Difference between revisions of "Aufgaben:Exercise 1.6: Root Nyquist System"
From LNTwww
(23 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems |
+ | }} | ||
− | [[File:|right|]] | + | [[File:P_ID1292__Dig_A_1_6.png|right|frame|Cosine spectrum (transmitter & receiver)]] |
+ | The diagram on the right shows | ||
+ | *the spectrum $G_{s}(f)$ of the basic transmission pulse, | ||
+ | *the frequency response $H_{\rm E}(f)$ of the receiver filter | ||
− | === | + | of a binary and bipolar transmission system, which are identical in shape to each other: |
+ | :$$G_s(f) = \left\{ \begin{array}{c} A \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ | ||
+ | \\ 0 \\ \end{array} \right.\quad | ||
+ | \begin{array}{*{1}c} {\rm{for}}\\ \\ \\ \end{array} | ||
+ | \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm else }\hspace{0.05cm}, \\ | ||
+ | \end{array}$$ | ||
+ | :$$H_{\rm E }(f) = \left\{ \begin{array}{c} 1 \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ | ||
+ | \\ 0 \\ \end{array} \right.\quad | ||
+ | \begin{array}{*{1}c} {\rm{for}}\\ \\ \\ \end{array} | ||
+ | \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm else }\hspace{0.05cm}. \\ | ||
+ | \end{array}$$ | ||
+ | In the whole exercise $A = 10^{–6} \ \rm V/Hz$ and $f_{2} = 1 \ \rm MHz$ are valid. | ||
+ | |||
+ | *Assuming that the bit rate $R = 1/T$ is chosen correctly, the basic transmitter pulse $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$ satisfies the first Nyquist criterion. | ||
+ | *For the associated spectral function $G_{d}(f)$, the rolloff thereby occurs cosinusoidally similar to a cosine rolloff spectrum. | ||
+ | *The rolloff factor $r$ is to be determined in this exercise. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Notes: | ||
+ | *The exercise belongs to the chapter [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems|"Optimization of Baseband Transmission Systems"]]. | ||
+ | |||
+ | *Numerical values of the Q-function are provided, for example, by the interactive HTML5/JS applet [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]]. | ||
+ | |||
+ | *The crest factor is the quotient of the maximum and the rms value of the transmitted signal and thus a measure of the intersymbol interfering at the transmitting end: | ||
+ | :$$C_{\rm S} = \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}= {s_0}/{s_{\rm eff}}.$$ | ||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Calculate the Nyquist spectrum $G_{d}(f)$. What is the Nyquist frequency and the rolloff factor? |
+ | |type="{}"} | ||
+ | $f_{\rm Nyq} \ = \ ${ 0.5 3% } $\ \rm MHz$ | ||
+ | $r \ = \ ${ 1 3% } | ||
+ | |||
+ | {What is the bit rate of the Nyquist system at hand? | ||
+ | |type="{}"} | ||
+ | $R \ = \ $ { 1 3% } $\ \rm Mbit/s$ | ||
+ | |||
+ | {Why is it an optimal system under the constraint "power limitation"? | ||
|type="[]"} | |type="[]"} | ||
− | - | + | +The overall system satisfies the Nyquist condition. |
− | + | + | -The crest factor is $C_{\rm S} = 1$. |
+ | +The receiver filter $H_{\rm E}(f)$ is matched to the basic transmission pulse $G_{s}(f)$. | ||
− | + | {What is the bit error probability if the power density of the AWGN noise is $N_{0} = 8 \cdot 10^{–8}\ \rm V^{2}/Hz$ $($referenced to $1 Ω)$? | |
− | { | ||
|type="{}"} | |type="{}"} | ||
− | $\ | + | $p_{\rm B} \ = \ ${ 0.287 3% } $\ \cdot 10^{-6}$ |
Line 23: | Line 65: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' With the functions $G_{s}(f)$ and $H_{\rm E}(f)$, the spectrum of the basic detection pulse for $|f| \leq f_{2}$: |
− | '''(2)''' | + | :$$G_d(f) = G_s(f) \cdot H_{\rm E}(f) = A \cdot \cos^2 \left( \frac {\pi \cdot f}{2 \cdot f_2} \right).$$ |
− | '''(3)''' | + | *According to the general definition of the cosine rolloff spectrum, the corner frequencies are $f_{1} = 0$ and $f_{2} = 1\ \rm MHz$. |
− | '''(4)''' | + | * From this follows for the Nyquist frequency (symmetry point with respect to the rolloff): |
− | + | :$$f_{\rm Nyq} = \frac{f_1 +f_2 } | |
− | + | {2 } \hspace{0.1cm}\underline { = 0.5\,{\rm MHz}}\hspace{0.05cm}.$$ | |
+ | *The rolloff factor is | ||
+ | :$$r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.1cm}\underline {= 1} \hspace{0.05cm}.$$ | ||
+ | *This means: $G_{d}(f)$ describes a $\cos^{2}$ spectrum. | ||
+ | |||
+ | |||
+ | |||
+ | '''(2)''' The relationship between Nyquist frequency and symbol duration $T$ is $f_{\rm Nyq} = 1/(2T)$. | ||
+ | *From this it follows for the bit rate $R = 1/T = 2 \cdot f_{\rm Nyq}\ \underline{= 1 \ \rm Mbit/s}$. | ||
+ | *Note the different units for frequency and bit rate. | ||
+ | |||
+ | |||
+ | |||
+ | '''(3)''' The <u>first and third solutions</u> are correct: | ||
+ | *This is an optimal binary system under the constraint of power limitation. | ||
+ | *The crest factor is not important under power limitation. With the conditions given here, $C_{\rm S} > 1$ would apply. | ||
+ | |||
+ | |||
+ | |||
+ | '''(4)''' The bit error probability of an optimal system can be calculated as follows: | ||
+ | :$$p_{\rm B} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$ | ||
+ | *In the given example, we obtain for the average energy per bit: | ||
+ | :$$E_{\rm B} = \ | ||
+ | \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = | ||
+ | A^2 \cdot \int_{-1/T}^{+1/T} H_{\rm Nyq}(f) \,{\rm d} f | ||
+ | = \ \frac {A^2}{T} = \frac {(10^{-6}\,{\rm V/Hz})^2}{10^{-6}\,{\rm s}} = 10^{-6}\,{\rm V^2s}\hspace{0.05cm}.$$ | ||
+ | *With $N_{0} = 8 \cdot 10^{–8} \ \rm V^{2}/Hz$, this further gives: | ||
+ | :$$p_{\rm B} = {\rm Q} \left( \sqrt{\frac{2 \cdot 10^{-6}\,{\rm V^2s}}{8 \cdot 10^{-8}\,{\rm | ||
+ | V^2/Hz}}}\right)= | ||
+ | {\rm Q} \left( \sqrt{25}\right)= {\rm Q} (5) \hspace{0.1cm}\underline {= 0.287 \cdot 10^{-6}}\hspace{0.05cm}.$$ | ||
+ | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 36: | Line 108: | ||
− | [[Category: | + | [[Category:Digital Signal Transmission: Exercises|^1.4 Optimization of Baseband Systems^]] |
Latest revision as of 16:51, 13 March 2023
The diagram on the right shows
- the spectrum $G_{s}(f)$ of the basic transmission pulse,
- the frequency response $H_{\rm E}(f)$ of the receiver filter
of a binary and bipolar transmission system, which are identical in shape to each other:
- $$G_s(f) = \left\{ \begin{array}{c} A \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ \\ \\ \end{array} \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm else }\hspace{0.05cm}, \\ \end{array}$$
- $$H_{\rm E }(f) = \left\{ \begin{array}{c} 1 \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ \\ \\ \end{array} \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm else }\hspace{0.05cm}. \\ \end{array}$$
In the whole exercise $A = 10^{–6} \ \rm V/Hz$ and $f_{2} = 1 \ \rm MHz$ are valid.
- Assuming that the bit rate $R = 1/T$ is chosen correctly, the basic transmitter pulse $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$ satisfies the first Nyquist criterion.
- For the associated spectral function $G_{d}(f)$, the rolloff thereby occurs cosinusoidally similar to a cosine rolloff spectrum.
- The rolloff factor $r$ is to be determined in this exercise.
Notes:
- The exercise belongs to the chapter "Optimization of Baseband Transmission Systems".
- Numerical values of the Q-function are provided, for example, by the interactive HTML5/JS applet "Complementary Gaussian Error Functions".
- The crest factor is the quotient of the maximum and the rms value of the transmitted signal and thus a measure of the intersymbol interfering at the transmitting end:
- $$C_{\rm S} = \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}= {s_0}/{s_{\rm eff}}.$$
Questions
Solution
(1) With the functions $G_{s}(f)$ and $H_{\rm E}(f)$, the spectrum of the basic detection pulse for $|f| \leq f_{2}$:
- $$G_d(f) = G_s(f) \cdot H_{\rm E}(f) = A \cdot \cos^2 \left( \frac {\pi \cdot f}{2 \cdot f_2} \right).$$
- According to the general definition of the cosine rolloff spectrum, the corner frequencies are $f_{1} = 0$ and $f_{2} = 1\ \rm MHz$.
- From this follows for the Nyquist frequency (symmetry point with respect to the rolloff):
- $$f_{\rm Nyq} = \frac{f_1 +f_2 } {2 } \hspace{0.1cm}\underline { = 0.5\,{\rm MHz}}\hspace{0.05cm}.$$
- The rolloff factor is
- $$r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.1cm}\underline {= 1} \hspace{0.05cm}.$$
- This means: $G_{d}(f)$ describes a $\cos^{2}$ spectrum.
(2) The relationship between Nyquist frequency and symbol duration $T$ is $f_{\rm Nyq} = 1/(2T)$.
- From this it follows for the bit rate $R = 1/T = 2 \cdot f_{\rm Nyq}\ \underline{= 1 \ \rm Mbit/s}$.
- Note the different units for frequency and bit rate.
(3) The first and third solutions are correct:
- This is an optimal binary system under the constraint of power limitation.
- The crest factor is not important under power limitation. With the conditions given here, $C_{\rm S} > 1$ would apply.
(4) The bit error probability of an optimal system can be calculated as follows:
- $$p_{\rm B} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
- In the given example, we obtain for the average energy per bit:
- $$E_{\rm B} = \ \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = A^2 \cdot \int_{-1/T}^{+1/T} H_{\rm Nyq}(f) \,{\rm d} f = \ \frac {A^2}{T} = \frac {(10^{-6}\,{\rm V/Hz})^2}{10^{-6}\,{\rm s}} = 10^{-6}\,{\rm V^2s}\hspace{0.05cm}.$$
- With $N_{0} = 8 \cdot 10^{–8} \ \rm V^{2}/Hz$, this further gives:
- $$p_{\rm B} = {\rm Q} \left( \sqrt{\frac{2 \cdot 10^{-6}\,{\rm V^2s}}{8 \cdot 10^{-8}\,{\rm V^2/Hz}}}\right)= {\rm Q} \left( \sqrt{25}\right)= {\rm Q} (5) \hspace{0.1cm}\underline {= 0.287 \cdot 10^{-6}}\hspace{0.05cm}.$$