Difference between revisions of "Aufgaben:Exercise 1.6: Root Nyquist System"

From LNTwww
 
(23 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/1.4 Optimierung der Basisbandsysteme
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems
 +
}}
  
  
[[File:|right|]]
+
[[File:P_ID1292__Dig_A_1_6.png|right|frame|Cosine spectrum (transmitter & receiver)]]
 +
The diagram on the right shows
 +
*the spectrum  $G_{s}(f)$  of the basic transmission pulse,
 +
*the frequency response  $H_{\rm E}(f)$  of the receiver filter
  
  
===Fragebogen===
+
of a binary and bipolar transmission system, which are identical in shape to each other:
 +
:$$G_s(f)  =   \left\{ \begin{array}{c} A \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right)  \\
 +
\\ 0 \\  \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm{for}}\\  \\  \\ \end{array}
 +
\begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\  {\rm else }\hspace{0.05cm}, \\
 +
\end{array}$$
 +
:$$H_{\rm E }(f)  =   \left\{ \begin{array}{c} 1 \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right)  \\
 +
\\ 0 \\  \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm{for}}\\  \\  \\ \end{array}
 +
\begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\  {\rm else }\hspace{0.05cm}. \\
 +
\end{array}$$
 +
In the whole exercise  $A = 10^{–6} \ \rm V/Hz$  and  $f_{2} = 1 \ \rm MHz$ are valid.
 +
 
 +
*Assuming that the bit rate  $R = 1/T$  is chosen correctly,  the basic transmitter pulse  $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$  satisfies the first Nyquist criterion.
 +
*For the associated spectral function  $G_{d}(f)$,  the rolloff thereby occurs cosinusoidally similar to a cosine rolloff spectrum.
 +
*The rolloff factor  $r$  is to be determined in this exercise.
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems|"Optimization of Baseband Transmission Systems"]].
 +
 +
*Numerical values of the Q-function are provided,  for example,  by the interactive HTML5/JS applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].
 +
 
 +
*The crest factor is the quotient of the maximum and the rms value of the transmitted signal and thus a measure of the intersymbol interfering at the transmitting end:
 +
:$$C_{\rm S} =  \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}=  {s_0}/{s_{\rm eff}}.$$
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Calculate the Nyquist spectrum &nbsp;$G_{d}(f)$.&nbsp; What is the Nyquist frequency and the rolloff factor?
 +
|type="{}"}
 +
$f_{\rm Nyq} \ = \ ${ 0.5 3% } $\ \rm MHz$
 +
$r \ = \ ${ 1 3% }
 +
 
 +
{What is the bit rate of the Nyquist system at hand?
 +
|type="{}"}
 +
$R \ = \ $ { 1 3% } $\ \rm Mbit/s$
 +
 
 +
{Why is it an optimal system under the constraint&nbsp; "power limitation"?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+The overall system satisfies the Nyquist condition.
+ Richtig
+
-The crest factor is &nbsp;$C_{\rm S} = 1$.
 +
+The receiver filter &nbsp;$H_{\rm E}(f)$&nbsp; is matched to the basic transmission pulse &nbsp;$G_{s}(f)$.&nbsp;
  
 
+
{What is the bit error probability if the power density of the AWGN noise is &nbsp;$N_{0} = 8 \cdot 10^{–8}\ \rm V^{2}/Hz$&nbsp; $($referenced to &nbsp;$1 Ω)$?&nbsp;
{Input-Box Frage
 
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$p_{\rm B} \ = \ ${ 0.287 3% } $\ \cdot 10^{-6}$
  
  
Line 23: Line 65:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; With the functions&nbsp; $G_{s}(f)$&nbsp; and&nbsp; $H_{\rm E}(f)$,&nbsp; the spectrum of the basic detection pulse for&nbsp; $|f| \leq f_{2}$:
'''(2)'''&nbsp;
+
:$$G_d(f)  =  G_s(f) \cdot H_{\rm E}(f) = A \cdot \cos^2 \left( \frac {\pi \cdot f}{2 \cdot f_2} \right).$$
'''(3)'''&nbsp;
+
*According to the general definition of the cosine rolloff spectrum,&nbsp; the corner frequencies are&nbsp; $f_{1} = 0$&nbsp; and&nbsp; $f_{2} = 1\ \rm MHz$.
'''(4)'''&nbsp;
+
* From this follows for the Nyquist frequency&nbsp; (symmetry point with respect to the rolloff):
'''(5)'''&nbsp;
+
:$$f_{\rm Nyq} =  \frac{f_1 +f_2 }
'''(6)'''&nbsp;
+
{2 } \hspace{0.1cm}\underline { = 0.5\,{\rm MHz}}\hspace{0.05cm}.$$
 +
*The rolloff factor is
 +
:$$r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.1cm}\underline {= 1} \hspace{0.05cm}.$$
 +
*This means: &nbsp; $G_{d}(f)$ describes a $\cos^{2}$ spectrum.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The relationship between Nyquist frequency and symbol duration&nbsp; $T$&nbsp; is&nbsp; $f_{\rm Nyq} = 1/(2T)$.
 +
*From this it follows for the bit rate&nbsp; $R = 1/T = 2 \cdot f_{\rm Nyq}\ \underline{= 1 \ \rm Mbit/s}$.
 +
*Note the different units for frequency and bit rate.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The&nbsp; <u>first and third solutions</u>&nbsp; are correct:
 +
*This is an optimal binary system under the constraint of power limitation.
 +
*The crest factor is not important under power limitation.&nbsp; With the conditions given here,&nbsp; $C_{\rm S} > 1$ would apply.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The bit error probability of an optimal system can be calculated as follows:
 +
:$$p_{\rm B} =  {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
 +
*In the given example,&nbsp; we obtain for the average energy per bit:
 +
:$$E_{\rm B}  = \
 +
\int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f  =
 +
A^2 \cdot \int_{-1/T}^{+1/T} H_{\rm Nyq}(f) \,{\rm d} f
 +
  = \ \frac {A^2}{T} = \frac {(10^{-6}\,{\rm V/Hz})^2}{10^{-6}\,{\rm s}} = 10^{-6}\,{\rm V^2s}\hspace{0.05cm}.$$
 +
*With&nbsp; $N_{0} = 8 \cdot 10^{–8} \ \rm V^{2}/Hz$,&nbsp; this further gives:
 +
:$$p_{\rm B} =  {\rm Q} \left( \sqrt{\frac{2 \cdot 10^{-6}\,{\rm V^2s}}{8 \cdot 10^{-8}\,{\rm
 +
V^2/Hz}}}\right)=
 +
  {\rm Q} \left( \sqrt{25}\right)= {\rm Q} (5) \hspace{0.1cm}\underline {= 0.287 \cdot 10^{-6}}\hspace{0.05cm}.$$
 +
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 36: Line 108:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.4 Optimierung der Basisbandsysteme^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.4 Optimization of Baseband Systems^]]

Latest revision as of 16:51, 13 March 2023


Cosine spectrum (transmitter & receiver)

The diagram on the right shows

  • the spectrum  $G_{s}(f)$  of the basic transmission pulse,
  • the frequency response  $H_{\rm E}(f)$  of the receiver filter


of a binary and bipolar transmission system, which are identical in shape to each other:

$$G_s(f) = \left\{ \begin{array}{c} A \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ \\ \\ \end{array} \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm else }\hspace{0.05cm}, \\ \end{array}$$
$$H_{\rm E }(f) = \left\{ \begin{array}{c} 1 \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ \\ \\ \end{array} \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm else }\hspace{0.05cm}. \\ \end{array}$$

In the whole exercise  $A = 10^{–6} \ \rm V/Hz$  and  $f_{2} = 1 \ \rm MHz$ are valid.

  • Assuming that the bit rate  $R = 1/T$  is chosen correctly,  the basic transmitter pulse  $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$  satisfies the first Nyquist criterion.
  • For the associated spectral function  $G_{d}(f)$,  the rolloff thereby occurs cosinusoidally similar to a cosine rolloff spectrum.
  • The rolloff factor  $r$  is to be determined in this exercise.



Notes:

  • The crest factor is the quotient of the maximum and the rms value of the transmitted signal and thus a measure of the intersymbol interfering at the transmitting end:
$$C_{\rm S} = \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}= {s_0}/{s_{\rm eff}}.$$


Questions

1

Calculate the Nyquist spectrum  $G_{d}(f)$.  What is the Nyquist frequency and the rolloff factor?

$f_{\rm Nyq} \ = \ $

$\ \rm MHz$
$r \ = \ $

2

What is the bit rate of the Nyquist system at hand?

$R \ = \ $

$\ \rm Mbit/s$

3

Why is it an optimal system under the constraint  "power limitation"?

The overall system satisfies the Nyquist condition.
The crest factor is  $C_{\rm S} = 1$.
The receiver filter  $H_{\rm E}(f)$  is matched to the basic transmission pulse  $G_{s}(f)$. 

4

What is the bit error probability if the power density of the AWGN noise is  $N_{0} = 8 \cdot 10^{–8}\ \rm V^{2}/Hz$  $($referenced to  $1 Ω)$? 

$p_{\rm B} \ = \ $

$\ \cdot 10^{-6}$


Solution

(1)  With the functions  $G_{s}(f)$  and  $H_{\rm E}(f)$,  the spectrum of the basic detection pulse for  $|f| \leq f_{2}$:

$$G_d(f) = G_s(f) \cdot H_{\rm E}(f) = A \cdot \cos^2 \left( \frac {\pi \cdot f}{2 \cdot f_2} \right).$$
  • According to the general definition of the cosine rolloff spectrum,  the corner frequencies are  $f_{1} = 0$  and  $f_{2} = 1\ \rm MHz$.
  • From this follows for the Nyquist frequency  (symmetry point with respect to the rolloff):
$$f_{\rm Nyq} = \frac{f_1 +f_2 } {2 } \hspace{0.1cm}\underline { = 0.5\,{\rm MHz}}\hspace{0.05cm}.$$
  • The rolloff factor is
$$r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.1cm}\underline {= 1} \hspace{0.05cm}.$$
  • This means:   $G_{d}(f)$ describes a $\cos^{2}$ spectrum.


(2)  The relationship between Nyquist frequency and symbol duration  $T$  is  $f_{\rm Nyq} = 1/(2T)$.

  • From this it follows for the bit rate  $R = 1/T = 2 \cdot f_{\rm Nyq}\ \underline{= 1 \ \rm Mbit/s}$.
  • Note the different units for frequency and bit rate.


(3)  The  first and third solutions  are correct:

  • This is an optimal binary system under the constraint of power limitation.
  • The crest factor is not important under power limitation.  With the conditions given here,  $C_{\rm S} > 1$ would apply.


(4)  The bit error probability of an optimal system can be calculated as follows:

$$p_{\rm B} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
  • In the given example,  we obtain for the average energy per bit:
$$E_{\rm B} = \ \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = A^2 \cdot \int_{-1/T}^{+1/T} H_{\rm Nyq}(f) \,{\rm d} f = \ \frac {A^2}{T} = \frac {(10^{-6}\,{\rm V/Hz})^2}{10^{-6}\,{\rm s}} = 10^{-6}\,{\rm V^2s}\hspace{0.05cm}.$$
  • With  $N_{0} = 8 \cdot 10^{–8} \ \rm V^{2}/Hz$,  this further gives:
$$p_{\rm B} = {\rm Q} \left( \sqrt{\frac{2 \cdot 10^{-6}\,{\rm V^2s}}{8 \cdot 10^{-8}\,{\rm V^2/Hz}}}\right)= {\rm Q} \left( \sqrt{25}\right)= {\rm Q} (5) \hspace{0.1cm}\underline {= 0.287 \cdot 10^{-6}}\hspace{0.05cm}.$$