Difference between revisions of "Aufgaben:Exercise 4.8: Diamond-shaped Joint PDF"

From LNTwww
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Linearkombinationen von Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Linear_Combinations_of_Random_Variables
 
}}
 
}}
  
[[File:P_ID412__Sto_A_4_8.png|right|]]
+
[[File:P_ID412__Sto_A_4_8.png|right|frame|Diamond–shaped joint PDF]]
:Wir betrachten eine 2D&ndash;Zufallsgr&ouml;&szlig;e (<i>x</i>, <i>y</i>), deren Komponenten sich jeweils als Linearkombinationen zweier Zufallsgr&ouml;&szlig;en <i>u</i> und <i>&upsilon;</i> ergeben:
+
We consider a two-dimensional random variable&nbsp; $(x,\hspace{0.08cm} y)$&nbsp; whose components arise as linear combinations of two random variables&nbsp; $u$&nbsp; and&nbsp; $v$:
 
:$$x=2u-2v+1,$$
 
:$$x=2u-2v+1,$$
 
:$$y=u+3v.$$
 
:$$y=u+3v.$$
  
:Die beiden statistisch unabh&auml;ngigen Zufallsgr&ouml;&szlig;en <i>u</i> und <i>&upsilon;</i>  sind jeweils gleichverteilt zwischen 0 und 1.
+
Further,&nbsp; note:
 +
*The two statistically independent random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are each uniformly distributed between&nbsp; $0$&nbsp; and&nbsp; $1$.
 +
*In the figure you can see the joint PDF.&nbsp; Within the parallelogram drawn in blue holds:
 +
:$$f_{xy}(x,\hspace{0.08cm} y) = H = {\rm const.}$$
 +
*Outside the parallelogram no values are possible:&nbsp; $f_{xy}(x,\hspace{0.08cm} y) = 0$.
  
:In der Abbildung sehen Sie die 2D&ndash;WDF. Innerhalb des blau eingezeichneten Parallelogramms gilt:
 
:$$f_{xy}(x, y) = H.$$
 
  
:Au&szlig;erhalb sind keine Werte m&ouml;glich.
 
  
:<b>Hinweis:</b> Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 4.3, insbesondere auf die Seite Korrelationsgerade. Gehen Sie - wenn m&ouml;glich - von den zwei angegebenen Gleichungen aus und nutzen Sie die Informationen der obigen Skizze vorwiegend nur zur Kontrolle Ihrer Ergebnisse.
 
  
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Linear_Combinations_of_Random_Variables|Linear Combinations of Random Variables]].
 +
*Reference is also made to the page&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Regression_line|Regression line]].
 +
*We also refer here to the interactive applet&nbsp; [[Applets:Korrelationskoeffizient_%26_Regressionsgerade|Correlation coefficient and regression line]]
 +
*Assume - if possible - the given equations.&nbsp; Use the information of the above sketch mainly only to check your results.
 +
  
===Fragebogen===
+
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie gro&szlig; ist die H&ouml;he <i>H</i> der 2D&ndash;WDF innerhalb des Parallelogramms?
+
{What is the height&nbsp; $H$&nbsp; of the joint PDF within the parallelogram?
 
|type="{}"}
 
|type="{}"}
$H$ = { 0.125 3% }
+
$H \ = \ $ { 0.125 3% }
  
  
{Welche Werte von <i>u</i> und <i>&upsilon;</i> liegen dem Eckpunkt (&ndash;1, 3) zugrunde?
+
{What values of&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; underlie the corner point&nbsp; $(-1, 3)$?
 
|type="{}"}
 
|type="{}"}
$u$ = { 0 3% }
+
$u \ = \ $ { 0. }
$v$ = { 1 3% }
+
$v \ = \ $ { 1 3% }
  
  
{Berechnen Sie den Korrelationskoeffizienten.
+
{Calculate the correlation coefficient&nbsp; $\rho_{xy}$.
 
|type="{}"}
 
|type="{}"}
$\rho_\text{xy}$ = { 0.447 3% }
+
$\rho_{xy}\ = \ $ { -0.457--0.437 }
  
  
{Wie lautet die Korrelationsgerade <i>y</i> = <i>K</i>(<i>x</i>)? Bei welchem Punkt <i>y</i><sub>0</sub> schneidet diese die <i>y</i>-Achse?
+
{What is the regression line&nbsp; $\rm (RL)$?&nbsp; At what point&nbsp; $y_0$&nbsp; does it intersect the&nbsp; $y$&ndash;axis?
 
|type="{}"}
 
|type="{}"}
$y_0$ = { 2.5 3% }
+
$y_0\ = \ $ { 2.5 3% }
  
  
{Berechnen Sie die Randwahrscheinlichkeitsdichtefunktion <i>f<sub>x</sub></i>(<i>x</i>). Wie gro&szlig; ist die Wahrscheinlichkeit, dass die Zufallsgr&ouml;&szlig;e <i>x</i> negativ ist.
+
{Calculate the marginal probability density function $f_x(x)$.&nbsp; What is the probability that the random variable&nbsp; $x$&nbsp; is negative?
 
|type="{}"}
 
|type="{}"}
$Pr(x < 0)$ = { 0.125 3% }
+
${\rm Pr}(x < 0)\ = \ $ { 0.125 3% }
  
  
{Berechnen Sie die Randwahrscheinlichkeitsdichtefunktion <i>f<sub>y</sub></i>(<i>y</i>). Wie gro&szlig; ist die Wahrscheinlichkeit, dass die Zufallsgr&ouml;&szlig;e <i>y</i> gr&ouml;&szlig;er als 3 ist?
+
{Calculate the marginal probability density function $f_y(y)$.&nbsp; What is the probability that the random variablee&nbsp; $y >3$?
 
|type="{}"}
 
|type="{}"}
$Pr(y > 3)$ = { 0.167 3% }
+
${\rm Pr}(y > 3)\ = \ $ { 0.167 3% }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Die Fl&auml;che des Parallelogramms kann aus zwei gleich gro&szlig;en Dreiecken zusammengesetzt werden. Die Fl&auml;che des Dreiecks (1,0)(1,4)(&ndash;1,3) ergibt 0.5 &middot; 4 &middot; 2 = 4. Somit ist die Gesamtfl&auml;che <i>F</i> = 8. Da das WDF-Volumen stets 1 ist, gilt <u><i>H</i> = 1/<i>F</i> = 0.125</u>.
+
'''(1)'''&nbsp; The area of the parallelogram can be composed of two triangles of equal size.  
 +
*The area of the triangle $(1,0)\ (1,4)\ (-1,3)$&nbsp; gives&nbsp; $0.5 &middot; 4 &middot; 2 = 4$.  
 +
*The total area is double: &nbsp; $F = 8$.  
 +
*Since the PDF volume is always&nbsp; $1$&nbsp;, then&nbsp; $H= 1/F\hspace{0.15cm}\underline{ = 0.125}$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The minimum value of&nbsp; $x$&nbsp; is obtained for&nbsp; $\underline{ u=0}$&nbsp; and&nbsp; $\underline{ v=1}$.
 +
*From the above equations,&nbsp; the results&nbsp; $x= -1$&nbsp; and&nbsp; $y= +3$&nbsp; follow.
 +
 
  
:<b>2.</b>&nbsp;&nbsp;Der minimale Wert von <i>x</i> ergibt sich f&uuml;r <u><i>u</i> = 0</u> und <u><i>&upsilon;</i> = 1</u>. Daraus folgen aus obigen Gleichungen die Ergebnisse <i>x</i> = &ndash;1 und <i>y</i> = 3.
 
  
:<b>3.</b>&nbsp;&nbsp;Die im Theorieteil angegebene Gleichung gilt allgemein, d.&nbsp;h. f&uuml;r jede beliebige WDF der beiden statistisch unabh&auml;ngigen Gr&ouml;&szlig;en <i>u</i> und <i>&upsilon;</i>, so lange diese gleiche Streuungen aufweisen.
+
'''(3)'''&nbsp; The equation given in the theory section is valid in general, i.e., for any PDF of the two statistically independent variables&nbsp; $u$&nbsp; and&nbsp; $v$,&nbsp; as long as they have equal standard deviations&nbsp; $(\sigma_u = \sigma_v)$.  
  
:Mit <i>A</i> = 2, <i>B</i> = &ndash;2, <i>D</i> = 1 und <i>E</i> = 3 erh&auml;lt man:
+
*With&nbsp; $A = 2$,&nbsp; $B = -2$,&nbsp; $D = 1$&nbsp; and&nbsp; $E = 3$&nbsp; we obtain:
 
:$$\rho_{xy } =  \frac {\it A \cdot D + B \cdot E}{\sqrt{(\it A^{\rm 2}+\it B^{\rm 2})(\it D^{\rm 2}+\it E^{\rm 2})}} =\frac {2 \cdot 1 -2 \cdot 3}{\sqrt{(4 +4)(1+9)}} = \frac {-4}{\sqrt{80}} = \frac {-1}{\sqrt{5}}\hspace{0.15cm}\underline{ = -0.447}. $$
 
:$$\rho_{xy } =  \frac {\it A \cdot D + B \cdot E}{\sqrt{(\it A^{\rm 2}+\it B^{\rm 2})(\it D^{\rm 2}+\it E^{\rm 2})}} =\frac {2 \cdot 1 -2 \cdot 3}{\sqrt{(4 +4)(1+9)}} = \frac {-4}{\sqrt{80}} = \frac {-1}{\sqrt{5}}\hspace{0.15cm}\underline{ = -0.447}. $$
  
:<b>4.</b>&nbsp;&nbsp;Die Korrelationsgerade lautet allgemein:
 
:$$y=K(x)=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x-m_x)+m_y.$$
 
  
:Aus den linearen Mittelwerten <i>m<sub>u</sub></i> = <i>m<sub>&upsilon;</sub></i> = 0.5 und den in der Aufgabenstellung angegebenen Gleichungen erh&auml;lt man <i>m<sub>x</sub></i> = 1 und <i>m<sub>y</sub></i> = 2.
+
'''(4)'''&nbsp; The regression line is generally:
 +
:$$y=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x-m_x)+m_y.$$
  
:Die Varianzen von <i>u</i> und <i>&upsilon;</i> betragen jeweils 1/12. Daraus folgt:
+
*From the linear means&nbsp; $m_u = m_v = 0.5$&nbsp; and the equations given in the problem statement,&nbsp; we obtain&nbsp; $m_x = 1$&nbsp; and&nbsp; $m_y = 2$.
 +
 
 +
*The variances of&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are respectively&nbsp; $\sigma_u^2 = \sigma_v^2 =1/12$.&nbsp; It follows:
 
:$$\sigma_x^2 = 4 \cdot \sigma_u^2 + 4 \cdot \sigma_v^2 = 2/3,$$
 
:$$\sigma_x^2 = 4 \cdot \sigma_u^2 + 4 \cdot \sigma_v^2 = 2/3,$$
 
:$$\sigma_y^2 = \sigma_u^2 + 9\cdot \sigma_v^2 = 5/6.$$
 
:$$\sigma_y^2 = \sigma_u^2 + 9\cdot \sigma_v^2 = 5/6.$$
  
:Setzt man diese Werte in die Gleichung der Korrelationsgeraden ein, so ergibt sich:
+
*Substituting these values into the equation of the regression line,&nbsp; we get:
:$$y=K(x)=\frac{\sqrt{5/6}}{\sqrt{2/3}}\cdot (\frac{-1}{\sqrt{5}})\cdot(x-1)+2= - \frac{x}{2} + 2.5.$$
+
:$$y=\frac{\sqrt{5/6}}{\sqrt{2/3}}\cdot (\frac{-1}{\sqrt{5}})\cdot(x-1)+2= - x/{2} + 2.5.$$
 +
 
 +
*From this follows with&nbsp; $x=0$&nbsp; the value&nbsp; $y_0=\hspace{0.15cm}\underline{ = 2.5}$
  
:Daraus folgt der Wert <u><i>y</i><sub>0</sub> = 2.5</u>.
 
  
:<b>5.</b>&nbsp;&nbsp;Mit den Hilfsgr&ouml;&szlig;en <i>q</i> = 2<i>u</i>, <i>r</i> = &ndash;2<i>&upsilon;</i> und <i>s</i> = <i>x</i> &ndash; 1 gilt der Zusammenhang: <i>s</i> = <i>q</i> + <i>r</i>. Da <i>u</i> und <i>&upsilon;</i> jeweils zwischen 0 und 1 gleichverteilt sind, besitzt <i>q</i> eine Gleichverteilung im Bereich von 0 bis 2 und <i>r</i> eine Gleichverteilung zwischen &ndash;2 und 0.
 
  
:Da zudem <i>q</i> und <i>r</i> nicht statistisch voneinander abh&auml;ngen, gilt f&uuml;r die WDF der Summe:
+
'''(5)'''&nbsp; With the auxiliary quantities &nbsp; $q= 2u$, &nbsp; $r= -2v$ &nbsp; and &nbsp; $s= x-1$:&nbsp;  $s= q+r$.
 +
[[File:P_ID414__Sto_A_4_8_e.png|right|frame|Triangular PDF $f_x(x)$]]
 +
*Since&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are each uniformly distributed between&nbsp; $0$&nbsp; and&nbsp; $1$,&nbsp;  $q$&nbsp; has a uniform distribution in the range from&nbsp; $0$&nbsp; to&nbsp; $2$&nbsp; and&nbsp; $r$&nbsp; is uniformly distributed between&nbsp; $-2$&nbsp; and&nbsp; $0$.
 +
*In addition,&nbsp; since&nbsp; $q$&nbsp; and&nbsp; $r$&nbsp; are not statistically dependent on each other, the PDF of the sum is:
 
:$$f_s(s) = f_q(q) \star f_r(r).$$
 
:$$f_s(s) = f_q(q) \star f_r(r).$$
 +
*The addition&nbsp; $x = s+1$&nbsp; leads to a shift of the triangular&ndash;PDF by&nbsp; $1$&nbsp; to the right.
 +
*For the sought probability&nbsp; (highlighted in green in the graphic)&nbsp; therefore holds: &nbsp;
 +
:$${\rm Pr}(x < 0)\hspace{0.15cm}\underline{ = 0.125}.$$
 +
  
:Die Addition <i>x</i> = <i>s</i> + 1 f&uuml;hrt zu einer Verschiebung der Dreieck&ndash;WDF um 1 nach rechts. F&uuml;r die gesuchte Wahrscheinlichkeit (im folgenden Bild gr&uuml;n hinterlegt) gilt deshalb: <u>Pr(<i>x</i> < 0) = 0.125</u>.
 
[[File:P_ID414__Sto_A_4_8_e.png|midle|]]
 
  
:<b>6.</b>&nbsp;&nbsp;Analog zur Musterl&ouml;sung für die Teilaufgabe e) gilt mit <i>t</i> = 3<i>&upsilon;</i>:
+
[[File: P_ID415__Sto_A_4_8_f.png|right|frame|Trapezoidal PDF $f_y(y)$]]
 +
'''(6)'''&nbsp; Analogous to the solution for the subtask&nbsp; '''(5)'''&nbsp; holds with&nbsp; $t = 3v$:
 
:$$f_y(y) = f_u(u) \star f_t(t).$$
 
:$$f_y(y) = f_u(u) \star f_t(t).$$
  
:Die Faltung zwischen zwei unterschiedlich breiten Rechteckfunktionen ergibt ein Trapez. F&uuml;r die gesuchte Wahrscheinlichkeit erhält man <u>Pr(<i>y</i> > 3) = 1/6</u>Diese ist im nachfolgenden Bild gr&uuml;n hinterlegt.
+
*The convolution between two rectangles of different widths results in a trapezoid.&nbsp; For the probability we are looking for,&nbsp; we get:
[[File: P_ID415__Sto_A_4_8_f.png|midle|]]
+
:$${\rm Pr}(y>3) =1/6\hspace{0.15cm}\underline{ \approx 0.167}.$$  
 +
*This probability is highlighted in green in the right sketch.
 +
 
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.3 Linearkombinationen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.3 Linear Combinations^]]

Latest revision as of 14:07, 27 February 2022

Diamond–shaped joint PDF

We consider a two-dimensional random variable  $(x,\hspace{0.08cm} y)$  whose components arise as linear combinations of two random variables  $u$  and  $v$:

$$x=2u-2v+1,$$
$$y=u+3v.$$

Further,  note:

  • The two statistically independent random variables  $u$  and  $v$  are each uniformly distributed between  $0$  and  $1$.
  • In the figure you can see the joint PDF.  Within the parallelogram drawn in blue holds:
$$f_{xy}(x,\hspace{0.08cm} y) = H = {\rm const.}$$
  • Outside the parallelogram no values are possible:  $f_{xy}(x,\hspace{0.08cm} y) = 0$.



Hints:



Questions

1

What is the height  $H$  of the joint PDF within the parallelogram?

$H \ = \ $

2

What values of  $u$  and  $v$  underlie the corner point  $(-1, 3)$?

$u \ = \ $

$v \ = \ $

3

Calculate the correlation coefficient  $\rho_{xy}$.

$\rho_{xy}\ = \ $

4

What is the regression line  $\rm (RL)$?  At what point  $y_0$  does it intersect the  $y$–axis?

$y_0\ = \ $

5

Calculate the marginal probability density function $f_x(x)$.  What is the probability that the random variable  $x$  is negative?

${\rm Pr}(x < 0)\ = \ $

6

Calculate the marginal probability density function $f_y(y)$.  What is the probability that the random variablee  $y >3$?

${\rm Pr}(y > 3)\ = \ $


Solution

(1)  The area of the parallelogram can be composed of two triangles of equal size.

  • The area of the triangle $(1,0)\ (1,4)\ (-1,3)$  gives  $0.5 · 4 · 2 = 4$.
  • The total area is double:   $F = 8$.
  • Since the PDF volume is always  $1$ , then  $H= 1/F\hspace{0.15cm}\underline{ = 0.125}$.


(2)  The minimum value of  $x$  is obtained for  $\underline{ u=0}$  and  $\underline{ v=1}$.

  • From the above equations,  the results  $x= -1$  and  $y= +3$  follow.


(3)  The equation given in the theory section is valid in general, i.e., for any PDF of the two statistically independent variables  $u$  and  $v$,  as long as they have equal standard deviations  $(\sigma_u = \sigma_v)$.

  • With  $A = 2$,  $B = -2$,  $D = 1$  and  $E = 3$  we obtain:
$$\rho_{xy } = \frac {\it A \cdot D + B \cdot E}{\sqrt{(\it A^{\rm 2}+\it B^{\rm 2})(\it D^{\rm 2}+\it E^{\rm 2})}} =\frac {2 \cdot 1 -2 \cdot 3}{\sqrt{(4 +4)(1+9)}} = \frac {-4}{\sqrt{80}} = \frac {-1}{\sqrt{5}}\hspace{0.15cm}\underline{ = -0.447}. $$


(4)  The regression line is generally:

$$y=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x-m_x)+m_y.$$
  • From the linear means  $m_u = m_v = 0.5$  and the equations given in the problem statement,  we obtain  $m_x = 1$  and  $m_y = 2$.
  • The variances of  $u$  and  $v$  are respectively  $\sigma_u^2 = \sigma_v^2 =1/12$.  It follows:
$$\sigma_x^2 = 4 \cdot \sigma_u^2 + 4 \cdot \sigma_v^2 = 2/3,$$
$$\sigma_y^2 = \sigma_u^2 + 9\cdot \sigma_v^2 = 5/6.$$
  • Substituting these values into the equation of the regression line,  we get:
$$y=\frac{\sqrt{5/6}}{\sqrt{2/3}}\cdot (\frac{-1}{\sqrt{5}})\cdot(x-1)+2= - x/{2} + 2.5.$$
  • From this follows with  $x=0$  the value  $y_0=\hspace{0.15cm}\underline{ = 2.5}$


(5)  With the auxiliary quantities   $q= 2u$,   $r= -2v$   and   $s= x-1$:  $s= q+r$.

Triangular PDF $f_x(x)$
  • Since  $u$  and  $v$  are each uniformly distributed between  $0$  and  $1$,  $q$  has a uniform distribution in the range from  $0$  to  $2$  and  $r$  is uniformly distributed between  $-2$  and  $0$.
  • In addition,  since  $q$  and  $r$  are not statistically dependent on each other, the PDF of the sum is:
$$f_s(s) = f_q(q) \star f_r(r).$$
  • The addition  $x = s+1$  leads to a shift of the triangular–PDF by  $1$  to the right.
  • For the sought probability  (highlighted in green in the graphic)  therefore holds:  
$${\rm Pr}(x < 0)\hspace{0.15cm}\underline{ = 0.125}.$$


Trapezoidal PDF $f_y(y)$

(6)  Analogous to the solution for the subtask  (5)  holds with  $t = 3v$:

$$f_y(y) = f_u(u) \star f_t(t).$$
  • The convolution between two rectangles of different widths results in a trapezoid.  For the probability we are looking for,  we get:
$${\rm Pr}(y>3) =1/6\hspace{0.15cm}\underline{ \approx 0.167}.$$
  • This probability is highlighted in green in the right sketch.