L\hspace{0.03cm}'\hspace{0.03cm}^2}{2 \cdot C\hspace{0.03cm}'  L\hspace{0.03cm}'
  \frac{(R'  C' + G'  L')^2}{2 \cdot C'  L' }$$
+
   }= \frac{(R\hspace{0.03cm}'  C\hspace{0.03cm}' + G\hspace{0.03cm}'  L\hspace{0.03cm}')^2}{2 \cdot C\hspace{0.03cm}'  L\hspace{0.03cm}' }$$
 
:$$\Rightarrow \hspace{0.3cm} \alpha(\omega \rightarrow \infty)  =
 
:$$\Rightarrow \hspace{0.3cm} \alpha(\omega \rightarrow \infty)  =
  \frac {1}{2}\cdot \frac{R' C' + G'  L'}{\sqrt{ C'  L' }}=
+
  {1}/{2}\cdot \frac{R\hspace{0.03cm}' C\hspace{0.03cm}' + G\hspace{0.03cm}'  L\hspace{0.03cm}'}{\sqrt{ C\hspace{0.03cm}'  L\hspace{0.03cm}' }}=
  \frac {1}{2}\cdot \left [R' \cdot \sqrt{\frac{C'}{L'}}+G' \cdot \sqrt{\frac{L'}{C'}}\right]\hspace{0.05cm}.$$
+
  {1}/{2}\cdot \left [R\hspace{0.03cm}' \cdot \sqrt{\frac{C\hspace{0.03cm}'}{L\hspace{0.03cm}'}}+G\hspace{0.03cm}' \cdot \sqrt{\frac{L\hspace{0.03cm}'}{C\hspace{0.03cm}'}}\right]\hspace{0.05cm}.$$
:Mit den eingesetzten Zahlenwerten ergibt sich
+
*With the numerical values inserted,&nbsp; we get
 
:$$\alpha(f \rightarrow \infty)  =  \alpha(\omega \rightarrow \infty)
 
:$$\alpha(f \rightarrow \infty)  =  \alpha(\omega \rightarrow \infty)
  =\\ =
+
  = {0.5\,{\rm Np/km}}\cdot \left [100 \cdot \sqrt{\frac{2 \cdot 10^{-7}}{2 \cdot10^{-3}}}+10^{-6} \cdot
  \frac {1\,{\rm Np/km}}{2}\cdot \left [100 \cdot \sqrt{\frac{2 \cdot 10^{-7}}{2 \cdot10^{-3}}}+10^{-6} \cdot
 
 
   \sqrt{\frac{2 \cdot10^{-3}}{2 \cdot10^{-7}}}\right]
 
   \sqrt{\frac{2 \cdot10^{-3}}{2 \cdot10^{-7}}}\right]
 
\hspace{0.15cm}\underline{\approx 0.5 \, {\rm Np}/{\rm km}}\hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline{\approx 0.5 \, {\rm Np}/{\rm km}}\hspace{0.05cm}.$$
  
:<b>4.</b>&nbsp;&nbsp;Für kleine Frequenzen gilt <i>&omega;L</i>' << <i>R</i>' und <i>G</i>' << <i>&omega;C</i>'. Damit erhält man für das Dämpfungsmaß unter Vernachlässigung des <i>&omega;</i><sup>2</sup>&ndash;Anteils
+
 
:$$\alpha(f)    =  \sqrt{\frac {1}{2}\cdot \left (R' G' - \omega^2 \cdot L'  C'\right)+
+
'''(4)'''&nbsp; For small frequencies, &nbsp;$\omega L\hspace{0.03cm}' \ll R\hspace{0.03cm}'$&nbsp; and &nbsp;$ \omega C\hspace{0.03cm}' \gg G\hspace{0.03cm}'$ apply.  
  \frac {1}{2}\sqrt{(R'^2 + \omega^2 \cdot L'^2) \cdot (G'^2 + \omega^2 \cdot C'^2)}}
+
*Neglecting the&nbsp; $\omega^2$&ndash;part, one obtains:
  \hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
+
:$$\alpha(f)    =  \sqrt{\frac {1}{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}'  C\hspace{0.03cm}'\right)+
  f}\\
+
  \frac {1}{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2+ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2)}}
  \approx  \sqrt{\frac {R' G'}{2}+
+
  \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
  \frac {R' \cdot \omega C'}{2}}
+
  f}$$
  \hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
+
:$$ \Rightarrow \hspace{0.3cm} \alpha(f)    \approx  \sqrt{\frac {R\hspace{0.03cm}' G\hspace{0.03cm}'}{2}+
 +
  \frac {R\hspace{0.03cm}' \cdot \omega C\hspace{0.03cm}'}{2}}
 +
  \hspace{0.1cm}\bigg |_{\hspace{0.03cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
 
  f} \approx \sqrt{
 
  f} \approx \sqrt{
\frac {1}{2} \cdot f \cdot R' \cdot 2 \pi C'}
+
  {1}/{2} \cdot f \cdot R\hspace{0.03cm}' \cdot 2 \pi C\hspace{0.03cm}'}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Hierbei ist berücksichtigt, dass der erste Anteil außer bei der Frequenz <i>f</i> = 0 direkt (siehe Teilaufgabe a)) vernachlässigt werden kann. Für die Frequenz <i>f</i> = 1 kHz ergibt sich die Näherung
+
*Here it is considered that the first part can be neglected according to subtask&nbsp; '''(1)'''&nbsp; except for the frequency&nbsp; $f = 0$&nbsp;.  
 +
*For the frequency&nbsp; $f = 1 \ \rm kHz$&nbsp; we get the approximation
 
:$$\alpha(f = 1\,{\rm kHz})  = \sqrt{
 
:$$\alpha(f = 1\,{\rm kHz})  = \sqrt{
\frac {1}{2} \cdot 10^{3}\,{\rm Hz} \cdot 100\,\frac{\rm \Omega }{ {\rm km}} \cdot 2 \cdot 10^{-7}
+
  {1}/{2} \cdot 10^{3}\,{\rm Hz} \cdot 100\,\frac{\rm \Omega }{ {\rm km}} \cdot 2 \cdot 10^{-7}
 
  \,\frac{\rm s }{ {\rm \Omega \cdot km}}}
 
  \,\frac{\rm s }{ {\rm \Omega \cdot km}}}
 
\hspace{0.15cm}\underline{= 0.1\,{\rm Np }/{ {\rm km}}}
 
\hspace{0.15cm}\underline{= 0.1\,{\rm Np }/{ {\rm km}}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Für die Frequenz <i>f</i> = 4 kHz ist das Dämpfungsmaß doppelt so groß:
+
*For frequency&nbsp; $f = 4 \ \rm kHz$&nbsp; the attenuation function per unit length is twice as large:
 
:$$\alpha(f = 4\,{\rm kHz})  \hspace{0.15cm}\underline{ = 0.2\,{\rm Np }/{ {\rm km}}}
 
:$$\alpha(f = 4\,{\rm kHz})  \hspace{0.15cm}\underline{ = 0.2\,{\rm Np }/{ {\rm km}}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
:<b>5.</b>&nbsp;&nbsp;Für den Wellenwiderstand gilt bei niedrigen Frequenzen näherungsweise
+
 
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R' + {\rm j}  \cdot f \cdot 2 \pi  L'}{G' + {\rm j}    \cdot f \cdot 2 \pi  C'}}
+
 
  \approx \sqrt\frac{1 }{  {\rm j}} \cdot \sqrt{\frac {R' }{  f \cdot 2 \pi
+
'''(5)'''&nbsp; The wave impedance at low frequencies is approximated by:
  C'}}= (1 - {\rm j})\cdot \sqrt{\frac {R' }{  2 \cdot f \cdot 2 \pi
+
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R\hspace{0.03cm}' + {\rm j}  \cdot f \cdot 2 \pi  L\hspace{0.03cm}'}{G\hspace{0.03cm}' + {\rm j}    \cdot f \cdot 2 \pi  C\hspace{0.03cm}'}}
  C'}}\hspace{0.05cm}.$$
+
  \approx \sqrt\frac{1 }{  {\rm j}} \cdot \sqrt{\frac {R\hspace{0.03cm}' }{  f \cdot 2 \pi
:Mit den angegebenen Leitungsbeschlägen erhält man
+
  C\hspace{0.03cm}'}}= (1 - {\rm j})\cdot \sqrt{\frac {R\hspace{0.03cm}' }{  2 \cdot f \cdot 2 \pi
 +
  C\hspace{0.03cm}'}}\hspace{0.05cm}.$$
 +
*With the specified line fittings we obtain:
 
:$${\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}  =  \sqrt{\frac {100\,{\rm \Omega/km }}{  2 \cdot 10^{3}\,{\rm Hz} \cdot 2 \cdot 10^{-7}
 
:$${\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}  =  \sqrt{\frac {100\,{\rm \Omega/km }}{  2 \cdot 10^{3}\,{\rm Hz} \cdot 2 \cdot 10^{-7}
 
  \,{\rm s/(\Omega \cdot km) }}} \hspace{0.15cm}\underline{= 500\,{\rm
 
  \,{\rm s/(\Omega \cdot km) }}} \hspace{0.15cm}\underline{= 500\,{\rm
  \Omega}}\hspace{0.05cm},\\
+
  \Omega}}\hspace{0.05cm},$$
{\rm Im}\{Z_{\rm W}(f= 1\,{\rm kHz})\} =  -{\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}\hspace{0.15cm}\underline{= -500\,{\rm
+
:$$ {\rm Im}\{Z_{\rm W}(f= 1\,{\rm kHz})\} =  -{\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}\hspace{0.15cm}\underline{= -500\,{\rm
 
  \Omega}}\hspace{0.05cm}.$$
 
  \Omega}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 173: Line 195:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.1 Einige Ergebnisse der Leitungstheorie^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.1 Results of Line Transmission Theory^]]

Latest revision as of 16:14, 9 November 2021

Short line section

We assume a homogeneous and reflection-free terminated line of length  $l$  so that the following applies to the spectral function at the output:

$$U_2(f) = U_1(f) \cdot {\rm e}^{-\hspace{0.02cm}\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l} \hspace{0.05cm}.$$

Here  $\gamma(f)$  describes the  complex propagation function  of an extremely short line of infinitesimal length  $dx$,  which can be represented with the parameters  $R\hspace{0.05cm}'$,  $L\hspace{0.05cm}'$,  $G\hspace{0.08cm}'$ and  $C\hspace{0.08cm}'$ (see diagram) as follows:

$$\gamma(f) = \sqrt{(R\hspace{0.05cm}' + {\rm j} \cdot 2\pi f \cdot L\hspace{0.05cm}') \cdot (G\hspace{0.08cm}' + {\rm j} \cdot 2\pi f \cdot C\hspace{0.08cm}')} = \alpha (f) + {\rm j} \cdot \beta (f)\hspace{0.05cm}.$$

The real part of  $\gamma(f)$  results in

  • The real part of  $\gamma(f)$  results in the attenuation function $\alpha(f)$  (per unit length).
  • The imaginary part of  $\gamma(f)$  results in the phase function  $\beta(f)$ (per unit length).


After some calculation one can write for these sizes:

$$\alpha(f) = \sqrt{{1}/{2}\cdot \left (R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' - \omega^2 \cdot L\hspace{0.05cm}' \cdot C\hspace{0.08cm}'\right)+ {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f},$$
$$\beta(f) = \sqrt{{1}/{2}\cdot \left (-R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' + \omega^2 \cdot L\hspace{0.05cm}' C\hspace{0.08cm}'\right)+ {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
  • For the attenuation function  $a(f)$  the pseudo unit  "Neper"  (Np)  has to be added additionally and for the phase function  $b(f)$  "Radian"  (rad).  
  • Since the primary line parameters are each related to the line length,  $\alpha(f)$  and  $\beta(f)$  have the units  "Np/km"  and  "rad/km",  respectively.


Another important descriptive quantity besides  $\gamma(f)$  is the  wave impedance  $Z_{\rm W}(f)$,  which gives the relationship between voltage and current of the two running waves at each location.  It holds:

$$Z_{\rm W}(f) = \sqrt{\frac {R\hspace{0.05cm}' + {\rm j} \cdot \omega L\hspace{0.05cm}'}{G\hspace{0.08cm}' + {\rm j} \cdot \omega C\hspace{0.08cm}'}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm} \omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$



Notes:

  • Use the following values for the numerical calculations:
$$R\hspace{0.05cm}' = 100\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} G\hspace{0.08cm}' = 1\,\,{\rm µ S}/{ {\rm km}}\hspace{0.05cm},\hspace{0.3cm} 2\pi L\hspace{0.03cm}' = 2\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} 2\pi C\hspace{0.08cm}' = 200\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm}.$$



Questions

1

Specify  $\alpha(f)$,  $\beta(f)$ and  $Z_{\rm W}(f)$  for frequency  $f = 0$  ("direct current").

$\alpha(f =0) \ =$

$\ \rm Np/km$
$\beta(f = 0) \ =$

$\ \rm rad/km$
$Z_{\rm W}(f = 0) \ =$

$\ \rm \Omega$

2

Calculate the attenuation function  $\alpha(f)$  (per unit length)  for  $f = 100\ \rm kHz$.

$\alpha(f = 100\ \rm kHz) \ = \ $

$\ \rm Np/km$

3

Give the approximations of  $Z_{\rm W}(f)$  and  $\alpha(f)$,  valid for  $f → \infty$ .

$ Z_{\rm W}(f → \infty) \ = \ $

$\ \rm \Omega$
$\alpha(f → \infty) \ = \ $

$\ \rm Np/km$

4

Use  $\omega L\hspace{0.03cm}' \ll R\hspace{0.05cm}'$  and  $\omega C\hspace{0.08cm}' \gg G\hspace{0.08cm}'$  to derive an  $\alpha(f)$  approximation for  (not too)  small frequencies.
What is the attenuation function per unit length for  $ f = 1 \ \rm kHz$  and  $ f = 4 \ \rm kHz$?

$\alpha(f = 1\  \rm kHz) \ = \ $

$\ \rm Np/km$
$\alpha(f = 4\ \rm kHz) \ = \ $

$\ \rm Np/km$

5

For the same frequency range,  give a suitable approximation for the wave impedance  $Z_{\rm W}(f)$ .
What value results for  $ f = 1 \ \rm kHz$?

${\rm Re}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = \ $

$\ \rm \Omega$
${\rm Im}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = \ $

$\ \rm \Omega$


Solution

(1)  If you insert the frequency  $f = 0$  into the given equations, we obtain

$$\alpha(f = 0) = [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{{1}/{2}\hspace{-0.03cm}\cdot \hspace{-0.03cm} R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm} G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm} G\hspace{0.03cm}'} = [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{ R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm} G\hspace{0.03cm}'} = [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{ 100\,{\rm \Omega/km} \hspace{-0.03cm}\cdot \hspace{-0.03cm} 10^{-6}\,{\rm (\Omega \hspace{-0.03cm}\cdot \hspace{-0.03cm} km})^{-1}} \hspace{0.15cm}\underline{= 0.01\,{\rm Np}/{ {\rm km}} }\hspace{0.05cm},$$
$$\beta(f = 0) = [1\,{\rm rad}] \cdot \sqrt{-{1}/{2}\cdot R\hspace{0.03cm}' \cdot G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \cdot G\hspace{0.03cm}'} \hspace{0.15cm}\underline{= 0 }\hspace{0.05cm},$$
$$Z_{\rm W}(f = 0) = \sqrt{\frac {R\hspace{0.03cm}'}{G\hspace{0.03cm}'}} = \sqrt{\frac {100\,{\rm \Omega/km}}{{\rm 10^{-6}/(\Omega \cdot km})}}\hspace{0.15cm}\underline{= 10\, {\rm k \Omega}}\hspace{0.05cm}.$$

The DC signal attenuation becomes relevant,

  • if the useful signal is to be transmitted in the baseband and has a DC component,  or
  • if the network termination at the participant must be supplied with power from the local exchange  ("remote power supply").


(2)  With  $f = 10^{5} \ \rm Hz$  and the specified values,  the following holds:

$$f \cdot 2\pi L' = 10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot 10^{-3}\,\frac{\rm \Omega \cdot s}{ {\rm km}}= 200 \,\frac{\rm \Omega }{ {\rm km}} \hspace{0.05cm},\hspace{1.05cm} f \cdot 2\pi C' = 10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot 10^{-7}\,\frac{\rm s}{ {\rm \Omega \cdot km}}= 0.02 \,\frac{\rm 1 }{ {\rm \Omega \cdot km}} \hspace{0.05cm}.$$

This results in the following for the attenuation function in "Np/km":

$$\alpha(f = 100\,{\rm kHz}) = \sqrt{ {1}/{2}\cdot \left (100 \cdot 10^{-6} - 200 \cdot 0.02 \right)+ {1}/{2} \cdot \sqrt{(100^2 + 200^2) \cdot (10^{-12} + 0.02^2)}} $$
$$ \Rightarrow \; \; \alpha(f = 100\,{\rm kHz}) \approx \sqrt{{1}/{2}\cdot \left (10^{-4} - 4 \right)+ {1}/{2}\cdot \sqrt{5 \cdot 10^{4} \cdot 4 \cdot 10^{-4}}} \approx \sqrt {-2 + \frac{\sqrt{20}}{ 2}} \hspace{0.15cm}\underline{\approx 0.486 \ {\rm Np/km}} \hspace{0.05cm}.$$


(3)  The limit for  $f → \infty$  results if one neglects the second terms in the numerator  $R\hspace{0.03cm}'$  and in the denominator  $G\hspace{0.08cm}'$ :

$$\lim_{f \rightarrow \infty} \hspace{0.1cm} Z_{\rm W}(f) = \lim_{\omega \rightarrow \infty} \hspace{0.1cm} \sqrt{\frac {R\hspace{0.03cm}' + {\rm j} \cdot \omega L'}{G' + {\rm j} \cdot \omega C\hspace{0.03cm}'}} =\sqrt{\frac {2 \pi L\hspace{0.03cm}' }{2 \pi C\hspace{0.03cm}'}}=\sqrt{\frac {2 \cdot 10^{-3}\,{\rm \Omega \cdot s} } {2 \cdot 10^{-73}\,{\rm s/\Omega} }} \hspace{0.15cm}\underline{= 100\,{\rm \Omega }}\hspace{0.05cm}.$$
  • The approximation for the attenuation function is more difficult to derive.  Starting from
$$\alpha(\omega) = \sqrt{ {1}/{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}' C\hspace{0.03cm}'\right)+ {1}/{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot C\hspace{0.03cm}\hspace{0.03cm}'^2)}}$$
then also the following applies:
$$2 \cdot \alpha^2(\omega) = R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L' C'\cdot \left [-1 +\sqrt{(1 + \frac{R\hspace{0.03cm}'^2}{ \omega^2 \cdot L\hspace{0.03cm}'^2}) \cdot (1 + \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2})} \hspace{0.1cm} \right]$$
$$\Rightarrow \; \; 2 \cdot \alpha^2(\omega) \approx R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L' C\hspace{0.03cm}'\cdot \left [-1 +\sqrt{1 + \frac{R'^2}{ \omega^2 \cdot L'^2}+ \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2}} \hspace{0.1cm} \right].$$
  • Using the approximation  $\sqrt{1 + x}\approx 1+x/2$  valid for small  $x$,  one arrives at the intermediate result for (infinitely) large frequencies:
$$2 \cdot \alpha^2(\omega \rightarrow \infty) = R\hspace{0.03cm}' G\hspace{0.05cm}' + \omega^2 \cdot L' C\hspace{0.05cm}'\cdot \left [ -1 +1 + {1}/{2} \cdot \left ( \frac{R\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2}+ \frac{G\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2} \right) \hspace{0.1cm} \right] $$
$$\Rightarrow \hspace{0.3cm} 2 \cdot \alpha^2(\omega \rightarrow \infty) = \frac{2 \cdot R\hspace{0.03cm}' G\hspace{0.03cm}' C\hspace{0.03cm}' L'+ R\hspace{0.03cm}'\hspace{0.03cm}^2 C\hspace{0.03cm}'\hspace{0.03cm}^2+ G\hspace{0.03cm}'\hspace{0.03cm}^2 L\hspace{0.03cm}'\hspace{0.03cm}^2}{2 \cdot C\hspace{0.03cm}' L\hspace{0.03cm}' }= \frac{(R\hspace{0.03cm}' C\hspace{0.03cm}' + G\hspace{0.03cm}' L\hspace{0.03cm}')^2}{2 \cdot C\hspace{0.03cm}' L\hspace{0.03cm}' }$$
$$\Rightarrow \hspace{0.3cm} \alpha(\omega \rightarrow \infty) = {1}/{2}\cdot \frac{R\hspace{0.03cm}' C\hspace{0.03cm}' + G\hspace{0.03cm}' L\hspace{0.03cm}'}{\sqrt{ C\hspace{0.03cm}' L\hspace{0.03cm}' }}= {1}/{2}\cdot \left [R\hspace{0.03cm}' \cdot \sqrt{\frac{C\hspace{0.03cm}'}{L\hspace{0.03cm}'}}+G\hspace{0.03cm}' \cdot \sqrt{\frac{L\hspace{0.03cm}'}{C\hspace{0.03cm}'}}\right]\hspace{0.05cm}.$$
  • With the numerical values inserted,  we get
$$\alpha(f \rightarrow \infty) = \alpha(\omega \rightarrow \infty) = {0.5\,{\rm Np/km}}\cdot \left [100 \cdot \sqrt{\frac{2 \cdot 10^{-7}}{2 \cdot10^{-3}}}+10^{-6} \cdot \sqrt{\frac{2 \cdot10^{-3}}{2 \cdot10^{-7}}}\right] \hspace{0.15cm}\underline{\approx 0.5 \, {\rm Np}/{\rm km}}\hspace{0.05cm}.$$


(4)  For small frequencies,  $\omega L\hspace{0.03cm}' \ll R\hspace{0.03cm}'$  and  $ \omega C\hspace{0.03cm}' \gg G\hspace{0.03cm}'$ apply.

  • Neglecting the  $\omega^2$–part, one obtains:
$$\alpha(f) = \sqrt{\frac {1}{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}' C\hspace{0.03cm}'\right)+ \frac {1}{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2+ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2)}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}$$
$$ \Rightarrow \hspace{0.3cm} \alpha(f) \approx \sqrt{\frac {R\hspace{0.03cm}' G\hspace{0.03cm}'}{2}+ \frac {R\hspace{0.03cm}' \cdot \omega C\hspace{0.03cm}'}{2}} \hspace{0.1cm}\bigg |_{\hspace{0.03cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f} \approx \sqrt{ {1}/{2} \cdot f \cdot R\hspace{0.03cm}' \cdot 2 \pi C\hspace{0.03cm}'} \hspace{0.05cm}.$$
  • Here it is considered that the first part can be neglected according to subtask  (1)  except for the frequency  $f = 0$ .
  • For the frequency  $f = 1 \ \rm kHz$  we get the approximation
$$\alpha(f = 1\,{\rm kHz}) = \sqrt{ {1}/{2} \cdot 10^{3}\,{\rm Hz} \cdot 100\,\frac{\rm \Omega }{ {\rm km}} \cdot 2 \cdot 10^{-7} \,\frac{\rm s }{ {\rm \Omega \cdot km}}} \hspace{0.15cm}\underline{= 0.1\,{\rm Np }/{ {\rm km}}} \hspace{0.05cm}.$$
  • For frequency  $f = 4 \ \rm kHz$  the attenuation function per unit length is twice as large:
$$\alpha(f = 4\,{\rm kHz}) \hspace{0.15cm}\underline{ = 0.2\,{\rm Np }/{ {\rm km}}} \hspace{0.05cm}.$$


(5)  The wave impedance at low frequencies is approximated by:

$$Z_{\rm W}(f) = \sqrt{\frac {R\hspace{0.03cm}' + {\rm j} \cdot f \cdot 2 \pi L\hspace{0.03cm}'}{G\hspace{0.03cm}' + {\rm j} \cdot f \cdot 2 \pi C\hspace{0.03cm}'}} \approx \sqrt\frac{1 }{ {\rm j}} \cdot \sqrt{\frac {R\hspace{0.03cm}' }{ f \cdot 2 \pi C\hspace{0.03cm}'}}= (1 - {\rm j})\cdot \sqrt{\frac {R\hspace{0.03cm}' }{ 2 \cdot f \cdot 2 \pi C\hspace{0.03cm}'}}\hspace{0.05cm}.$$
  • With the specified line fittings we obtain:
$${\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\} = \sqrt{\frac {100\,{\rm \Omega/km }}{ 2 \cdot 10^{3}\,{\rm Hz} \cdot 2 \cdot 10^{-7} \,{\rm s/(\Omega \cdot km) }}} \hspace{0.15cm}\underline{= 500\,{\rm \Omega}}\hspace{0.05cm},$$
$$ {\rm Im}\{Z_{\rm W}(f= 1\,{\rm kHz})\} = -{\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}\hspace{0.15cm}\underline{= -500\,{\rm \Omega}}\hspace{0.05cm}.$$