Difference between revisions of "Aufgaben:Exercise 4.3Z: Exponential and Laplace Distribution"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Informationstheorie/Differentielle Entropie }} right| Wir betrachten hier die Wahrscheinlichkeitsdi…“)
 
m (Text replacement - "value-continuous" to "continuous")
 
(26 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Differentielle Entropie
+
{{quiz-Header|Buchseite=Information_Theory/Differential_Entropy
 
}}
 
}}
  
[[File:P_ID2875__Inf_Z_4_3.png|right|]]
+
[[File:EN_Inf_Z_4_3.png|right|frame|Exponential PDF (above) d<br>Laplace PDF (below)]]
Wir betrachten hier die Wahrscheinlichkeitsdichtefunktionen (WDF) zweier wertkontinuierlicher Zufallsgrößen:
+
We consider here the probability density functions&nbsp; $\rm (PDF)$&nbsp; of two continuous random variables:
:* <i>X</i> ist exponentialverteilt (siehe obere Darstellung): Für <i>x</i>&nbsp;<&nbsp;0 ist <i>f<sub>X</sub></i>(<i>x</i>) = 0, und für positive <i>x</i>&ndash;Werte gilt:
+
*The random variable &nbsp; $X$&nbsp; is exponentially distributed (see top plot): &nbsp; For&nbsp; $x<0$&nbsp;  &nbsp; &rArr; &nbsp; $f_X(x) = 0$,&nbsp; and for positive $x$&ndash;values:
$$f_X(x) =  \lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.05cm}. $$
+
:$$f_X(x) =  \lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.05cm}. $$
:* Dagegen gilt für die laplaceverteilte Zufallsgröße <i>Y</i> im gesamten Bereich &ndash;&#8734; < <i>y</i> < +&#8734;  (untere Skizze):
+
* On the other hand, for the Laplace distributed random variable&nbsp; $Y$&nbsp; in the whole range&nbsp; $ - \infty < y < + \infty$&nbspholds (lower sketch):
$$f_Y(y) =  \lambda/2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|y|}\hspace{0.05cm}.$$
+
:$$f_Y(y) =  \lambda/2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|\hspace{0.05cm}y\hspace{0.05cm}|}\hspace{0.05cm}.$$
Zu berechnen sind die differentiellen Entropien <i>h</i>(<i>X</i>) und <i>h</i>(<i>Y</i>) abhängig vom WDF&ndash;Parameter <i>&lambda;</i>. Zum Beispiel gilt:
+
 
$$h(X) = -\hspace{-0.7cm}  \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}
+
To be calculated are the differential entropies&nbsp; $h(X)$&nbsp; and&nbsp; $h(Y)$&nbsp; depending on the PDF parameter&nbsp; $\it \lambda$.&nbsp; For example:
\hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.55cm}  f_X(x) \cdot {\rm log}_2 \hspace{0.1cm} [f_X(x)] \hspace{0.1cm}{\rm d}x
+
:$$h(X) = -\hspace{-0.7cm}  \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}
 +
\hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.55cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \big [f_X(x) \big ] \hspace{0.1cm}{\rm d}x
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Bei Verwendung von &bdquo;log<sub>2</sub>&rdquo; ist die Pseudo&ndash;Einheit &bdquo;bit&rdquo; anzufügen.
+
If&nbsp; $\log_2$&nbsp; is used, add the pseudo-unit&nbsp; "bit".
  
In den Teilaufgaben (b) und (d) ist die differentielle Entropie in folgender Form anzugeben:
+
 
$$h(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm} \rm L} \cdot \sigma^2)  
+
In subtasks&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)'''&nbsp; specify the differential entropy in the following form:
\hspace{0.5cm}{\rm bzw.} \hspace{0.5cm}h(Y) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm} \rm L} \cdot \sigma^2)  
+
:$$h(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(X)}  \cdot \sigma^2),
 +
\hspace{0.8cm}h(Y) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(Y)}  \cdot \sigma^2)  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Zu ermitteln ist, durch welche Faktoren <i>&Gamma;</i><sub>L</sub> die Exponentialverteilung und die Laplaceverteilung charakterisiert werden.
+
Determine by which factor&nbsp; ${\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(X)}$&nbsp; the exponential PDF is characterized and which factor&nbsp; ${\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(Y)}$&nbsp; results for the Laplace PDF.
 +
 
 +
 
  
<b>Hinweis:</b> Die Aufgabe bezieht sich auf das Themengebiet von [http://en.lntwww.de/Informationstheorie/Differentielle_Entropie '''Kapitel 4.1'''] Für die Varianzen der beiden betrachteten Zufallsgrößen gilt, wie in [http://en.lntwww.de/Aufgaben:4.01Z_Momentenberechnung '''Aufgabe Z4.1'''] hergeleitet:
+
 
:* Exponentialverteilung &nbsp;&#8658;&nbsp; Zufallsgröße <i>X</i>:&nbsp;&nbsp;&nbsp; <i>&sigma;</i><sup>2</sup> = 1/<i>&lambda;</i><sup>2</sup>,
+
 
:* Laplaceverteilung &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&#8658;&nbsp; Zufallsgröße <i>Y</i>:&nbsp;&nbsp;&nbsp; <i>&sigma;</i><sup>2</sup> = 2/<i>&lambda;</i><sup>2</sup>.
+
 
===Fragebogen===
+
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Information_Theory/Differentielle_Entropie|Differential Entropy]].
 +
*Useful hints for solving this task can be found in particular on the page&nbsp; [[Information_Theory/Differentielle_Entropie#Differential_entropy_of_some_power-constrained_random_variables|Differential entropy of some power-constrained random variables]].
 +
*For the variance of the exponentially distributed random variable&nbsp; $X$&nbsp; holds, as derived in&nbsp; [[Aufgaben:Exercise_4.1Z:_Calculation_of_Moments|Exercise 4.1Z]]: &nbsp; $\sigma^2 = 1/\lambda^2$.
 +
*The variance of the Laplace distributed random variable&nbsp; $Y$&nbsp; is twice as large for the same&nbsp; $\it \lambda$: &nbsp; $\sigma^2 = 2/\lambda^2$.
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
 +
{Calculate the differential entropy of the exponential distribution for&nbsp; $\lambda = 1$.
 +
|type="{}"}
 +
$h(X) \ = \ $ { 1.443 3% } $\ \rm bit$
 +
 +
{What is the characteristic&nbsp; &nbsp;${\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(X)}$&nbsp; for the exponential distribution corresponding to the form &nbsp;$h(X) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm} \rm L}^{\hspace{0.08cm}(X)} \cdot \sigma^2)$ ?
 +
|type="{}"}
 +
${\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(X)}  \ = \ $ { 7.39 3% }
 +
 +
 +
{Calculate the differential entropy of the Laplace distribution for&nbsp; $\lambda = 1$.
 +
|type="{}"}
 +
$h(Y) \ = \ $ { 2.443 3% } $\ \rm bit$
  
{Input-Box Frage
+
{What is the characteristic &nbsp;${\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(Y)} $&nbsp; for the Laplace distribution corresponding to the form &nbsp;$h(Y) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm} \rm L}^{\hspace{0.08cm}(Y)} \cdot \sigma^2)$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
${\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(Y)} \ = \ $ { 14.78 3% }
 +
 
  
  
Line 41: Line 64:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; Although in this exercise the result should be given in&nbsp; "bit",&nbsp; we use the natural logarithm for derivation.
'''2.'''
+
 
'''3.'''
+
*Then the differential entropy is:
'''4.'''
+
:$$h(X) = -\hspace{-0.7cm}  \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}
'''5.'''
+
\hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.35cm}  f_X(x) \cdot {\rm ln} \hspace{0.1cm} \big [f_X(x)\big] \hspace{0.1cm}{\rm d}x
'''6.'''
+
\hspace{0.05cm}.$$
'''7.'''
+
*For the exponential distribution,&nbsp; the integration limits are&nbsp; $0$&nbsp; and&nbsp; $+&#8734;$.&nbsp; In this range, the PDF&nbsp; $f_X(x)$&nbsp; according to the specification sheet  is used:
 +
:$$h(X) =-  \int_{0}^{\infty} \hspace{-0.15cm} 
 +
\lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}
 +
\hspace{0.05cm} \cdot \hspace{0.05cm} \left [ {\rm ln} \hspace{0.1cm} (\lambda) +
 +
{\rm ln} \hspace{0.1cm} ({\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x})\right ]\hspace{0.1cm}{\rm d}x
 +
    - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) \cdot \int_{0}^{\infty} \hspace{-0.15cm} 
 +
\lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x
 +
\hspace{0.1cm} + \hspace{0.1cm} \lambda \cdot \int_{0}^{\infty} \hspace{-0.15cm} 
 +
\lambda \cdot x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x
 +
\hspace{0.05cm}.$$
 +
We can see:
 +
* The first integrand is identical to the PDF&nbsp; $f_X(x)$ considered here.&nbsp;  Thus, the integral over the entire integration domain yields&nbsp; $1$.
 +
* The second integral corresponds exactly to the definition of the mean value&nbsp; $m_1$&nbsp; (moment of first order).&nbsp;  For the exponential PDF,&nbsp; $m_1 = 1/&lambda;$ holds.&nbsp; From this follows:
 +
:$$h(X) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + 1 =
 +
- \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} ({\rm e}/\lambda)
 +
\hspace{0.05cm}.$$
 +
*This result is to be given the additional unit&nbsp; "nat".&nbsp; Using&nbsp; $\log_2$&nbsp;  instead of&nbsp; $\ln$,&nbsp; we obtain the differential entropy in&nbsp; "bit":
 +
:$$h(X) =  {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda)
 +
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :}
 +
\hspace{0.3cm} h(X) =  {\rm log}_2 \hspace{0.1cm} ({\rm e}) = \frac{{\rm ln} \hspace{0.1cm} ({\rm e})}{{\rm ln} \hspace{0.1cm} (2)}
 +
\hspace{0.15cm}\underline{= 1.443\,{\rm bit}}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Considering the equation&nbsp; $\sigma^2 = 1/\lambda^2$&nbsp; valid for the exponential distribution, we can transform the result found in&nbsp;  '''(1)'''&nbsp; as follows:
 +
: $$h(X) =  {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) =
 +
{1}/{2}\cdot {\rm log}_2 \hspace{0.1cm} ({\rm e}^2/\lambda^2)
 +
=
 +
{1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\rm e}^2 \cdot \sigma^2)
 +
\hspace{0.05cm}.$$
 +
*A comparison with the required basic form &nbsp;$h(X) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm} \rm L}^{\hspace{0.08cm}(X)} \cdot \sigma^2)$&nbsp; leads to the result:
 +
:$${\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(X)}  = {\rm e}^2 \hspace{0.15cm}\underline{\approx 7.39}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; For the Laplace distribution, we divide the integration domain into two subdomains:
 +
* $Y$&nbsp; negative &nbsp; &#8658; &nbsp; proportion&nbsp; $h_{\rm neg}(Y)$,
 +
* $Y$&nbsp; positive &nbsp; &#8658; &nbsp; proportion&nbsp; $h_{\rm pos}(Y)$.
 +
 
 +
 
 +
The total differential entropy, taking into account&nbsp; $h_{\rm neg}(Y) = h_{\rm pos}(Y)$&nbsp; is given by
 +
:$$h(Y) =  h_{\rm neg}(Y) + h_{\rm pos}(Y) = 2 \cdot h_{\rm pos}(Y) $$
 +
:$$\Rightarrow \hspace{0.3cm} h(Y) = -  2 \cdot \int_{0}^{\infty} \hspace{-0.15cm} 
 +
\lambda/2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}
 +
\hspace{0.05cm} \cdot \hspace{0.05cm} \left [ {\rm ln} \hspace{0.1cm} (\lambda/2) +
 +
{\rm ln} \hspace{0.1cm} ({\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y})\right ]\hspace{0.1cm}{\rm d}y = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) \cdot \int_{0}^{\infty} \hspace{-0.15cm} 
 +
\lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y
 +
\hspace{0.1cm} + \hspace{0.1cm} \lambda \cdot \int_{0}^{\infty} \hspace{-0.15cm} 
 +
\lambda \cdot y \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y
 +
\hspace{0.05cm}.$$
 +
 
 +
If we again consider that the first integral gives the value&nbsp; $1$ &nbsp; (PDF area) and the second integral gives the mean value&nbsp; $m_1 = 1/\lambda$&nbsp; we obtain:
 +
:$$h(Y) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + 1 =
 +
- \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} (2{\rm e}/\lambda)
 +
\hspace{0.05cm}.$$
 +
*Since the result is required in&nbsp; "bit",&nbsp; we still need to replace&nbsp; "$\ln$"&nbsp; by&nbsp; "$\log_2$":
 +
:$$h(Y) =  {\rm log}_2 \hspace{0.1cm} (2{\rm e}/\lambda)
 +
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :}
 +
\hspace{0.3cm} h(Y) =  {\rm log}_2 \hspace{0.1cm} (2{\rm e})
 +
\hspace{0.15cm}\underline{= 2.443\,{\rm bit}}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; For the Laplace distribution, the relation&nbsp; $\sigma^2 = 2/\lambda^2$ holds.&nbsp; Thus, we obtain:
 +
:$$h(X) =  {\rm log}_2 \hspace{0.1cm} (\frac{2{\rm e}}{\lambda}) =
 +
{1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} (\frac{4{\rm e}^2}{\lambda^2})
 +
=
 +
{1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} (2 {\rm e}^2 \cdot \sigma^2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(Y)}  = 2 \cdot {\rm e}^2 \hspace{0.15cm}\underline{\approx 14.78}
 +
\hspace{0.05cm}.$$
 +
*Consequently, the&nbsp; ${\it \Gamma}_{{\hspace{-0.05cm} \rm L}}$ value is twice as large for the Laplace distribution as for the exponential distribution.
 +
*Thus, the Laplace PDF is better than the exponential PDF in terms of differential entropy when power-limited signals are assumed.
 +
*Under the constraint of peak limitation,&nbsp; both the exponential and Laplace PDF are completely unsuitable, as is the Gaussian PDF.&nbsp;  These all extend to infinity.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^4.1  Differentielle Entropie^]]
+
[[Category:Information Theory: Exercises|^4.1  Differential Entropy^]]

Latest revision as of 09:27, 11 October 2021

Exponential PDF (above) d
Laplace PDF (below)

We consider here the probability density functions  $\rm (PDF)$  of two continuous random variables:

  • The random variable   $X$  is exponentially distributed (see top plot):   For  $x<0$    ⇒   $f_X(x) = 0$,  and for positive $x$–values:
$$f_X(x) = \lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.05cm}. $$
  • On the other hand, for the Laplace distributed random variable  $Y$  in the whole range  $ - \infty < y < + \infty$  holds (lower sketch):
$$f_Y(y) = \lambda/2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|\hspace{0.05cm}y\hspace{0.05cm}|}\hspace{0.05cm}.$$

To be calculated are the differential entropies  $h(X)$  and  $h(Y)$  depending on the PDF parameter  $\it \lambda$.  For example:

$$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.55cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \big [f_X(x) \big ] \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$

If  $\log_2$  is used, add the pseudo-unit  "bit".


In subtasks  (2)  and  (4)  specify the differential entropy in the following form:

$$h(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(X)} \cdot \sigma^2), \hspace{0.8cm}h(Y) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(Y)} \cdot \sigma^2) \hspace{0.05cm}.$$

Determine by which factor  ${\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(X)}$  the exponential PDF is characterized and which factor  ${\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(Y)}$  results for the Laplace PDF.





Hints:

  • The exercise belongs to the chapter  Differential Entropy.
  • Useful hints for solving this task can be found in particular on the page  Differential entropy of some power-constrained random variables.
  • For the variance of the exponentially distributed random variable  $X$  holds, as derived in  Exercise 4.1Z:   $\sigma^2 = 1/\lambda^2$.
  • The variance of the Laplace distributed random variable  $Y$  is twice as large for the same  $\it \lambda$:   $\sigma^2 = 2/\lambda^2$.


Questions

1

Calculate the differential entropy of the exponential distribution for  $\lambda = 1$.

$h(X) \ = \ $

$\ \rm bit$

2

What is the characteristic   ${\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(X)}$  for the exponential distribution corresponding to the form  $h(X) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm} \rm L}^{\hspace{0.08cm}(X)} \cdot \sigma^2)$ ?

${\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(X)} \ = \ $

3

Calculate the differential entropy of the Laplace distribution for  $\lambda = 1$.

$h(Y) \ = \ $

$\ \rm bit$

4

What is the characteristic  ${\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(Y)} $  for the Laplace distribution corresponding to the form  $h(Y) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm} \rm L}^{\hspace{0.08cm}(Y)} \cdot \sigma^2)$?

${\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(Y)} \ = \ $


Solution

(1)  Although in this exercise the result should be given in  "bit",  we use the natural logarithm for derivation.

  • Then the differential entropy is:
$$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm ln} \hspace{0.1cm} \big [f_X(x)\big] \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$
  • For the exponential distribution,  the integration limits are  $0$  and  $+∞$.  In this range, the PDF  $f_X(x)$  according to the specification sheet is used:
$$h(X) =- \int_{0}^{\infty} \hspace{-0.15cm} \lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} \hspace{0.05cm} \cdot \hspace{0.05cm} \left [ {\rm ln} \hspace{0.1cm} (\lambda) + {\rm ln} \hspace{0.1cm} ({\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x})\right ]\hspace{0.1cm}{\rm d}x - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) \cdot \int_{0}^{\infty} \hspace{-0.15cm} \lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x \hspace{0.1cm} + \hspace{0.1cm} \lambda \cdot \int_{0}^{\infty} \hspace{-0.15cm} \lambda \cdot x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$

We can see:

  • The first integrand is identical to the PDF  $f_X(x)$ considered here.  Thus, the integral over the entire integration domain yields  $1$.
  • The second integral corresponds exactly to the definition of the mean value  $m_1$  (moment of first order).  For the exponential PDF,  $m_1 = 1/λ$ holds.  From this follows:
$$h(X) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + 1 = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} ({\rm e}/\lambda) \hspace{0.05cm}.$$
  • This result is to be given the additional unit  "nat".  Using  $\log_2$  instead of  $\ln$,  we obtain the differential entropy in  "bit":
$$h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} \hspace{0.3cm} h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}) = \frac{{\rm ln} \hspace{0.1cm} ({\rm e})}{{\rm ln} \hspace{0.1cm} (2)} \hspace{0.15cm}\underline{= 1.443\,{\rm bit}} \hspace{0.05cm}.$$


(2)  Considering the equation  $\sigma^2 = 1/\lambda^2$  valid for the exponential distribution, we can transform the result found in  (1)  as follows:

$$h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) = {1}/{2}\cdot {\rm log}_2 \hspace{0.1cm} ({\rm e}^2/\lambda^2) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\rm e}^2 \cdot \sigma^2) \hspace{0.05cm}.$$
  • A comparison with the required basic form  $h(X) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm} \rm L}^{\hspace{0.08cm}(X)} \cdot \sigma^2)$  leads to the result:
$${\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(X)} = {\rm e}^2 \hspace{0.15cm}\underline{\approx 7.39} \hspace{0.05cm}.$$


(3)  For the Laplace distribution, we divide the integration domain into two subdomains:

  • $Y$  negative   ⇒   proportion  $h_{\rm neg}(Y)$,
  • $Y$  positive   ⇒   proportion  $h_{\rm pos}(Y)$.


The total differential entropy, taking into account  $h_{\rm neg}(Y) = h_{\rm pos}(Y)$  is given by

$$h(Y) = h_{\rm neg}(Y) + h_{\rm pos}(Y) = 2 \cdot h_{\rm pos}(Y) $$
$$\Rightarrow \hspace{0.3cm} h(Y) = - 2 \cdot \int_{0}^{\infty} \hspace{-0.15cm} \lambda/2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y} \hspace{0.05cm} \cdot \hspace{0.05cm} \left [ {\rm ln} \hspace{0.1cm} (\lambda/2) + {\rm ln} \hspace{0.1cm} ({\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y})\right ]\hspace{0.1cm}{\rm d}y = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) \cdot \int_{0}^{\infty} \hspace{-0.15cm} \lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y \hspace{0.1cm} + \hspace{0.1cm} \lambda \cdot \int_{0}^{\infty} \hspace{-0.15cm} \lambda \cdot y \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y \hspace{0.05cm}.$$

If we again consider that the first integral gives the value  $1$   (PDF area) and the second integral gives the mean value  $m_1 = 1/\lambda$  we obtain:

$$h(Y) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + 1 = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} (2{\rm e}/\lambda) \hspace{0.05cm}.$$
  • Since the result is required in  "bit",  we still need to replace  "$\ln$"  by  "$\log_2$":
$$h(Y) = {\rm log}_2 \hspace{0.1cm} (2{\rm e}/\lambda) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} \hspace{0.3cm} h(Y) = {\rm log}_2 \hspace{0.1cm} (2{\rm e}) \hspace{0.15cm}\underline{= 2.443\,{\rm bit}} \hspace{0.05cm}.$$


(4)  For the Laplace distribution, the relation  $\sigma^2 = 2/\lambda^2$ holds.  Thus, we obtain:

$$h(X) = {\rm log}_2 \hspace{0.1cm} (\frac{2{\rm e}}{\lambda}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} (\frac{4{\rm e}^2}{\lambda^2}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} (2 {\rm e}^2 \cdot \sigma^2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(Y)} = 2 \cdot {\rm e}^2 \hspace{0.15cm}\underline{\approx 14.78} \hspace{0.05cm}.$$
  • Consequently, the  ${\it \Gamma}_{{\hspace{-0.05cm} \rm L}}$ value is twice as large for the Laplace distribution as for the exponential distribution.
  • Thus, the Laplace PDF is better than the exponential PDF in terms of differential entropy when power-limited signals are assumed.
  • Under the constraint of peak limitation,  both the exponential and Laplace PDF are completely unsuitable, as is the Gaussian PDF.  These all extend to infinity.