Difference between revisions of "Aufgaben:Exercise 4.6: Coordinate Rotation"

From LNTwww
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Zweidimensionale Gaußsche Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables
 
}}
 
}}
  
[[File:P_ID431__Sto_A_4_6_neu.png|right|]]
+
[[File:P_ID431__Sto_A_4_6_neu.png|right|frame|Coordinate rotation of a joint PDF]]
:Wir betrachten in der Aufgabe eine zweidimensionale Gau&szlig;sche Zufallsgr&ouml;&szlig;e (<i>x</i>, <i>y</i>) mit statistisch unabh&auml;ngigen Komponenten. Die Streuungen sind <i>&sigma;<sub>x</sub></i> = 1 und <i>&sigma;<sub>y</sub></i> = 2.
+
In the exercise we consider a two-dimensional Gaussian random variable&nbsp; $(x,\hspace{0.08cm} y)$&nbsp; with statistically independent components.&nbsp; Let the standard deviations of the two components be&nbsp; $\sigma_x = 1$&nbsp; and&nbsp; $\sigma_y = 2$.
  
:Berechnet werden soll die Wahrscheinlichkeit dafür, dass die zweidimensionale Zufallsgr&ouml;&szlig;e (<i>x</i>, <i>y</i>) innerhalb des gr&uuml;n schraffiert eingezeichneten Bereichs liegt:
+
We want to calculate the probability that the two-dimensional random variable&nbsp; $(x,\hspace{0.08cm} y)$&nbsp; lies within the shaded area:
:$$-C \le x + y \le C.$$
+
:$$-C \le x + y \le +C.$$
  
:Führen Sie zur L&ouml;sung eine Koordinatentransformation durch:
+
Perform a coordinate transformation to solve:
 
:$$\xi = \hspace{0.4cm} x +y,$$
 
:$$\xi = \hspace{0.4cm} x +y,$$
 
:$$\eta= -x +y .$$
 
:$$\eta= -x +y .$$
  
:Dies entspricht einer Drehung des Koordinatensystems um 45&deg;. Aus <i>x</i> + <i>y</i> = &plusmn;<i>C</i> folgt damit <i>&xi;</i> = &plusmn;<i>C</i>. Die beiden zweidimensionalen Dichtefunktionen lauten dann:
+
This corresponds to a rotation of the coordinate system by&nbsp; $45^\circ$.
:$$f_{xy} (x,y) = \frac{1}{4 \pi} \cdot \exp \left [ - ( x^2 /2 + y^2 /8) \right ] ,$$
+
*From&nbsp; $x+y= \pm C$&nbsp; it thus follows&nbsp; $\xi=\pm C$.  
:$$f_{\xi\eta} (\xi, \eta) = \frac{1}{2 \pi \cdot \sigma_x \cdot \sigma_y \cdot \sqrt{1 - \rho_{\xi\eta}^2}} \cdot \exp \left [ - \frac{1}{2(1 - \rho_{\xi\eta}^2)} \cdot ( \frac {\xi^2}{\sigma_\xi^2} + \frac {\eta^2}{\sigma_\eta^2 }- 2 \rho_{\xi\eta}\cdot \frac {\xi \cdot \eta}{\sigma_\xi \cdot \sigma_\eta}) \right ] .$$
+
*The two two-dimensional density functions are then:
 +
:$$f_{xy} (x,\hspace{0.08cm}y) = \frac{1}{4 \pi} \cdot \exp \left [ - ( x^2\hspace {-0.1cm} /2 + y^2\hspace {-0.1cm} /8) \right ] ,$$
 +
:$$f_{\xi\eta} (\xi,\hspace{0.08cm} \eta) = \frac{1}{2 \pi \cdot \sigma_\xi \cdot \sigma_\eta \cdot \sqrt{1 - \rho_{\xi\eta}^2}} \cdot \exp \left [ - \frac{1}{2 \cdot (1 - \rho_{\xi\eta}^2)} \cdot ( \frac {\xi^2}{\sigma_\xi^2} + \frac {\eta^2}{\sigma_\eta^2 }- 2 \rho_{\xi\eta}\cdot \frac {\xi \cdot \eta}{\sigma_\xi \cdot \sigma_\eta}) \right ] .$$
  
:<b>Hinweis:</b> Diese Aufgabe bezieht sich auf den Lehrstoff von Kapitel 4.2. Gegeben sind die Näherungen Q(2.3) &asymp; 0.01 und Q(2.6) &asymp; 0.005 für das komplementäre Gaußsche Fehlerintegral.
 
  
:Nachfolgend gibt es Hyperlinks zu zwei Lernvideos, die diese Thematik behandeln:<br>
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|Two-dimensional Gaussian Random Variables]].
 +
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables#Rotation_of_the_coordinate_system|Rotation of the coordinate system]].
 +
*Given are the approximations&nbsp; ${\rm Q}(2.3) \approx 0.01$&nbsp; and&nbsp; ${\rm Q}(2.6) \approx 0.005$&nbsp; for the complementary Gaussian error function.
 +
*More information on this topic is provided in the&nbsp; (German language)&nbsp;learning video&nbsp; [[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|"Gaußsche 2D-Zufallsgrößen"]]:
 +
::Part 1: &nbsp; Gaussian random variables without statistical bindings, 
 +
::Part 2: &nbsp; Gaussian random variables with statistical bindings.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie durch Koeffizientenvergleich das Verh&auml;ltnis der beiden Streuungen der neuen Zufallsgr&ouml;&szlig;e (<i>&xi;</i>, <i>&eta;</i>).  
+
{Determine the ratio of the two standard deviations of the new random variables by comparing coefficients $(\xi,\hspace{0.08cm} \eta)$.  
 
|type="{}"}
 
|type="{}"}
$\sigma_\xi/\sigma_\eta$ = { 1 3% }
+
$\sigma_\xi/\sigma_\eta \ = \ $ { 1 3% }
  
  
{Berechnen Sie die Streuung <i>&sigma;<sub>&xi;</sub></i> und den Korrelationskoeffizienten <i>&rho;<sub>&xi;&eta;</sub></i> zwischen den neuen Zufallsgrößen <i>&xi;</i> und <i>&eta;</i>.
+
{Calculate the standard deviation&nbsp; $\sigma_\xi$&nbsp; and correlation coefficient&nbsp; $\rho_{\xi\eta}$&nbsp; between the new random variables&nbsp; $\xi$&nbsp; and&nbsp; $\eta$.
 
|type="{}"}
 
|type="{}"}
$\sigma_\xi$ = { 2.236 3% }
+
$\sigma_\xi \ = \ $ { 2.236 3% }
$\rho_\text{$\xi\eta$}$ = { 0.6 3% }
+
$\rho_{\xi\eta} \ = \ $ { 0.6 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeit, das |<i>x</i> + <i>y</i>| &#8804; <i>C</i> gilt. Wie gro&szlig; muss man <i>C</i> w&auml;hlen, damit 99% aller Gr&ouml;&szlig;en im schraffierten Bereich liegen?
+
{Calculate the probability that&nbsp; $ |\hspace{0.05cm}x+y\hspace{0.05cm}| \le C$&nbsp; holds.&nbsp; How large should&nbsp; $C$&nbsp; be chosen so that&nbsp; $99\%$&nbsp; of all quantities are in the shaded area?
 
|type="{}"}
 
|type="{}"}
$C$ = { 5.814 3% }
+
$C_{99\%} \ = \ $ { 5.814 3% }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Aus <i>&xi;</i> = <i>x</i> + <i>y</i> und <i>&eta;</i> = &ndash;<i>x</i> + <i>y</i> folgt direkt:
+
'''(1)'''&nbsp; From &nbsp; $\xi = x + y$ &nbsp; and &nbsp; $\eta = -x + y$ &nbsp; it follows directly:
:$$x = \frac{1}{2} ( \xi - \eta ) ,\hspace{1cm}y = \frac{1}{2} ( \xi +\eta ) .$$
+
:$$x = {1}/{2} \cdot ( \xi - \eta ) ,\hspace{0.5cm}y = {1}/{2}\cdot ( \xi +\eta ) .$$
 +
 
 +
*Substituting these values for the negative exponent,&nbsp; we get:
 +
:$$\frac{x^2}{2} + \frac{y^2}{8} = \frac{1}{8} \cdot ( \xi - \eta )^2 + \frac{1}{32} \cdot ( \xi + \eta )^2.$$
 +
 
 +
*After Multiplication,&nbsp; this gives:
 +
:$$\frac{5}{32} \cdot \xi^2 + \frac{5}{32} \cdot \eta^2 - \frac{3}{16} \cdot \xi \cdot \eta .$$
 +
 
 +
*Since the coefficients on&nbsp; $\xi^2$&nbsp; and&nbsp; $\eta^2$&nbsp; are equal &nbsp; &rArr; &nbsp; $\sigma_\xi = \sigma_\eta$.&nbsp; &nbsp; The quotient we are looking for is therefore
 +
:$$\sigma_\xi/\sigma_\eta\hspace{0.15cm}\underline{= 1.}$$
 +
 
  
:Setzt man diese Werte f&uuml;r den negativen Exponenten ein, so erh&auml;lt man:
 
:$$\frac{x^2}{2}  + \frac{y^2}{8} = \frac{1}{8} ( \xi - \eta )^2 +  \frac{1}{32} ( \xi + \eta )^2.$$
 
  
:Ausmultipliziert ergibt dies:
+
'''(2)'''&nbsp; By comparing coefficients,&nbsp; we obtain for&nbsp; $\sigma_\xi = \sigma_\eta$&nbsp; the system of equations:
:$$\frac{5}{32} \cdot \xi^2 \frac{5}{32} \cdot  \eta^2 - \frac{3}{16} \cdot  \xi \cdot  \eta .$$
+
:$$2 \cdot \sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)= \frac{32}{5},$$
 +
:$$\frac{\sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)}{\rho_{\xi\eta}}= \frac{16}{3}.$$
  
:Da die Koeffizienten bei <i>&xi;</i><sup>2</sup> und <i>&eta;</i><sup>2</sup> gleich sind, gilt <i>&sigma;<sub>&xi;</sub></i> = <i>&sigma;<sub>&eta;</sub></i>. <u>Der gesuchte Quotient ist somit 1</u>.
+
*Substituting the first equation into the second,&nbsp; we get &nbsp; $\rho_{\xi\eta}\hspace{0.15cm}\underline {= 0.6}$ &nbsp; and &nbsp; $\sigma_{\xi} = \sqrt{5}\hspace{0.15cm}\underline {= 2.236}$.
  
:<b>2.</b>&nbsp;&nbsp;Durch Koeffizientenvergleich erh&auml;lt man für <i>&sigma;<sub>&xi;</sub></i> = <i>&sigma;<sub>&eta;</sub></i> das Gleichungssystem:
 
:$$2 \cdot \sigma_\xi^2 \cdot  (1 - \rho_{\xi\eta}^2)=  \frac{32}{5},\hspace{0.5cm}
 
\frac{\sigma_\xi^2 \cdot  (1 - \rho_{\xi\eta}^2)}{\rho_{\xi\eta}}=  \frac{16}{3}.$$
 
  
:Setzt man die erste Gleichung in die zweite ein, so ergibt sich <i>&rho;<sub>&xi;&eta;</sub></i> <u>= 0.6</u> und <i>&sigma;<sub>&xi;</sub></i> = 5<sup>&frac12;</sup> <u>&asymp; 2.236</u>.
 
  
:<b>3.</b>&nbsp;&nbsp;Nach Koordinatentransformation kann man f&uuml;r diese Wahrscheinlichkeit schreiben:
+
'''(3)'''&nbsp; After coordinate transformation,&nbsp; we can write f&uuml;r this probability:
:$${\rm Pr} ( | x + y | \le C ) = {\rm Pr} ( | \xi | \le C ) = 1 - 2 \cdot {\rm Pr} ( \xi >C ).$$
+
:$${\rm Pr} ( | x + y | \le C ) = {\rm Pr} ( | \xi | \le C ) = 1 - 2 \cdot {\rm Pr} ( \xi >C ).$$
  
:Mit dem komplement&auml;ren Gau&szlig;schen Fehlerintegral folgt daraus weiter:
+
*With the complementary Gaussian error function,&nbsp; it further follows:
:$${\rm Pr} ( | x + y | \le C ) = 1 - 2 \cdot {\rm Q} ( \frac{C}{\sigma_\xi}) = 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q} ( \frac{C}{\sigma_\xi}) = 0.005.$$
+
:$${\rm Pr} ( | x + y | \le C ) = 1 - 2 \cdot {\rm Q} ( {C}/{\sigma_\xi}) = 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q} ( {C}/{\sigma_\xi}) = 0.005.$$
  
:Mit dem angegebenen Wert Q(2.6) &asymp; 0.005 erh&auml;lt man somit das Ergebnis: <i>C</i> &asymp; 2.6 &middot; <i>&sigma;<sub>&xi;</sub></i> <u>= 5.814</u>.
+
*With the given value&nbsp; ${\rm Q}(2.6) \approx 0.005$&nbsp; we thus obtain the result:
 +
:$$C \approx 2.6 \cdot \sigma_{\xi}\hspace{0.15cm}\underline {= 5.814}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.2 Gaußsche 2D-Zufallsgrößen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.2 Gaussian 2D Random Variables^]]

Latest revision as of 16:59, 24 February 2022

Coordinate rotation of a joint PDF

In the exercise we consider a two-dimensional Gaussian random variable  $(x,\hspace{0.08cm} y)$  with statistically independent components.  Let the standard deviations of the two components be  $\sigma_x = 1$  and  $\sigma_y = 2$.

We want to calculate the probability that the two-dimensional random variable  $(x,\hspace{0.08cm} y)$  lies within the shaded area:

$$-C \le x + y \le +C.$$

Perform a coordinate transformation to solve:

$$\xi = \hspace{0.4cm} x +y,$$
$$\eta= -x +y .$$

This corresponds to a rotation of the coordinate system by  $45^\circ$.

  • From  $x+y= \pm C$  it thus follows  $\xi=\pm C$.
  • The two two-dimensional density functions are then:
$$f_{xy} (x,\hspace{0.08cm}y) = \frac{1}{4 \pi} \cdot \exp \left [ - ( x^2\hspace {-0.1cm} /2 + y^2\hspace {-0.1cm} /8) \right ] ,$$
$$f_{\xi\eta} (\xi,\hspace{0.08cm} \eta) = \frac{1}{2 \pi \cdot \sigma_\xi \cdot \sigma_\eta \cdot \sqrt{1 - \rho_{\xi\eta}^2}} \cdot \exp \left [ - \frac{1}{2 \cdot (1 - \rho_{\xi\eta}^2)} \cdot ( \frac {\xi^2}{\sigma_\xi^2} + \frac {\eta^2}{\sigma_\eta^2 }- 2 \rho_{\xi\eta}\cdot \frac {\xi \cdot \eta}{\sigma_\xi \cdot \sigma_\eta}) \right ] .$$





Hints:

Part 1:   Gaussian random variables without statistical bindings,
Part 2:   Gaussian random variables with statistical bindings.



Questions

1

Determine the ratio of the two standard deviations of the new random variables by comparing coefficients $(\xi,\hspace{0.08cm} \eta)$.

$\sigma_\xi/\sigma_\eta \ = \ $

2

Calculate the standard deviation  $\sigma_\xi$  and correlation coefficient  $\rho_{\xi\eta}$  between the new random variables  $\xi$  and  $\eta$.

$\sigma_\xi \ = \ $

$\rho_{\xi\eta} \ = \ $

3

Calculate the probability that  $ |\hspace{0.05cm}x+y\hspace{0.05cm}| \le C$  holds.  How large should  $C$  be chosen so that  $99\%$  of all quantities are in the shaded area?

$C_{99\%} \ = \ $


Solution

(1)  From   $\xi = x + y$   and   $\eta = -x + y$   it follows directly:

$$x = {1}/{2} \cdot ( \xi - \eta ) ,\hspace{0.5cm}y = {1}/{2}\cdot ( \xi +\eta ) .$$
  • Substituting these values for the negative exponent,  we get:
$$\frac{x^2}{2} + \frac{y^2}{8} = \frac{1}{8} \cdot ( \xi - \eta )^2 + \frac{1}{32} \cdot ( \xi + \eta )^2.$$
  • After Multiplication,  this gives:
$$\frac{5}{32} \cdot \xi^2 + \frac{5}{32} \cdot \eta^2 - \frac{3}{16} \cdot \xi \cdot \eta .$$
  • Since the coefficients on  $\xi^2$  and  $\eta^2$  are equal   ⇒   $\sigma_\xi = \sigma_\eta$.    The quotient we are looking for is therefore
$$\sigma_\xi/\sigma_\eta\hspace{0.15cm}\underline{= 1.}$$


(2)  By comparing coefficients,  we obtain for  $\sigma_\xi = \sigma_\eta$  the system of equations:

$$2 \cdot \sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)= \frac{32}{5},$$
$$\frac{\sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)}{\rho_{\xi\eta}}= \frac{16}{3}.$$
  • Substituting the first equation into the second,  we get   $\rho_{\xi\eta}\hspace{0.15cm}\underline {= 0.6}$   and   $\sigma_{\xi} = \sqrt{5}\hspace{0.15cm}\underline {= 2.236}$.


(3)  After coordinate transformation,  we can write für this probability:

$${\rm Pr} ( | x + y | \le C ) = {\rm Pr} ( | \xi | \le C ) = 1 - 2 \cdot {\rm Pr} ( \xi >C ).$$
  • With the complementary Gaussian error function,  it further follows:
$${\rm Pr} ( | x + y | \le C ) = 1 - 2 \cdot {\rm Q} ( {C}/{\sigma_\xi}) = 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q} ( {C}/{\sigma_\xi}) = 0.005.$$
  • With the given value  ${\rm Q}(2.6) \approx 0.005$  we thus obtain the result:
$$C \approx 2.6 \cdot \sigma_{\xi}\hspace{0.15cm}\underline {= 5.814}.$$