Difference between revisions of "Aufgaben:Exercise 3.10Z: Amplitude and Angle Modulation in Comparison"

From LNTwww
m
 
(25 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Rauscheinfluss bei Winkelmodulation
+
{{quiz-Header|Buchseite=Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation
 
}}
 
}}
  
[[File:P_ID1112__Mod_Z_3_9.png|right|]]
+
[[File:P_ID1112__Mod_Z_3_9.png|right|frame|Characteristic curves illustrating the noise behavior for  $\rm AM$  and  $\rm WM$]]
Betrachtet wird die Übertragung eines Cosinussignals mit Amplitudenmodulation und Winkelmodulation. Es gelten folgende Randbedingungen:
+
Consider the transmission of a cosine signal with amplitude modulation   $\rm (AM)$  and angle modulation $\rm (WM)$. The following boundary conditions apply::
:* Nachrichtenfrequenz $f_N = 10 kHz$,
+
* Message frequency  $f_{\rm N} = 10 \ \rm kHz$,
:* Sendeleistung $P_S = 100 kW$,
+
* Transmission power  $P_{\rm S} = 100 \ \rm kW$,
:* Kanaldämpfungsfaktor $20 · lg α_K = –120 dB$,
+
* Channel transmission factor  $20 · \lg α_{\rm K} = -120  \ \rm dB$,
:* Rauschleistungsdichte $N_0 = 10^{–16} W/Hz$.
+
* noise power density  $N_0 = 10^{–16} \ \rm  W/Hz$.
  
Diese Systemparameter werden zweckmäßigerweise zur gemeinsamen Leistungskenngröße
+
 
 +
These system parameters are conveniently combined to form the performance parameter:
 
$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$
 
$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$
zusammengefasst. Die Grafik zeigt den sich ergebenden Sinken–Störabstand $10 · lg ρ_υ$ in Abhängigkeit der logarithmierten Leistungskenngröße $ξ$.
+
The graph shows the resulting sink-to-noise ratio  $10 · \lg ρ_v$  as a function of the logarithmized performance parameter   $ξ$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Influence_of_Noise_on_Systems_with_Angle_Modulation#System_comparison_of_AM.2C_PM_and_FM_with_respect_to_noise]].
 +
*Reference is also made to the page   [[Modulation_Methods/Synchronous_Demodulation#Sink_SNR_and_the_performance_parameter|Sink SNR and the performance parameter]]  and the chapter  [[Modulation_Methods/Frequency_Modulation_(FM)|Frequency Modulation]].
 +
 +
*The following relationships hold:
 +
:$$\rho_{v } = \left\{ \begin{array}{c} \xi \\ {\eta^2}/2 \cdot\xi \\ 3{\eta^2}/2 \cdot\xi \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}l} {\rm DSB/SSB-AM \hspace{0.15cm}without \hspace{0.15cm}carrier} \hspace{0.05cm}, \\ {\rm PM \hspace{0.15cm}with \hspace{0.15cm}modulation\hspace{0.15cm}depth \hspace{0.15cm} \eta } \hspace{0.05cm}, \\ {\rm FM \hspace{0.15cm}with \hspace{0.15cm}modulation\hspace{0.15cm}depth \hspace{0.15cm} \eta }\hspace{0.05cm}. \\ \end{array}$$
 +
* The bandwidths &nbsp;$B_{\rm K}$&nbsp; for angle modulation shall be selected according to the "Carson rule" to guarantee a distortion factor of &nbsp;$K < 1\%$&nbsp;:
 +
:$$ B_{\rm K} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.05cm}.$$
 +
 
  
'''Hinweis:''' Die Aufgabe bezieht sich auf die theoretischen Grundlagen von [http://en.lntwww.de/Modulationsverfahren/Synchrondemodulation Kapitel 2.2] , [http://en.lntwww.de/Modulationsverfahren/Frequenzmodulation_(FM) Kapitel 3.2] und [http://en.lntwww.de/Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation Kapitel 3.3]. Es gelten folgende Beziehungen:
 
$$\rho_{v } = \left\{ \begin{array}{c} \xi \\ {\eta^2}/2 \cdot\xi \\ 3{\eta^2}/2 \cdot\xi \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}l} {\rm ZSB/ESB-AM \hspace{0.15cm}ohne \hspace{0.15cm}Tr\ddot{a}ger} \hspace{0.05cm}, \\ {\rm PM \hspace{0.15cm}mit \hspace{0.15cm}Modulationsgrad \hspace{0.15cm} \eta } \hspace{0.05cm}, \\ {\rm FM \hspace{0.15cm}mit \hspace{0.15cm}Modulationsgrad \hspace{0.15cm} \eta }\hspace{0.05cm}. \\ \end{array}$$
 
Die Bandbreiten bei Winkelmodulation sind so zu wählen, dass ein Klirrfaktor K kleiner als 1% garantiert werden kann ('''Carson–Regel'''):
 
$$ B_{\rm K} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.05cm}.$$
 
 
   
 
   
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die logarithmierte Leistungskenngröße $ξ$.
+
{Calculate the logarithmized power parameter &nbsp;$ξ$.
 
|type="{}"}
 
|type="{}"}
$10 · lg ξ$ = { 50 3% } $dB$  
+
$10 · \lg \ ξ \ = \ $ { 50 3% } $\ \rm dB$  
  
{Welcher Sinkenstörabstand ergibt sich beim AM–System?
+
{What is the sink-to-noise ratio for the AM system?
 
|type="{}"}
 
|type="{}"}
$10 · lg ρ_υ$ = { 50 3% } $dB$  
+
$10 · \lg ρ_v \ = \ $ { 50 3% } $\ \rm dB$  
  
{Welche spezielle Form der AM könnte hier vorliegen?
+
{What special kind of AM might be present here?
 
|type="[]"}
 
|type="[]"}
+ ZSB–AM.
+
+ It could be a DSB-AM.
+ ESB–AM.
+
+ It could be a SSB-AM.
+ AM ohne Träger.
+
+ It could be an AM without a carrier.
- AM mit zugesetztem Träger.
+
- It could be an AM with an added carrier.
  
{Wie groß ist im Fall der ZSB–AM die erforderliche Kanalbandbreite?
+
{In the case of the DSB-AM, what is the required channel bandwidth &nbsp;$B_{\rm K}$?
 
|type="{}"}
 
|type="{}"}
$B_K$ = { 20 3% } $KHz$  
+
$B_{\rm K} \ = \ $ { 20 3% } $\ \rm kHz$  
  
{Wie groß ist der Sinkenstörabstand beim WM-System?
+
{What is the sink-to-noise ratio for the WM system?
 
|type="{}"}
 
|type="{}"}
$10 · lg ρ_υ$ = { 60 3% } $dB$  
+
$10 · \lg ρ_v \ = \ $ { 60 3% } $\ \rm dB$  
  
{Welche Bandbreite ist beim vorgegebenen PM–System mindestens erforderlich, wenn K < 1% gelten soll?
+
{What is the minimum bandwidth required for the given PM system if &nbsp;$K < 1\%$&nbsp; is to apply?  
 
|type="{}"}
 
|type="{}"}
$B_K$ = { 130 3% } $KHz$  
+
$B_{\rm K} \ = \ $ { 130 3% } $\ \rm kHz$  
  
{Wie groß ist für K < 1% die erforderliche Bandbreite, wenn das WM–System eine Frequenzmodulation realisiert?
+
{For&nbsp;$K < 1\%$&nbsp;, die erforderliche Bandbreite, what is the required bandwidth if the WM system implements frequency modulation??
 
|type="{}"}
 
|type="{}"}
$B_K$ = { 91.6 3% } $KHz$  
+
$B_{\rm K} \ = \ $ { 91.6 3% } $\ \rm kHz$
  
{Wie groß muss bei sonst gleichen Parametern die Sendeleistung mindestens sein, damit das WM–System nicht schlechter als das AM–System ist?
+
{All other parameters being equal, what is the minimum transmit power &nbsp;$P_{\rm S}$&nbsp; required for the WM system to be no worse than the AM system?
 
|type="{}"}
 
|type="{}"}
$P_S$ = { 0.03 3% } $KW$  
+
$P_{\rm S,\hspace{0.05cm}min} \ = \ $ { 30 3% } $\ \rm W$  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''Aus $20 · lg α_K = –120 dB$ erhält man $α_K = 10^{–6}$. Damit ergibt sich mit $B_{NF} = f_N$:
+
'''(1)'''&nbsp; From&nbsp; $20 · \lg α_{\rm K} = -120  \ \rm dB$&nbsp; we get&nbsp; $α_{\rm K}  = 10^{–6}$.&nbsp; Thus, with &nbsp; $B_{\rm NF} = f_{\rm N}$, one obtains:
$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}= \frac{10^{-12} \cdot 10^{5}\;{\rm W}}{10^{-16}\;{\rm W/Hz} \cdot 10^{4}\;{\rm Hz}}= 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
+
:$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}= \frac{10^{-12} \cdot 10^{5}\;{\rm W}}{10^{-16}\;{\rm W/Hz} \cdot 10^{4}\;{\rm Hz}}= 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; From the graph, it can be seen that &nbsp; $ρ_v = ξ$&nbsp; holds for the AM system.  Thus, the sinking signal-to-noise ratio is:
 +
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The <u>first three answers</u> are correct:
 +
*It is a DSB-AM or a SSB-AM without a carrier.
 +
*DSB–AM and SSB–AM with a carrier can be ruled out.&nbsp; In these instances, it would always be the case that &nbsp; $ρ_v < \xi$&nbsp;.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; For DSB–AM, &nbsp;$B_{\rm K} ≥ 2 · f_{\rm N}\hspace{0.15cm}\underline { = 20 \ \rm kHz}$&nbsp; must hold.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp;From the given graph, it can be seen that from about &nbsp;$20 \ \rm dB$&nbsp; onwards:
 +
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 10 \cdot {\rm lg} \hspace{0.15cm}\xi + 10\,{\rm dB}. \hspace{0.3cm}{\rm Mit}\hspace{0.15cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi = 50\,{\rm dB}\hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 60\,{\rm dB}}.$$
 +
 
  
'''2.'''  Aus der Grafik ist zu entnehmen, dass beim AM–System $ρ_υ = ξ$ gilt. Damit ist auch
 
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
 
  
'''3.''' Es handelt sich um eine ZSB–AM oder ESB–AM ohne Träger, das heißt, richtig sind die ersten drei Lösungsvorschläge. Dagegen scheiden die ZSB–AM und die ESB–AM mit Träger aus. In diesen Fällen würde $ρ_υ$ stets kleiner als $ξ$ sein.
+
'''(6)'''&nbsp; In the case of phase modulation:
 +
:$$ \rho_{v }= \frac{\eta^2}{2} \cdot \xi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta^2 = \frac{2 \cdot \rho_{v }}{\xi} = 20\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 4.47 \hspace{0.05cm}.$$
 +
*Thus, the channel bandwidth needed for 𝐾<1% must be:
 +
:$$B_{\rm K} \ge 2 \cdot f_{\rm N} \cdot (\eta +2) = 20\,{\rm kHz}\cdot 6.47 \hspace{0.15cm}\underline { \approx 130\,{\rm kHz}}\hspace{0.05cm}.$$
  
  
'''4.'''Bei der ZSB–AM muss $B_K ≥ 2 · f_N = 20 kHz$ gelten.
 
  
 +
'''(7)'''&nbsp;Here, a smaller modulation index is sufficient, and thus a smaller bandwidth:
 +
:$${3}/{2}\cdot \eta^2 = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 2.58 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}B_{\rm K} = 20\,{\rm kHz}\cdot 4.58 \hspace{0.15cm}\underline {\approx 91.6\,{\rm kHz}}\hspace{0.05cm}.$$
  
'''5.'''  Aus der Grafik erkennt man, dass ab etwa $20 dB$ gilt:
 
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 10 \cdot {\rm lg} \hspace{0.15cm}\xi + 10\,{\rm dB}. \hspace{0.3cm}{\rm Mit}\hspace{0.15cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi = 50\,{\rm dB}\hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 60\,{\rm dB}}.$$
 
  
'''6.''' Bei Phasenmodulation gilt:
 
$$ \rho_{v }= \frac{\eta^2}{2} \cdot \xi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta^2 = \frac{2 \cdot \rho_{v }}{\xi} = 20\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 4.47 \hspace{0.05cm}.$$
 
Damit muss für die Kanalbandbreite unter der Voraussetzung K < 1% gelten:
 
$$B_{\rm K} \ge 2 \cdot f_{\rm N} \cdot (\eta +2) = 20\,{\rm kHz}\cdot 6.47 \hspace{0.15cm}\underline { \approx 130\,{\rm kHz}}\hspace{0.05cm}.$$
 
  
'''7.'''Hier genügt ein kleinerer Modulationsindex und damit auch eine kleinere Bandbreite:
+
'''(8)'''&nbsp; In the graph, one can see the so-called FM threshold effect.
$${3}/{2}\cdot \eta^2 = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 2.58 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}B_{\rm K} = 20\,{\rm kHz}\cdot 4.58 \hspace{0.15cm}\underline {\approx 91.6\,{\rm kHz}}\hspace{0.05cm}.$$
+
*For&nbsp; $10 · \lg \hspace{0.08cm} ξ = 15 \ \rm dB$&nbsp; one obtains exactly the same sink SNR for the WM system as for the AM system.
'''8.'''  In der Grafik erkennt man den so genannten FM–Knick. Für $10 · lg ξ = 15 dB$ erhält man für das WM–System genau das gleiche Sinken–SNR wie für das AM–System. Die Sendeleistung kann also um $35 dB$ kleiner sein als $100 kW$:
+
*Thus, the transmit power can be &nbsp; $35 \ \rm dB$&nbsp; less than s&nbsp; $100 \ \rm kW$:
$$ 10 \cdot {\rm lg} \hspace{0.15cm}\frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}= -35\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}\approx 0.0003\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm S,\hspace{0.05cm}min} \hspace{0.15cm}\underline {\approx 0.03\,{\rm kW}}\hspace{0.05cm}.$$
+
:$$ 10 \cdot {\rm lg} \hspace{0.15cm}\frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}= -35\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}\approx 0.0003\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm S,\hspace{0.05cm}min} \hspace{0.15cm}\underline {\approx 30\,{\rm W}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.3 Rauscheinfluss bei Winkelmodulation^]]
+
[[Category:Modulation Methods: Exercises|^3.3 Noise Influence with PM and FM^]]

Latest revision as of 18:28, 17 March 2022

Characteristic curves illustrating the noise behavior for  $\rm AM$  and  $\rm WM$

Consider the transmission of a cosine signal with amplitude modulation   $\rm (AM)$  and angle modulation $\rm (WM)$. The following boundary conditions apply::

  • Message frequency  $f_{\rm N} = 10 \ \rm kHz$,
  • Transmission power  $P_{\rm S} = 100 \ \rm kW$,
  • Channel transmission factor  $20 · \lg α_{\rm K} = -120 \ \rm dB$,
  • noise power density  $N_0 = 10^{–16} \ \rm W/Hz$.


These system parameters are conveniently combined to form the performance parameter: $$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$ The graph shows the resulting sink-to-noise ratio  $10 · \lg ρ_v$  as a function of the logarithmized performance parameter   $ξ$.





Hints:

  • The following relationships hold:
$$\rho_{v } = \left\{ \begin{array}{c} \xi \\ {\eta^2}/2 \cdot\xi \\ 3{\eta^2}/2 \cdot\xi \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}l} {\rm DSB/SSB-AM \hspace{0.15cm}without \hspace{0.15cm}carrier} \hspace{0.05cm}, \\ {\rm PM \hspace{0.15cm}with \hspace{0.15cm}modulation\hspace{0.15cm}depth \hspace{0.15cm} \eta } \hspace{0.05cm}, \\ {\rm FM \hspace{0.15cm}with \hspace{0.15cm}modulation\hspace{0.15cm}depth \hspace{0.15cm} \eta }\hspace{0.05cm}. \\ \end{array}$$
  • The bandwidths  $B_{\rm K}$  for angle modulation shall be selected according to the "Carson rule" to guarantee a distortion factor of  $K < 1\%$ :
$$ B_{\rm K} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.05cm}.$$



Questions

1

Calculate the logarithmized power parameter  $ξ$.

$10 · \lg \ ξ \ = \ $

$\ \rm dB$

2

What is the sink-to-noise ratio for the AM system?

$10 · \lg ρ_v \ = \ $

$\ \rm dB$

3

What special kind of AM might be present here?

It could be a DSB-AM.
It could be a SSB-AM.
It could be an AM without a carrier.
It could be an AM with an added carrier.

4

In the case of the DSB-AM, what is the required channel bandwidth  $B_{\rm K}$?

$B_{\rm K} \ = \ $

$\ \rm kHz$

5

What is the sink-to-noise ratio for the WM system?

$10 · \lg ρ_v \ = \ $

$\ \rm dB$

6

What is the minimum bandwidth required for the given PM system if  $K < 1\%$  is to apply?

$B_{\rm K} \ = \ $

$\ \rm kHz$

7

For $K < 1\%$ , die erforderliche Bandbreite, what is the required bandwidth if the WM system implements frequency modulation??

$B_{\rm K} \ = \ $

$\ \rm kHz$

8

All other parameters being equal, what is the minimum transmit power  $P_{\rm S}$  required for the WM system to be no worse than the AM system?

$P_{\rm S,\hspace{0.05cm}min} \ = \ $

$\ \rm W$


Solution

(1)  From  $20 · \lg α_{\rm K} = -120 \ \rm dB$  we get  $α_{\rm K} = 10^{–6}$.  Thus, with   $B_{\rm NF} = f_{\rm N}$, one obtains:

$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}= \frac{10^{-12} \cdot 10^{5}\;{\rm W}}{10^{-16}\;{\rm W/Hz} \cdot 10^{4}\;{\rm Hz}}= 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$


(2)  From the graph, it can be seen that   $ρ_v = ξ$  holds for the AM system. Thus, the sinking signal-to-noise ratio is:

$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$


(3)  The first three answers are correct:

  • It is a DSB-AM or a SSB-AM without a carrier.
  • DSB–AM and SSB–AM with a carrier can be ruled out.  In these instances, it would always be the case that   $ρ_v < \xi$ .


(4)  For DSB–AM,  $B_{\rm K} ≥ 2 · f_{\rm N}\hspace{0.15cm}\underline { = 20 \ \rm kHz}$  must hold.


(5) From the given graph, it can be seen that from about  $20 \ \rm dB$  onwards:

$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 10 \cdot {\rm lg} \hspace{0.15cm}\xi + 10\,{\rm dB}. \hspace{0.3cm}{\rm Mit}\hspace{0.15cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi = 50\,{\rm dB}\hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 60\,{\rm dB}}.$$


(6)  In the case of phase modulation:

$$ \rho_{v }= \frac{\eta^2}{2} \cdot \xi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta^2 = \frac{2 \cdot \rho_{v }}{\xi} = 20\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 4.47 \hspace{0.05cm}.$$
  • Thus, the channel bandwidth needed for 𝐾<1% must be:
$$B_{\rm K} \ge 2 \cdot f_{\rm N} \cdot (\eta +2) = 20\,{\rm kHz}\cdot 6.47 \hspace{0.15cm}\underline { \approx 130\,{\rm kHz}}\hspace{0.05cm}.$$


(7) Here, a smaller modulation index is sufficient, and thus a smaller bandwidth:

$${3}/{2}\cdot \eta^2 = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 2.58 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}B_{\rm K} = 20\,{\rm kHz}\cdot 4.58 \hspace{0.15cm}\underline {\approx 91.6\,{\rm kHz}}\hspace{0.05cm}.$$


(8)  In the graph, one can see the so-called FM threshold effect.

  • For  $10 · \lg \hspace{0.08cm} ξ = 15 \ \rm dB$  one obtains exactly the same sink SNR for the WM system as for the AM system.
  • Thus, the transmit power can be   $35 \ \rm dB$  less than s  $100 \ \rm kW$:
$$ 10 \cdot {\rm lg} \hspace{0.15cm}\frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}= -35\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}\approx 0.0003\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm S,\hspace{0.05cm}min} \hspace{0.15cm}\underline {\approx 30\,{\rm W}}\hspace{0.05cm}.$$