Difference between revisions of "Aufgaben:Exercise 4.15Z: Statements of the Covariance Matrix"

From LNTwww
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Verallgemeinerung auf N-dimensionale Zufallsgrößen
+
{{quiz-Header|Buchseite=Generalization to N-Dimensional Random Variables
 
}}
 
}}
  
[[File:P_ID664__Sto_Z_4_15.png|right|Korrelierte Zufallssignale]]
+
[[File:P_ID664__Sto_Z_4_15.png|right|frame|Are the random signals correlated?]]
Gegeben seien die beiden Gaußschen Zufallsgrößen $u$ und $v$, jeweils mittelwertfrei und mit Varianz $\sigma^2 = 1$. Daraus werden durch Linearkombination drei neue Zufallsgrößen gebildet:
+
Let be given the two Gaussian random variables  $u$  and  $v$,  each zero mean and with variance  $\sigma^2 = 1$.  
 +
 
 +
From these,  three new random variables are formed by linear combination:
 
:$$x_1 = A_1 \cdot u + B_1 \cdot v,$$
 
:$$x_1 = A_1 \cdot u + B_1 \cdot v,$$
 
:$$x_2 = A_2 \cdot u + B_2 \cdot v,$$
 
:$$x_2 = A_2 \cdot u + B_2 \cdot v,$$
 
:$$x_3 = A_3 \cdot u + B_3 \cdot v.$$
 
:$$x_3 = A_3 \cdot u + B_3 \cdot v.$$
  
Vorausgesetzt wird, dass in allen betrachteten Fällen $(i = 1, 2, 3)$ gilt:
+
Assuming that in all cases considered  $(i = 1,\ 2,\ 3)$  holds:
:$$A_i^2 + B_i^2 =1.$$
+
:$$A_i^2 + B_i^2 =1.$$
  
In der Grafik sehen Sie drei Signalverläufe $x_1(t)$, $x_2(t)$ und $x_3(t)$ entsprechend dem Parametersatz, der in der Teilaufgabe (3) betrachtet werden soll:
+
The graph shows the signals  $x_1(t)$,  $x_2(t)$  and  $x_3(t)$  for the case to be considered in the subtask  '''(3)''':
 
* $A_1 = B_2 = 1$,
 
* $A_1 = B_2 = 1$,
 
* $A_2 = B_2 = 0$,
 
* $A_2 = B_2 = 0$,
* $A_3 = 0.8, \hspace{0.5cm} B_3 = 0.6$,
+
* $A_3 = 0.8, \ B_3 = 0.6$.
  
  
Der Korrelationskoeffizient $\rho_{ij}$ zwischen den Zufallsgrößen $x_i$ und $x_j$ wird wie folgt angegeben:
+
The correlation coefficient  $\rho_{ij}$  between the random variables  $x_i$  and  $x_j$  is given as follows:
 
:$$\rho_{ij} = \frac{A_i \cdot A_j + B_i \cdot B_j}{\sqrt{(A_i^2 +
 
:$$\rho_{ij} = \frac{A_i \cdot A_j + B_i \cdot B_j}{\sqrt{(A_i^2 +
 
B_i^2)(A_j^2 + B_j^2)}} = A_i \cdot A_j + B_i \cdot B_j.$$
 
B_i^2)(A_j^2 + B_j^2)}} = A_i \cdot A_j + B_i \cdot B_j.$$
  
Unter der hier implizit getroffenen Annahme $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = 1$ lautet die Kovarianzmatrix $\mathbf{K}$, die bei mittelwertfreien Zufallsgrößen identisch mit der Korrelationsmatrix $\mathbf{R}$ ist:
+
Under the assumption implicit here  $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = 1$  the covariance matrix  $\mathbf{K}$  is:
 
:$${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{ccc}
 
:$${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{ccc}
1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\
+
1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\
  \rho_{13} & \rho_{23} & 1
+
  \rho_{13} & \rho_{23} & 1
 
\end{array} \right] .$$
 
\end{array} \right] .$$
  
''Hinweise:''
+
This is identical to the correlation matrix  $\mathbf{R}$  for zero mean random variables.
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen|Verallgemeinerung auf N-dimensionale Zufallsgrößen]].
+
 
*Einige Grundlagen zur Anwendung von Vektoren und Matrizen finden sich auf den Seiten [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Grundlagen_der_Matrizenrechnung:_Determinante_einer_Matrix|Determinante einer Matrix]] sowie [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Grundlagen_der_Matrizenrechnung:_Inverse_einer_Matrix|Inverse einer Matrix]]  
+
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
 
 +
 
 +
 
 +
Hints:  
 +
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables|Generalization to N-Dimensional Random Variables]].
 +
*Some basics on the application of vectors and matrices can be found on the pages   [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Determinant_of_a_matrix|Determinant of a Matrix]]   and   [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Inverse_of_a_matrix|Inverse of a Matrix]] .  
 +
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen sind zutreffend? Begründen Sie Ihre Ergebnisse.
+
{Which of the following statements are true? Give reasons for your findings.
 
|type="[]"}
 
|type="[]"}
- $\mathbf{K}$ kann geeigneter Wahl von $A_1$, ... , $B_3$ eine Diagonalmatrix sein. Oder anders ausgedrückt:  $\rho_{12} = \rho_{13} = \rho_{23} = 0$ ist möglich.
+
- $\mathbf{K}$&nbsp; can be with a suitable choice of &nbsp; $A_1$, ... , $B_3$ &nbsp; a diagonal matrix.&nbsp; Or in other words, &nbsp; $\rho_{12} = \rho_{13} = \rho_{23} = 0$&nbsp; is possible.
+ Bei geeigneter Wahl der Parameter $A_1$, ... , $B_3$ kann genau einer der Korrelationskoeffizienten $\rho_{ij} = 0$ sein.
+
+ With appropriate choice of parameters &nbsp; $A_1$, ... , $B_3$ &nbsp; exactly one of the correlation coefficients can be&nbsp; $\rho_{ij} = 0$.
- Bei geeigneter Wahl der Parameter $A_1$, ... , $B_3$ können genau zwei der Korrelationskoeffizienten $\rho_{ij} = 0$ sein.
+
- With appropriate choice of parameters &nbsp; $A_1$, ... , $B_3$ &nbsp; exactly two of the correlation coefficients can be&nbsp; $\rho_{ij} = 0$.
+ Bei geeigneter Wahl der Parameter $A_1$, ... , $B_3$ können alle drei Korrelationskoeffizienten $\rho_{ij} \ne 0$ sein.
+
+ With appropriate choice of parameters &nbsp; $A_1$, ... , $B_3$&nbsp; all three correlation coefficients&nbsp; $\rho_{ij} \ne 0$.
  
  
{Wie lauten die Matrixelemente von $\mathbf{K}$ mit $A_1 = A_2 = - A_3$ und $B_1 = B_2 = - B_3$?
+
{What are the matrix elements of&nbsp; $\mathbf{K}$&nbsp; with &nbsp; $A_1 = A_2 = - A_3$ &nbsp; and &nbsp; $B_1 = B_2 = - B_3$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\rho_{12} \ =$ { 1 3% }
+
$\rho_{12} \ = \ $ { 1 3% }
$\rho_{13} \ =$ { -1.03--0.97 }
+
$\rho_{13} \ = \ $ { -1.03--0.97 }
$\rho_{23} \ =$ { -1.03--0.97 }
+
$\rho_{23} \ = \ $ { -1.03--0.97 }
  
  
{Berechnen Sie die Koeffizienten $\rho_{ij}$ für den in der Grafik dargestellten Fall, also für $A_1 = 1$, $B_1 = 0$, $A_2 = 0$, $B_2 = 1$, $A_3 = 0.8$, $B_3 = 0.6$.
+
{Calculate the coefficients&nbsp; $\rho_{ij}$&nbsp; for the case shown in the graph: &nbsp; $A_1 = 1$,&nbsp; $B_1 = 0$,&nbsp; $A_2 = 0$,&nbsp; $B_2 = 1$,&nbsp; $A_3 = 0.8$,&nbsp; $B_3 = 0.6$.
 
|type="{}"}
 
|type="{}"}
$\rho_{12} \ = $ { 0. }
+
$\rho_{12} \ = \ $ { 0. }
$\rho_{13} \ = ${ 0.8 3% }
+
$\rho_{13} \ = \ ${ 0.8 3% }
$\rho_{23} \ = $ { 0.6 3% }
+
$\rho_{23} \ = \ $ { 0.6 3% }
 
 
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Die <u>zweite und die letzte Aussage</u> treffen zu. Aussage 2 beschreibt den in der Grafik betrachteten Fall, dass zwei Größen (hier: <i>x</i><sub>1</sub> und <i>x</i><sub>2</sub>) unkorreliert sind, während <i>x</i><sub>3</sub> statistische Bindungen bezüglich <i>x</i><sub>1</sub> (über die Größe <i>u</i>) und auch in Bezug zu <i>x<sub>2</sub></i> (bedingt durch die Zufallsgröße <i>v</i>) aufweist.
+
'''(1)'''&nbsp; Only the&nbsp; <u>second and the last statement</u>&nbsp; are true:
 
+
*Statement 2 describes the case considered in the graph where two quantities&nbsp; $($here: &nbsp; $x_1$&nbsp; and&nbsp; $x_2)$&nbsp; are uncorrelated,&nbsp; while&nbsp; $x_3$&nbsp; has statistical bindings with respect to&nbsp; $x_1$&nbsp; $($about the quantity&nbsp; $u)$&nbsp; and also with respect to&nbsp; $x_2$&nbsp; $($due to the random variable $v)$&nbsp;.
:Die Kombination <i>&rho;</i><sub>12</sub> = <i>&rho;</i><sub>13</sub> = <i>&rho;</i><sub>23</sub> = 0 ist bei der hier gegebenen Struktur dagegen nicht möglich. Dazu würde man eine dritte statistisch unabhängige Zufallsgröße <i>w</i> benötigen und es müsste beispielsweise <i>x</i><sub>1</sub> = <i>u</i>, <i>x</i><sub>2</sub> = <i>&upsilon;</i> und <i>x</i><sub>3</sub> = <i>w</i> gelten.
+
*On the other hand,&nbsp; the combination&nbsp; $\rho_{12} = \rho_{13} = \rho_{23} = 0$ &nbsp; is not possible with the structure given here. &nbsp; For this,&nbsp; one would need a third statistically independent random variable&nbsp; $w$&nbsp; and,&nbsp; for example, &nbsp;$x_1 = k_1 \cdot u$&nbsp;, &nbsp;$x_2 = k_2 \cdot v$&nbsp; and &nbsp;$x_3 = k_3 \cdot w$&nbsp; would have to hold.
 +
*The third statement is not true:&nbsp; If&nbsp; $x_1$&nbsp; and&nbsp; $x_2$&nbsp; are uncorrelated and at the same time also&nbsp; $x_1$&nbsp; and&nbsp; $x_3$,&nbsp; then no statistical bindings can exist between&nbsp; $x_2$&nbsp; and&nbsp; $x_3$.
 +
*In general,&nbsp; however,&nbsp; both&nbsp; $\rho_{12}$&nbsp; and&nbsp; $\rho_{13}$&nbsp; will be different from zero.&nbsp; A very simple example of this is considered in the subtask&nbsp; '''(2)'''&nbsp;.
  
:Die dritte Aussage ist ebenfalls nicht zutreffend: Sind <i>x</i><sub>1</sub> und <i>x</i><sub>2</sub> unkorreliert und gleichzeitig auch <i>x</i><sub>1</sub> und <i>x</i><sub>3</sub>, so können auch zwischen <i>x</i><sub>2</sub> und <i>x</i><sub>3</sub> keine statistischen Bindungen bestehen.
 
  
:Im Allgemeinen werden allerdings sowohl <i>&rho;</i><sub>12</sub> als auch <i>&rho;</i><sub>13</sub> und <i>&rho;</i><sub>23</sub> von 0 verschieden sein. Ein ganz einfaches Beispiel hierfür wird in der Teilaufgabe 2) betrachtet.
 
  
:<b>2.</b>&nbsp;&nbsp;In diesem Fall sind die Größen <i>x</i><sub>1</sub> = <i>x</i><sub>2</sub> vollständig (zu 100%) korreliert. Mit <i>A</i><sub>2</sub> = <i>A</i><sub>1</sub> und <i>B</i><sub>2</sub> = <i>B</i><sub>1</sub> erhält man für den gemeinsamen Korrelationskoeffizienten:
+
'''(2)'''&nbsp; In this case,&nbsp; the quantities &nbsp;$x_1 = x_2$&nbsp; are completely&nbsp; $($to&nbsp; $100\%)$&nbsp; correlated.  
:$$\rho_{12} = A_1 \cdot A_2 + B_1 \cdot B_2 = A_1^2 + B_1^2 \hspace{0.15cm}\underline{=1}.$$
+
*With&nbsp; $A_2 = A_1$&nbsp; and&nbsp; $B_2 = B_1$&nbsp; we obtain for the joint correlation coefficient:
 +
:$$\rho_{12} = A_1 \cdot A_2 + B_1 \cdot B_2 = A_1^2 + B_1^2 \hspace{0.15cm}\underline{=1}.$$
  
:In gleicher Weise gilt mit <i>A</i><sub>3</sub> = &ndash;<i>A</i><sub>1</sub> und <i>B</i><sub>3</sub> = &ndash;<i>B</i><sub>1</sub>:
+
*In the same way,&nbsp; with&nbsp; $A_3 = -A_1$&nbsp; and &nbsp;$B_3 = -B_1$:
:$$\rho_{13} = A_1 \cdot A_3 + B_1 \cdot B_3 = -(A_1^2 + B_1^2) \hspace{0.15cm}\underline{=-1
+
:$$\rho_{13} = A_1 \cdot A_3 + B_1 \cdot B_3 = -(A_1^2 + B_1^2) \hspace{0.15cm}\underline{=-1
 
\hspace{0.1cm}(= \rho_{23})}.$$
 
\hspace{0.1cm}(= \rho_{23})}.$$
  
:<b>3.</b>&nbsp;&nbsp;Mit diesem Parametersatz ist <i>x</i><sub>1</sub> identisch mit der Zufallsgröße <i>u</i>, während <i>x</i><sub>2</sub> = <i>&upsilon;</i> gilt. Da <i>u</i> und <i>&upsilon;</i> statistisch voneinander unabhängig sind, ergibt sich <u><i>&rho;</i><sub>12</sub> = 0</u>. Demgegenüber gilt für die beiden weiteren Korrelationskoeffizienten:
 
:$$\rho_{13} =  A_1 \cdot A_3 + B_1 \cdot B_3 = 1 \cdot 0.8 + 0 \cdot
 
0.6 \hspace{0.15cm}\underline{ = 0.8}.$$
 
  
:Für ein (sehr gut) geschultes Auge ist aus der Grafik auf der Angabenseite zu erkennen, dass das Signal <i>x</i><sub>3</sub>(t) mehr Ähnlichkeiten mit <i>x</i><sub>1</sub>(t) aufweist als mit <i>x</i><sub>2</sub>(t). Diese Tatsache drücken auch die berechneten Korrelationskoeffizienten aus.
+
'''(3)'''&nbsp; With this parameter set,&nbsp; $x_1$&nbsp; is identical to the random variable&nbsp; $u$,&nbsp; while&nbsp; $x_2 = v$&nbsp; holds.
 +
*Since&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are statistically independent of each other,&nbsp; we get&nbsp; $\rho_{12} \hspace{0.15cm}\underline{ = 0}.$
 +
*In contrast,&nbsp; for the other two correlation coefficients:
 +
:$$\rho_{13} = A_1 \cdot A_3 + B_1 \cdot B_3 = 1 \cdot 0.8 + 0 \cdot
 +
0.6 \hspace{0.15cm}\underline{ = 0.8},$$
 +
:$$\rho_{23} = A_2 \cdot A_3 + B_2 \cdot B_3 = 0 \cdot 0.8 + 1 \cdot
 +
0.6 \hspace{0.15cm}\underline{ = 0.6}.$$
 +
*For a&nbsp; (very well)&nbsp; trained eye,&nbsp; it can be seen from the graph on the information page that the signal&nbsp; $x_3(t)$&nbsp; has more similarities with&nbsp; $x_1(t)$&nbsp; than with&nbsp; $x_2(t)$.
 +
*This fact is also expressed by the calculated correlation coefficients.  
 +
*Don't be frustrated,&nbsp; however,&nbsp; if you don't recognize the different correlation in the signal courses.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 90: Line 104:
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.7 N-dimensionale Zufallsgrößen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.7 N-dimensionale Zufallsgrößen^]]

Latest revision as of 13:46, 29 March 2022

Are the random signals correlated?

Let be given the two Gaussian random variables  $u$  and  $v$,  each zero mean and with variance  $\sigma^2 = 1$.

From these,  three new random variables are formed by linear combination:

$$x_1 = A_1 \cdot u + B_1 \cdot v,$$
$$x_2 = A_2 \cdot u + B_2 \cdot v,$$
$$x_3 = A_3 \cdot u + B_3 \cdot v.$$

Assuming that in all cases considered  $(i = 1,\ 2,\ 3)$  holds:

$$A_i^2 + B_i^2 =1.$$

The graph shows the signals  $x_1(t)$,  $x_2(t)$  and  $x_3(t)$  for the case to be considered in the subtask  (3):

  • $A_1 = B_2 = 1$,
  • $A_2 = B_2 = 0$,
  • $A_3 = 0.8, \ B_3 = 0.6$.


The correlation coefficient  $\rho_{ij}$  between the random variables  $x_i$  and  $x_j$  is given as follows:

$$\rho_{ij} = \frac{A_i \cdot A_j + B_i \cdot B_j}{\sqrt{(A_i^2 + B_i^2)(A_j^2 + B_j^2)}} = A_i \cdot A_j + B_i \cdot B_j.$$

Under the assumption implicit here  $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = 1$  the covariance matrix  $\mathbf{K}$  is:

$${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{ccc} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{array} \right] .$$

This is identical to the correlation matrix  $\mathbf{R}$  for zero mean random variables.



Hints:



Questions

1

Which of the following statements are true? Give reasons for your findings.

$\mathbf{K}$  can be with a suitable choice of   $A_1$, ... , $B_3$   a diagonal matrix.  Or in other words,   $\rho_{12} = \rho_{13} = \rho_{23} = 0$  is possible.
With appropriate choice of parameters   $A_1$, ... , $B_3$   exactly one of the correlation coefficients can be  $\rho_{ij} = 0$.
With appropriate choice of parameters   $A_1$, ... , $B_3$   exactly two of the correlation coefficients can be  $\rho_{ij} = 0$.
With appropriate choice of parameters   $A_1$, ... , $B_3$  all three correlation coefficients  $\rho_{ij} \ne 0$.

2

What are the matrix elements of  $\mathbf{K}$  with   $A_1 = A_2 = - A_3$   and   $B_1 = B_2 = - B_3$ ?

$\rho_{12} \ = \ $

$\rho_{13} \ = \ $

$\rho_{23} \ = \ $

3

Calculate the coefficients  $\rho_{ij}$  for the case shown in the graph:   $A_1 = 1$,  $B_1 = 0$,  $A_2 = 0$,  $B_2 = 1$,  $A_3 = 0.8$,  $B_3 = 0.6$.

$\rho_{12} \ = \ $

$\rho_{13} \ = \ $

$\rho_{23} \ = \ $


Solution

(1)  Only the  second and the last statement  are true:

  • Statement 2 describes the case considered in the graph where two quantities  $($here:   $x_1$  and  $x_2)$  are uncorrelated,  while  $x_3$  has statistical bindings with respect to  $x_1$  $($about the quantity  $u)$  and also with respect to  $x_2$  $($due to the random variable $v)$ .
  • On the other hand,  the combination  $\rho_{12} = \rho_{13} = \rho_{23} = 0$   is not possible with the structure given here.   For this,  one would need a third statistically independent random variable  $w$  and,  for example,  $x_1 = k_1 \cdot u$ ,  $x_2 = k_2 \cdot v$  and  $x_3 = k_3 \cdot w$  would have to hold.
  • The third statement is not true:  If  $x_1$  and  $x_2$  are uncorrelated and at the same time also  $x_1$  and  $x_3$,  then no statistical bindings can exist between  $x_2$  and  $x_3$.
  • In general,  however,  both  $\rho_{12}$  and  $\rho_{13}$  will be different from zero.  A very simple example of this is considered in the subtask  (2) .


(2)  In this case,  the quantities  $x_1 = x_2$  are completely  $($to  $100\%)$  correlated.

  • With  $A_2 = A_1$  and  $B_2 = B_1$  we obtain for the joint correlation coefficient:
$$\rho_{12} = A_1 \cdot A_2 + B_1 \cdot B_2 = A_1^2 + B_1^2 \hspace{0.15cm}\underline{=1}.$$
  • In the same way,  with  $A_3 = -A_1$  and  $B_3 = -B_1$:
$$\rho_{13} = A_1 \cdot A_3 + B_1 \cdot B_3 = -(A_1^2 + B_1^2) \hspace{0.15cm}\underline{=-1 \hspace{0.1cm}(= \rho_{23})}.$$


(3)  With this parameter set,  $x_1$  is identical to the random variable  $u$,  while  $x_2 = v$  holds.

  • Since  $u$  and  $v$  are statistically independent of each other,  we get  $\rho_{12} \hspace{0.15cm}\underline{ = 0}.$
  • In contrast,  for the other two correlation coefficients:
$$\rho_{13} = A_1 \cdot A_3 + B_1 \cdot B_3 = 1 \cdot 0.8 + 0 \cdot 0.6 \hspace{0.15cm}\underline{ = 0.8},$$
$$\rho_{23} = A_2 \cdot A_3 + B_2 \cdot B_3 = 0 \cdot 0.8 + 1 \cdot 0.6 \hspace{0.15cm}\underline{ = 0.6}.$$
  • For a  (very well)  trained eye,  it can be seen from the graph on the information page that the signal  $x_3(t)$  has more similarities with  $x_1(t)$  than with  $x_2(t)$.
  • This fact is also expressed by the calculated correlation coefficients.
  • Don't be frustrated,  however,  if you don't recognize the different correlation in the signal courses.