Difference between revisions of "Digital Signal Transmission/Optimization of Baseband Transmission Systems"

From LNTwww
 
(42 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Digitalsignalübertragung bei idealisierten Bedingungen
+
|Untermenü=Digital Signal Transmission under Idealized Conditions
 
|Vorherige Seite=Eigenschaften von Nyquistsystemen
 
|Vorherige Seite=Eigenschaften von Nyquistsystemen
 
|Nächste Seite=Lineare digitale Modulation – Kohärente Demodulation
 
|Nächste Seite=Lineare digitale Modulation – Kohärente Demodulation
Line 7: Line 7:
  
  
== Voraussetzungen und Optimierungskriterium ==
+
== Prerequisites and optimization criterion ==
 
<br>
 
<br>
Für dieses Kapitel &bdquo;Optimierung der Basisbandübertragungssysteme&rdquo; gilt das folgende Blockschaltbild:
+
The following block diagram applies to this chapter&nbsp; "Optimization of Baseband Transmission Systems".&nbsp; Unless explicitly stated otherwise,&nbsp; the following prerequisites are assumed in the following:
  
[[File:P_ID1286__Dig_T_1_4_S1_v1.png|center|frame|Blockschaltbild eines Basisbandübertragungssystems|class=fit]]
+
[[File:EN_Dig_T_1_4_S1_v2.png|right|frame|Block diagram of a baseband transmission system|class=fit]]
  
Wenn nicht explizit anders angegeben, wird im Folgenden von folgenden Voraussetzungen ausgegangen:
+
*The transmission is binary, bipolar and redundancy-free. The spacing between symbols is &nbsp;$T$&nbsp; and the&nbsp; (equivalent)&nbsp; bit rate &nbsp;$R = 1/T$.&nbsp; Multilevel and/or redundant systems are not discussed until the &nbsp;[[Digital_Signal_Transmission|main chapter 2: &nbsp; "Coded and Multilevel Transmission"]]&nbsp; of this book.
*Die Übertragung erfolgt binär, bipolar und redundanzfrei. Der Abstand zwischen den Symbolen ist $T$ und die (äquivalente) Bitrate $R = 1/T$. Mehrstufige und/oder redundante Systeme werden erst  im [[Digitalsignalübertragung|Hauptkapitel 2: Codierte und mehrstufige Übertragung]]  dieses Buches behandelt.
+
*The basic transmission pulse &nbsp;$g_s(t)$&nbsp; is rectangular and has the amplitude &nbsp;$s_0$&nbsp; and the pulse duration &nbsp;$T_{\rm S} \le T$.&nbsp; If the pulse duration &nbsp;$T_{\rm S}$&nbsp; coincides with the symbol duration $T$,&nbsp; we speak of NRZ&nbsp; ("non-return-to-zero")&nbsp; rectangular pulses.&nbsp; In the case &nbsp;$T_{\rm S} < T$,&nbsp; the RZ&nbsp; ("return-to-zero")&nbsp; format is present.<br>
*Der Sendegrundimpuls $g_s(t)$ ist rechteckförmig und weist die Amplitude $s_0$ sowie die Impulsdauer $T_{\rm S} \le T$ auf. Stimmt die Sendeimpulsdauer $T_{\rm S}$ mit der Symboldauer $T$ überein, so spricht man von NRZ&ndash;Rechteckimpulsen. Im Fall $T_{\rm S} < T$ liegt ein RZ&ndash;Format vor.<br>
+
*The AWGN model with the&nbsp; (one-sided)&nbsp; noise power density &nbsp;$N_0$&nbsp; is used as the transmission channel,&nbsp; so that &nbsp;$r(t) = s(t) + n(t)$&nbsp; applies to the received signal.&nbsp; The two-sided noise power density&nbsp; $(N_0/2)$&nbsp; is more suitable for system-theoretical investigations.
*Als Übertragungskanal wird das AWGN&ndash;Modell mit der (einseitigen) Rauschleistungsdichte $N_0$ verwendet, so dass für das Empfangssignal $r(t) = s(t) + n(t)$ gilt. Die für systemtheoretische Untersuchungen besser geeignete zweiseitige Rauschleistungsdichte beträgt somit $N_0/2$.
+
*Let the impulse response &nbsp;$h_{\rm E}(t)$&nbsp; of the receiver filter&nbsp; (German:&nbsp; "Empfangsfilter" &nbsp; &rArr; &nbsp; subscript:&nbsp; "E")&nbsp;  also be rectangular,&nbsp; but with width &nbsp;$T_{\rm E}$&nbsp; and height &nbsp;$1/T_{\rm E}$.&nbsp; The DC transfer factor is therefore &nbsp;$H_{\rm E}(f = 0) = 1$.&nbsp; Only in the special case &nbsp;$T_{\rm E} = T_{\rm S} $&nbsp; &rArr;  &nbsp;$H_{\rm E}(f)$&nbsp; can be called a&nbsp; "matched filter".
*Die Impulsantwort $h_{\rm E}(t)$ des Empfangsfilters ist ebenfalls rechteckförmig, allerdings der mit Breite $T{\rm E}$ und der Höhe $1/T{\rm E}$. Daraus folgt für den Gleichsignalübertragungsfaktor $H_{\rm E}(f = 0) = 1$. Nur im Sonderfall $T_{\rm E} = T_{\rm S} $ kann man $H_{\rm E}(f)$ als Matched&ndash;Filter bezeichnen.
+
*In order to exclude intersymbol interfering,&nbsp; the constraint &nbsp;$T_{\rm S} + T_{\rm E} \le 2T$&nbsp; must always be observed during optimization.&nbsp; Intersymbol interfering will not be considered until the &nbsp;[[Digital_Signal_Transmission|main chapter 3: &nbsp; "Intersymbol Interfering and Equalization Methods"]]&nbsp; of this book.
*Um Impulsinterferenzen auszuschließen, muss bei der Optimierung stets die Randbedingung $T_{\rm S} + T_{\rm E} \le 2T$ eingehalten werden. Impulsinterferenzen werden erst im [[Digitalsignalübertragung|Hauptkapitel 3: Impulsinterferenzen und Entzerrungsverfahren]] dieses Buches betrachtet.
+
*To obtain the sink symbol sequence&nbsp; $〈v_ν〉$&nbsp; as the best possible estimate for the source symbol sequence&nbsp; $〈q_ν〉$,&nbsp; we use a simple threshold decision with the optimal decision threshold &nbsp;$E = 0$&nbsp; and optimal detection times&nbsp; $($under the given conditions at &nbsp;$\nu \cdot T)$.&nbsp;
*Zur Gewinnung der Sinkensymbolfolge wird ein einfacher Schwellenwertentscheider mit optimaler Entscheiderschwelle $E = 0$ und optimalen Detektionszeitpunkten (bei $\nu \cdot T$) verwendet.
 
  
  
Unter '''Systemoptimierung''' verstehen wir hier, die Parameter $T_{\rm S}$ und $T_{\rm E}$ von Sendegrundimpuls $g_s(t)$ und  Empfangsfilter&ndash;Impulsantwort $h_{\rm E}(t)$ so zu bestimmen, dass die Bitfehlerwahrscheinlichkeit $p_{\rm B}$den kleinstmöglichen Wert annimmt.
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
By&nbsp; "'''system optimization'''"&nbsp; we mean here to determine the parameters &nbsp;$T_{\rm S}$&nbsp; and &nbsp;$T_{\rm E}$&nbsp; of the basic transmission pulse &nbsp;$g_s(t)$&nbsp; and the receiver filter impulse response &nbsp;$h_{\rm E}(t)$&nbsp; in such a way that the bit error probability &nbsp;$p_{\rm B}$&nbsp; assumes the smallest possible value.}}
  
  
== Leistungs– und Spitzenwertbegrenzung==
+
== Power and peak limitation==
 
<br>
 
<br>
Die Optimierung der Systemgrößen wird entscheidend dadurch beeinflusst, ob als Nebenbedingung der Optimierung Leistungsbegrenzung oder Spitzenwertbegrenzung des Sendesignals gefordert wird.
+
The optimization of the system variables is decisively influenced by
 +
#whether&nbsp;"power limitation"&nbsp;
 +
#or &nbsp;"peak limitation"&nbsp;
 +
 
 +
 
 +
of the transmitted signal&nbsp; $s(t)$&nbsp; is required as a constraint of the optimization.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Unter '''Leistungsbegrenzung''' versteht man, dass die (mittlere) Sendeleistung $P_{\rm S}$ einen vorgegebenen Maximalwert $P_\text{S, max}$ nicht überschreiten darf:
+
$\text{Definition:}$&nbsp; &nbsp;'''Power limitation'''&nbsp; means that the&nbsp; (average)&nbsp; transmission power&nbsp; (German:&nbsp; "Sendeleistung" &nbsp; &rArr; &nbsp; subscript:&nbsp; "S")&nbsp; $P_{\rm S}$&nbsp; must not exceed a specified maximum value &nbsp;$P_\text{S, max}$:&nbsp;
 
:$$P_{\rm S}= {\rm E}[s(t)^2] = \overline{s(t)^2} \le P_{\rm
 
:$$P_{\rm S}= {\rm E}[s(t)^2] = \overline{s(t)^2} \le P_{\rm
 
S,\hspace{0.05cm} max}\hspace{0.05cm}.$$
 
S,\hspace{0.05cm} max}\hspace{0.05cm}.$$
Um die minimale Fehlerwahrscheinlichkeit zu erzielen, wird man natürlich die mittlere Sendeleistung $P_{\rm S}$ im erlaubten Bereich möglichst groß wählen. Deshalb wird im Folgenden stets $P_{\rm S} = P_\text{S, max}$ gesetzt.}}
+
*In order to achieve the minimum error probability,&nbsp;  one will naturally choose the average transmission power &nbsp;$P_{\rm S}$&nbsp; as large as possible in the allowed range.  
 +
*Therefore, &nbsp;$P_{\rm S} = P_\text{S, max}$&nbsp; is always set in the following.}}
  
  
Die Frage, ob als Nebenbedingung der Optimierung tatsächlich von Leistungsbegrenzung ausgegangen werden kann, hängt von den technischen Randbedingungen ab. Diese Annahme ist insbesondere bei Funkübertragungssystemen gerechtfertigt, unter Anderem deshalb, weil die als &bdquo;Elektrosmog&rdquo; bekannte Beeinträchtigung von Mensch und Tier in starkem Maße von der (mittleren) Strahlungsleistung abhängt.
+
The question of whether power limitation can actually be assumed as a secondary condition of optimization depends on the technical boundary conditions.
 +
* This assumption is especially justified for radio transmission systems,&nbsp; among other things
 +
*because the impairment of humans and animals known as&nbsp; "electrosmog"&nbsp; depends to a large extent on the&nbsp; (average)&nbsp; radiated power.
  
Anzumerken ist, dass ein Funkübertragungssystem natürlich nicht im Basisband arbeitet. Die hier am Beispiel der Basisbandübertragung definierten Beschreibungsgrößen werden aber im [[Digitalsignalübertragung|Hauptkapitel 4:  Verallgemeinerte Beschreibung digitaler Modulationsverfahren]] dieses Buches dahingehend modifiziert, dass sie auch für digitale Trägerfrequenzsysteme anwendbar sind.
 
  
 +
<u>Note:</u> &nbsp; Of course,&nbsp; a radio transmission system does not operate in baseband.&nbsp; However,&nbsp; the description variables defined here using baseband transmission as an example are modified in the &nbsp;[[Digital_Signal_Transmission|main chapter 4: &nbsp; "Generalized Description of Digital Modulation Methods"]]&nbsp; of this book to the effect that they are also applicable to digital carrier frequency systems.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Von '''Spitzenwertbegrenzung''' spricht man immer dann, wenn der Aussteuerbereich der Sendeeinrichtung begrenzt ist. Bei bipolarer Signalisierung lautet die entsprechende Bedingung:
+
$\text{Definition:}$&nbsp; &nbsp;'''Peak limitation'''&nbsp; is always referred to when the output range of the transmitter is limited.&nbsp; For bipolar signaling,&nbsp; the corresponding condition is:
:<math>\vert s(t) \vert \le s_0\hspace{0.4cm}{\rm{f\ddot{u}r} }\hspace{0.15cm}{\rm
+
:$$\vert s(t) \vert \le s_0\hspace{0.4cm}{\rm{for} }\hspace{0.15cm}{\rm
alle}\hspace{0.15cm}t.</math>
+
all}\hspace{0.15cm}t.$$
Oft verwendet man anstelle von Spitzenwertbegrenzung auch den Begriff ''Amplitudenbegrenzung'', der aber den Sachverhalt nicht ganz richtig wiedergibt.}}
+
*Of course,&nbsp; "peak limitation"&nbsp; limits also the power,&nbsp; but the "peak power", not the&nbsp; "average power".
 +
*Often,&nbsp; instead of&nbsp; "peak limitation",&nbsp; the term&nbsp; "amplitude limitation"&nbsp; is also used,&nbsp; but this does not quite reflect the facts.}}
  
  
Natürlich wird auch bei Spitzenwertbegrenzung die Leistung begrenzt, aber nicht die mittlere, sondern die Spitzenleistung. Die Nebenbedingung &bdquo;Spitzenwertbegrenzung&rdquo; ist zum Beispiel dann sinnvoll und sogar notwendig, wenn
+
The condition&nbsp; "peak limitation"&nbsp; is useful and even necessary,&nbsp; for example,&nbsp; if
*der Aussteuerbereich des Senders wegen Nichtlinearitäten von Bauelementen und Endverstärkern beschränkt ist, oder<br>
+
*the output power range of the transmitter is limited due to nonlinearities of components and power amplifiers,&nbsp; or<br>
*die Nebensprechstörung zu keiner Zeit einen gewissen Wert nicht überschreiten darf. Hierauf ist insbesondere bei der Kommunikation über Zweidrahtleitungen zu achten.
+
*the crosstalk noise must not exceed a limit value at any time.&nbsp; This is especially important when communicating over two-wire lines.
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Sendegrundimpuls $g_s(t)$ und Empfangsfilter&ndash;Impulsantwort $h_{\rm E}(t)$ seien rechteckförmig. Die Amplitude $g_0$ des Ausgangsimpulses stimmt stets mit der Eingangsimpulsamplitude $s_0$ überein.<br>
+
$\text{Example 1:}$&nbsp; We consider three different constellations.&nbsp; Let the basic transmission pulse &nbsp;$g_s(t)$&nbsp; and the receiver filter impulse response &nbsp;$h_{\rm E}(t)$&nbsp; each be rectangular and the amplitude &nbsp;$g_0$&nbsp; of the output pulse&nbsp; $g_d(t)$&nbsp; always coincide with the amplitude &nbsp;$s_0$&nbsp; of the input pulse&nbsp; $g_s(t)$&nbsp;.&nbsp; <br>
[[File:P_ID3132__Dig_T_1_4_S2_A1_v2.png|right|frame|Impulse/Impulsantworten bei '''System A'''|class=fit]]
+
 
'''System A''' $(T_{\rm S} = T, \  T_{\rm E} = T)$:
+
 
*NRZ&ndash;Sendegrundimpuls,
+
$\text{System A}$&nbsp; $(T_{\rm S} = T, \  T_{\rm E} = T)$:
*Matched&ndash;Filter, da $T_{\rm E} = T_{\rm S}$,
+
[[File:P_ID3132__Dig_T_1_4_S2_A1_v2.png|right|frame|Impulse response &nbsp;$h_{\rm E}(t)$&nbsp;and pulses &nbsp;$g_s(t)$&nbsp; as well as &nbsp;$g_d(t)$&nbsp; for &nbsp;$\text{System A}$|class=fit]]
*Detektionsgrundimpuls: Dreieck,
+
 
*Energie pro Bit:  &nbsp; $E_{\rm B} = s_0^2 \cdot T$,
+
*NRZ basic transmission pulse,
*Rauschleistung: &nbsp; $\sigma_d^2 = N_0/(2T)$,
+
*Matched filter,&nbsp; since &nbsp;$T_{\rm E} = T_{\rm S}$,
*Bestmögliche Konstellation
+
*Basic detection pulse: &nbsp; triangle,
*Bitfehlerwahrscheinlichkeit:  
+
*Energy per bit:  &nbsp; $E_{\rm B} = s_0^2 \cdot T$,
:$$p_{\rm B}\hspace{-0.01cm} =\hspace{-0.01cm}{\rm Q} \left( g_0/\sigma_d\right)\hspace{-0.01cm}=\hspace{-0.01cm}
+
*Noise power: &nbsp; $\sigma_d^2 = N_0/(2T)$,
 +
*Best possible constellation
 +
*Bit error probability: &nbsp; $p_{\rm B}\hspace{-0.01cm} =\hspace{-0.01cm}{\rm Q} \left( g_0/\sigma_d\right)$
 +
:$$\Rightarrow \hspace{0.3cm}p_{\rm B}=
 
  {\rm Q} \left( \sqrt{ {2 \cdot s_0^2 \cdot
 
  {\rm Q} \left( \sqrt{ {2 \cdot s_0^2 \cdot
 
  T}/{N_0} }\right) = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)\hspace{0.05cm}.$$
 
  T}/{N_0} }\right) = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)\hspace{0.05cm}.$$
  
[[File:P_ID3133__Dig_T_1_4_S2_A2_v1.png|right|frame|Impulse/Impulsantworten bei '''System B'''|class=fit]]
+
 
'''System B''' $(T_{\rm S} = T, \  T_{\rm E} = T/2)$:
+
$\text{System B}$&nbsp; $(T_{\rm S} = T, \  T_{\rm E} = T/2)$:
*NRZ&ndash;Sendegrundimpuls,
+
[[File:P_ID3133__Dig_T_1_4_S2_A2_v1.png|right|frame|Impulse response &nbsp;$h_{\rm E}(t)$&nbsp;and pulses &nbsp;$g_s(t)$&nbsp; as well as &nbsp;$g_d(t)$&nbsp; for &nbsp;$\text{System B}$|class=fit]]
*Kein Matched&ndash;Filter, da $T_{\rm E} \ne T_{\rm S}$,
+
*NRZ basic transmission pulse,
*Detektionsgrundimpuls: Dreieck,
+
*No matched filter,&nbsp; since &nbsp;$T_{\rm E} \ne T_{\rm S}$,
*Energie pro Bit:  &nbsp; $E_{\rm B} = s_0^2 \cdot T$,
+
*Basic detection pulse: &nbsp; trapezoid,
*Rauschleistung: &nbsp; $\sigma_d^2 = N_0/T$,
+
*Energy per bit:  &nbsp; $E_{\rm B} = s_0^2 \cdot T$,
*Stets 3 dB schlechter als System '''A'''
+
*Noise power: &nbsp; $\sigma_d^2 = N_0/T$,
*Bitfehlerwahrscheinlichkeit:  
+
*Always &nbsp;$\text{3 dB}$&nbsp; worse than &nbsp;$\text{System A}$
:$$p_{\rm B}\hspace{-0.01cm} =\hspace{-0.01cm}{\rm Q} \left( g_0/\sigma_d\right)\hspace{-0.01cm}=\hspace{-0.01cm}
+
*Bit error probability: &nbsp; $p_{\rm B}\hspace{-0.01cm} =\hspace{-0.01cm}{\rm Q} \left( g_0/\sigma_d\right)$
 +
:$$\Rightarrow \hspace{0.3cm}p_{\rm B}=
 
  {\rm Q} \left( \sqrt{ {s_0^2 \cdot
 
  {\rm Q} \left( \sqrt{ {s_0^2 \cdot
 
  T}/{N_0} }\right) = {\rm Q} \left( \sqrt{ E_{\rm B} /{N_0} }\right)\hspace{0.05cm}.$$
 
  T}/{N_0} }\right) = {\rm Q} \left( \sqrt{ E_{\rm B} /{N_0} }\right)\hspace{0.05cm}.$$
  
[[File:P_ID3134__Dig_T_1_4_S2_A3_v2.png|right|frame|Impulse/Impulsantworten bei '''System C'''|class=fit]]
+
 
'''System C''' $(T_{\rm S} = T/2, \  T_{\rm E} = T/2)$:
+
$\text{System C}$&nbsp; $(T_{\rm S} = T/2, \  T_{\rm E} = T/2)$:
*RZ&ndash;Sendegrundimpuls,
+
[[File:P_ID3134__Dig_T_1_4_S2_A3_v2.png|right|frame|Impulse response &nbsp;$h_{\rm E}(t)$&nbsp;and pulses &nbsp;$g_s(t)$&nbsp; as well as &nbsp;$g_d(t)$&nbsp;
*Matched&ndash;Filter, da $T_{\rm E} = T_{\rm S}$,
+
for &nbsp;$\text{System C}$|class=fit]]
*Detektionsgrundimpuls: kleineres Dreieck,
+
*RZ basic transmission pulse,
*Energie pro Bit:  &nbsp; $E_{\rm B} = 1/2 \cdot s_0^2 \cdot T$,
+
*Matched filter,&nbsp; since &nbsp;$T_{\rm E} = T_{\rm S}$,
*Rauschleistung: &nbsp; $\sigma_d^2 = N_0/T$,
+
*Basic detection pulse: &nbsp;  smaller triangle,
*Bei Leistungsbegrenzung wie System '''A''',
+
*Energy per bit:  &nbsp; $E_{\rm B} = 1/2 \cdot s_0^2 \cdot T$,
*Bei Spitzenwertbegrenzung 3 dB schlechter,
+
*Noise power: &nbsp; $\sigma_d^2 = N_0/T$,
*Bitfehlerwahrscheinlichkeit:
+
*with power limitation equivalent to &nbsp;$\text{System A}$,
:$$p_{\rm B} ={\rm Q} \left( { {g_0}/{\sigma_d} }\right)=
+
*At peak limitation &nbsp;$\text{3 dB}$&nbsp; worse than &nbsp;$\text{System A}$,
 +
*Bit error probability: &nbsp; $p_{\rm B}\hspace{-0.01cm} =\hspace{-0.01cm}{\rm Q} \left( g_0/\sigma_d\right)$
 +
:$$\Rightarrow \hspace{0.3cm}p_{\rm B} =
 
  {\rm Q} \left( \sqrt{ { s_0^2 \cdot
 
  {\rm Q} \left( \sqrt{ { s_0^2 \cdot
 
  T}/{N_0} }\right)=  {\rm Q} \left( \sqrt{2 \cdot {E_{\rm B} }/{N_0} }\right)\hspace{0.05cm}.$$}}
 
  T}/{N_0} }\right)=  {\rm Q} \left( \sqrt{2 \cdot {E_{\rm B} }/{N_0} }\right)\hspace{0.05cm}.$$}}
  
  
{{GraueBox|TEXT= 
 
$\text{Beispiel 2:}$&nbsp; Es gelten die gleichen Voraussetzungen wie im $\text{Beispiel 1}$. Die Grafik zeigt die Bitfehlerwahrscheinlichkeit $p_{\rm B}$
 
* in Abhängigkeit vom Verhältnis $E_{\rm B}/N_0$ (linkes Diagramm) und
 
*als Funktion von $s_0^2 \cdot T /N_0$ (rechtes Diagramm).
 
  
Es handelt sich um die Auswertung der im $\text{Beispiel 1}$  hergeleiteten Ergebnisse.
+
{{GraueBox|TEXT=
 +
$\text{Example 2:}$&nbsp; The same conditions as in $\text{Example 1}$ apply.&nbsp; Graphically shown are the results from&nbsp; $\text{Example 1}$.&nbsp; The diagram shows the bit error probability &nbsp;$p_{\rm B}$&nbsp; as
 +
[[File:EN_Dig_T_1_4_S2.png|right|frame|System comparison for power and peak limitation|class=fit]]  
 +
 
 +
* a function of the ratio &nbsp;$E_{\rm B}/N_0$&nbsp; (left diagram)&nbsp; and
 +
* a function of the ratio &nbsp;$s_0^2 \cdot T /N_0$&nbsp; (right diagram).
 +
 
 +
 
 +
These two diagrams in double logarithmic representation are to be interpreted as follows:<br>
 +
*The left diagram compares the systems at the same average power &nbsp;$(P_{\rm S})$&nbsp; and at constant energy per bit &nbsp;$(E_{\rm B})$,&nbsp; resp.&nbsp; Since the abscissa value is additionally related to &nbsp;$N_0$,&nbsp; the equation &nbsp;$p_{\rm B}(E_{\rm B}/N_0)$&nbsp; and its graphical representation correctly reflects the situation even for different noise power densities &nbsp;$N_0$.&nbsp;<br>
 +
 
 +
*When power is limited,&nbsp; configurations &nbsp;$\rm A$&nbsp; and &nbsp;$\rm C$&nbsp; are equivalent and represent the optimum in each case.&nbsp; As will be shown in the next sections,&nbsp; an optimal system with power limitation always exists if &nbsp;$g_s(t)$&nbsp; and &nbsp;$h_{\rm E}(t)$&nbsp; have the same shape&nbsp; $($"matched filter"$)$.&nbsp; The smaller power of system &nbsp;$\rm C$&nbsp; is compensated by the abscissa chosen here.<br>
 +
 
 +
*In contrast,&nbsp; for system &nbsp;$\rm B$&nbsp; the matched filter condition is not met &nbsp;$(T_{\rm E} \ne T_{\rm S})$&nbsp; and the error probability curve is now &nbsp;$\text{3 dB}$&nbsp; to the right of the boundary curve given by systems &nbsp;$\rm A$&nbsp; and &nbsp;$\rm C$.&nbsp;<br>
 +
 
 +
*The diagram on the right describes the optimization result with peak limitation,&nbsp; which can be seen from the abscissa labeling.&nbsp; The curve &nbsp;$\rm A$&nbsp; $($NRZ pulse,&nbsp; matched filter$)$&nbsp; also indicates here the limit curve,&nbsp; which cannot be undershot by any other system.<br>
  
[[File:P_ID1288__Dig_T_1_4_S2_v1.png|center|frame|Systemvergleich bei Leistungs- und Spitzenwertbegrenzung|class=fit]]
+
*Curve &nbsp;$\rm B$&nbsp; in the diagram on the right has exactly the same shape as in the diagram on the left, since NRZ transmission pulses are again used.&nbsp; The distance of &nbsp;$\text{3 dB}$&nbsp; from the limit curve is again due to non-compliance with the matched filter condition.<br>
  
Diese beiden Diagramme in doppelt&ndash;logarithmischer Darstellung sind wie folgt zu interpretieren:<br>
+
*In contrast to the left diagram,&nbsp; the matched filter system &nbsp;$\rm C$&nbsp; is now also $\text{3 dB}$ to the right of the optimum.&nbsp; The reason for this degradation is that for the same peak value&nbsp; $($same peak power$)$,&nbsp; system &nbsp;$\rm C$&nbsp; provides only half the average power as system &nbsp;$\rm A$.&nbsp; <br>}}
*Die linke Grafik vergleicht die Systeme bei gleicher mittlerer Leistung $(P_{\rm S})$ bzw. bei konstanter Energie pro Bit $(E_{\rm B})$. Da der Abszissenwert zusätzlich auf $N_0$ bezogen ist, gibt $p_{\rm B}(E_{\rm B}/N_0)$ den Sachverhalt auch für unterschiedliche Rauschleistungsdichten$N_0$ richtig wieder.<br>
 
*Bei Leistungsbegrenzung sind die Konfigurationen '''A''' und <b>C</b> gleichwertig und stellen jeweils das Optimum dar. Wie auf den nächsten Seiten hergeleitet wird, liegt ein bei Leistungsbegrenzung optimales System immer dann vor, wenn $g_s(t)$ und $h_{\rm E}(t)$ formgleich sind (Matched&ndash;Filter). Die kleinere Leistung von System <b>C</b> wird durch die hier gewählte Abszisse ausgeglichen.<br>
 
*Dagegen wird bei System <b>B</b> die Matched&ndash;Filter&ndash;Bedingung nicht eingehalten $(T_{\rm E} \ne T_{\rm S})$ und die Fehlerwahrscheinlichkeitskurve liegt nun um 3 dB rechts von der durch die Systeme <b>A</b> und <b>C</b> vorgegebenen Grenzkurve.<br>
 
*Die rechte Grafik beschreibt das Optimierungsergebnis bei Spitzenwertbegrenzung, was an der Abszissenbeschriftung zu erkennen ist. Der Kurvenzug <b>A</b> (NRZ&ndash;Impuls, Matched&ndash;Filter) gibt auch hier die Grenzkurve an, die von keinem anderen System unterschritten werden kann.<br>
 
*Die Kurve <b>B</b> in der rechten Grafik hat den genau gleichen Verlauf wie in der linken Darstellung, da wiederum NRZ&ndash;Sendeimpulse verwendet werden. Der Abstand von 3 dB zur Grenzkurve ist wieder auf die Nichteinhaltung der Matched&ndash;Filter&ndash;Bedingung zurückzuführen.<br>
 
*Im Gegensatz zur linken Grafik liegt nun auch das Matched&ndash;Filter&ndash;System <b>C</b> um 3 dB rechts vom Optimum. Der Grund für diese Degradation ist, dass bei gleichem Spitzenwert (gleicher Spitzenleistung) das System <b>C</b> nur die halbe mittlere Leistung wie das System <b>A</b> bereitstellt.<br>}}
 
  
  
== Systemoptimierung bei Leistungsbegrenzung ==
+
== System optimization with power limitation ==
 
<br>
 
<br>
Die Minimierung der Bitfehlerwahrscheinlichkeit $p_{\rm B} = {\rm Q} \left( \sqrt{\rho_d}\right)$ kann aufgrund des monotonen Funktionsverlaufs der komplementären Gaußschen Fehlerfunktion $ {\rm Q}(x)$ auf die Maximierung des Signal&ndash;zu&ndash;Rausch&ndash;Leistungsverhältnisses $\rho_d$ vor dem Schwellenwertentscheider (Detektions&ndash;SNR) zurückgeführt werden:
+
The minimization of the bit error probability &nbsp;$p_{\rm B} = {\rm Q} \left( \sqrt{\rho_d}\right)$&nbsp; can be attributed to the maximization of the signal&ndash;to&ndash;noise power ratio &nbsp;$\rho_d$&nbsp; before the threshold decision&nbsp; $($in short: &nbsp; '''detection SNR'''$)$&nbsp; due to the monotonic function progression of the complementary Gaussian error function &nbsp;$ {\rm Q}(x)$:&nbsp;
:$$p_{\rm B} = {\rm Q} \left( \sqrt{\rho_d}\right)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum}\hspace{1cm}\Rightarrow \hspace{1cm}\rho_d ={g_0^2}/{\sigma_d^2}\hspace{0.3cm}\Rightarrow
+
:$$p_{\rm B} = {\rm Q} \left( \sqrt{\rho_d}\right)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum}\hspace{0.8cm}\Rightarrow \hspace{0.8cm}\rho_d ={g_0^2}/{\sigma_d^2}\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm}{\rm Maximum}\hspace{0.05cm}.$$
 
\hspace{0.3cm}{\rm Maximum}\hspace{0.05cm}.$$
Hierbei gibt $g_0 = g_d(t=0)$ die Amplitude des betrachteten Nyquistimpulses an und $\sigma_d^2$ bezeichnet die Detektionsstörleistung für das gegebene Empfangsfilter. Gleichzeitig muss sichergestellt werden, dass<br>
+
Here, &nbsp;$g_0 = g_d(t=0)$&nbsp; indicates the amplitude of the considered Nyquist pulse and &nbsp;$\sigma_d^2$&nbsp; denotes the detection noise power for the given receiver filter.&nbsp; At the same time it must be ensured that<br>
*der Detektionsgrundimpuls $g_d(t) = g_s(t) \star h_{\rm E}(t)$  das erste Nyquistkriterium erfüllt, und<br>
+
*the basic detection pulse &nbsp;$g_d(t) = g_s(t) \star h_{\rm E}(t)$&nbsp; satisfies the first Nyquist criterion, and<br>
*die Energie des Sendegrundimpulses $g_s(t)$  einen vorgegebenen Wert $E_{\rm B}$ nicht überschreitet.
+
*the energy of the basic transmission pulse &nbsp;$g_s(t)$&nbsp; does not exceed a predetermined value &nbsp;$E_{\rm B}$.&nbsp;
  
  
In den vorangegangenen Abschnitten wurde bereits mehrfach erwähnt, dass beim AWGN&ndash;Kanal  mit der (einseitigen) Rauschleistungsdichte für das optimale System unter der Nebenbedingung der Leistungsbegrenzung gilt:
+
In the previous sections,&nbsp; it has been mentioned several times that for the AWGN channel with the&nbsp; (one-sided)&nbsp; noise power density &nbsp;$N_0$,&nbsp; the following holds for the optimal system under the constraint of power limitation:
:$$p_{\rm B, \hspace{0.05cm}min} = {\rm Q} \left( \sqrt{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}\right)\hspace{0.5cm}{\rm mit}\hspace{0.5cm}
+
:$$p_{\rm B, \hspace{0.08cm}min} = {\rm Q} \left( \sqrt{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}\right)\hspace{0.5cm}{\rm with}\hspace{0.5cm}
 
  \rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}={2 \cdot E_{\rm B}}/{N_0}\hspace{0.05cm}.$$
 
  \rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}={2 \cdot E_{\rm B}}/{N_0}\hspace{0.05cm}.$$
Dieses Ergebnis benutzen wir für die folgende Definition:
+
We use this result for the following definition:
 
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Der '''Systemwirkungsgrad bei Leistungsbegrenzung''' einer vorliegenden Konfiguration ist der Quotient aus dem tatsächlichen und dem größtmöglichen Signal&ndash;zu&ndash;Rausch&ndash;Leistungsverhältnis am Entscheider (''Detektions&ndash;SNR''):
+
$\text{Definition:}$&nbsp; The '''system efficiency under power limitation'''&nbsp; (German:&nbsp; "Leistungsbegrenzung" &nbsp; &rArr; &nbsp; subscript:&nbsp; "'''L'''")&nbsp; of a given configuration is the quotient of the actual and the highest possible signal&ndash;to&ndash;noise power ratio at the decision point&nbsp; ("detection SNR"):
 
:$$\eta_{\rm L} =  \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}\vert \hspace{0.05cm}
 
:$$\eta_{\rm L} =  \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}\vert \hspace{0.05cm}
 
  L} } }=  \frac{g_0^2 /\sigma_d^2}{2 \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$
 
  L} } }=  \frac{g_0^2 /\sigma_d^2}{2 \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$
Nachfolgend wird bewiesen, dass
+
In the following it is proved that
*die so definierte Größe tatsächlich die Bedingung $0 \le \eta_{\rm L} \le 1$ erfüllt und somit als &bdquo;Wirkungsgrad&rdquo; interpretiert werden kann,
+
*the quantity thus defined actually satisfies the condition &nbsp;$0 \le \eta_{\rm L} \le 1$&nbsp; and thus can be interpreted as "efficiency",
*der Wert   $\eta_{\rm L} = 1$ erreicht wird, wenn die Empfangsfilter&ndash;Impulsantwort $h_{\rm E}(t)$ formgleich mit dem Sendegrundimpuls $g_s(t)$ ist.}}
+
*the value   &nbsp;$\eta_{\rm L} = 1$&nbsp; is obtained when the receiver filter impulse response &nbsp;$h_{\rm E}(t)$&nbsp; is equal in shape to the basic transmission pulse &nbsp;$g_s(t)$.}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Beweis:}$&nbsp; Der Beweis erfolgt im Frequenzbereich. Aus Darstellungsgründen normieren wir den Sendegrundimpuls:
+
$\text{Proof:}$&nbsp; The proof is done in the frequency domain.&nbsp; For presentation reasons,&nbsp; we normalize the basic transmission pulse:
 
:$$h_{\rm S}(t)  =  \frac{g_s(t)}{g_0 \cdot T} \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
 
:$$h_{\rm S}(t)  =  \frac{g_s(t)}{g_0 \cdot T} \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
 
   H_{\rm S}(f)  =  \frac{G_s(f)}{g_0 \cdot T} \hspace{0.05cm}.$$
 
   H_{\rm S}(f)  =  \frac{G_s(f)}{g_0 \cdot T} \hspace{0.05cm}.$$
Damit hat $h_{\rm S}(t)$ die Einheit &bdquo;1/s&rdquo; und $H_{\rm S}(f)$ ist dimensionslos. Für die einzelnen Systemgrößen folgt daraus:<br>
+
Thus &nbsp;$h_{\rm S}(t)$&nbsp; has the unit&nbsp; "$\rm 1/s$"&nbsp; and &nbsp;$H_{\rm S}(f)$&nbsp; is dimensionless.&nbsp; For the individual system quantities it follows:<br>
  
(1) &nbsp; Aufgrund des ersten Nyquistkriteriums muss gelten::
+
'''(1)''' &nbsp; Due to the first Nyquist criterion,&nbsp; it must hold:
 
:$$ G_d(f) =  G_s(f) \cdot H_{\rm E}(f)  =  G_{\rm Nyq}(f) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm S}(f)  \cdot H_{\rm E}(f)=  H_{\rm
 
:$$ G_d(f) =  G_s(f) \cdot H_{\rm E}(f)  =  G_{\rm Nyq}(f) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm S}(f)  \cdot H_{\rm E}(f)=  H_{\rm
 
  Nyq}(f)= \frac{G_{\rm  Nyq}(f)}{g_0 \cdot T}\hspace{0.05cm}.$$
 
  Nyq}(f)= \frac{G_{\rm  Nyq}(f)}{g_0 \cdot T}\hspace{0.05cm}.$$
(2) &nbsp; Die Amplitude des Detektionsgrundimpulses ist gleich
+
'''(2)''' &nbsp; The amplitude of the basic transmitter pulse is equal to
 
:$$g_d(t=0) =  g_0 \cdot T \cdot \int_{-\infty}^{+\infty}H_{\rm Nyq}(f) \,{\rm d} f  = g_0\hspace{0.05cm}.$$
 
:$$g_d(t=0) =  g_0 \cdot T \cdot \int_{-\infty}^{+\infty}H_{\rm Nyq}(f) \,{\rm d} f  = g_0\hspace{0.05cm}.$$
(3) &nbsp; Die Energie des Sendegrundimpulses ist wie folgt gegeben:
+
'''(3)''' &nbsp; The energy of the basic transmission pulse is given as follows:
 
:$$E_{\rm B} =  g_0^2 \cdot T^2 \cdot
 
:$$E_{\rm B} =  g_0^2 \cdot T^2 \cdot
 
  \int_{-\infty}^{+\infty} \vert H_{\rm S}(f)\vert ^2 \,{\rm d} f  \hspace{0.05cm}.$$
 
  \int_{-\infty}^{+\infty} \vert H_{\rm S}(f)\vert ^2 \,{\rm d} f  \hspace{0.05cm}.$$
(4) &nbsp; Die Detektionsstörleistung lautet:
+
'''(4)''' &nbsp; The detection noise power is:
 
:$$ \sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} \vert H_{\rm E}(f) \vert^2 \,{\rm d} f =
 
:$$ \sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} \vert H_{\rm E}(f) \vert^2 \,{\rm d} f =
 
  \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}\frac {\vert H_{\rm Nyq}(f) \vert^2}{\vert H_{\rm S}(f) \vert^2} \,{\rm d} f\hspace{0.05cm}. $$
 
  \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}\frac {\vert H_{\rm Nyq}(f) \vert^2}{\vert H_{\rm S}(f) \vert^2} \,{\rm d} f\hspace{0.05cm}. $$
(5) &nbsp; Setzt man diese Teilergebnisse in die Gleichung für den Systemwirkungsgrad ein, so erhält man:
+
'''(5)''' &nbsp; Substituting these partial results into the equation for the system efficiency,&nbsp; we obtain:
 
:$$\eta_{\rm L} = \left [ {T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm S}(f) \vert^2 \,{\rm d} f
 
:$$\eta_{\rm L} = \left [ {T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm S}(f) \vert^2 \,{\rm d} f
 
  \hspace{0.2cm} \cdot \hspace{0.2cm}T \cdot \int_{-\infty}^{+\infty}\frac { \vert H_{\rm Nyq}(f) \vert ^2}{ \vert H_{\rm S}(f) \vert^2} \,{\rm d} f } \right ]^{-1}\hspace{0.05cm}.$$
 
  \hspace{0.2cm} \cdot \hspace{0.2cm}T \cdot \int_{-\infty}^{+\infty}\frac { \vert H_{\rm Nyq}(f) \vert ^2}{ \vert H_{\rm S}(f) \vert^2} \,{\rm d} f } \right ]^{-1}\hspace{0.05cm}.$$
(6) &nbsp; Wir wenden nun auf den Ausdruck in der Klammer die Schwartzsche Ungleichung [BS01]<ref>Bronstein, I.N.; Semendjajew, K.A.: ''Taschenbuch der Mathematik''. 5. Auflage. Frankfurt: Harry Deutsch, 2001.</ref> an:
+
'''(6)''' &nbsp; We now apply Schwartz's inequality&nbsp; [BSMM15]<ref>Bronshtein, I.N.; Semendyayew, K.A.; Musiol, G.; Mühlig, H.:&nbsp; Handbook of Mathematics.&nbsp; 6. Edition. Heidelberg, New York, Dorderecht, London: Springer Verlag, 2015. ISBN: 978-3-662-46220-1</ref>&nbsp; to the expression in the parenthesis:
 
:$$\frac{1}{\eta_{\rm L} } = T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm 1}(f) \vert^2 \,{\rm d} f
 
:$$\frac{1}{\eta_{\rm L} } = T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm 1}(f) \vert^2 \,{\rm d} f
 
  \hspace{0.2cm} \cdot \hspace{0.2cm} T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm 2}(f) \vert^2 \,{\rm d} f
 
  \hspace{0.2cm} \cdot \hspace{0.2cm} T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm 2}(f) \vert^2 \,{\rm d} f
Line 167: Line 187:
 
  \hspace{0.1cm} \cdot \hspace{0.1cm} T \cdot \int_{-\infty}^{+\infty}\frac { \vert H_{\rm Nyq}(f) \vert ^2}{ \vert H_{\rm S}(f) \vert ^2} \,{\rm d} f \hspace{0.2cm}\ge\hspace{0.2cm}
 
  \hspace{0.1cm} \cdot \hspace{0.1cm} T \cdot \int_{-\infty}^{+\infty}\frac { \vert H_{\rm Nyq}(f) \vert ^2}{ \vert H_{\rm S}(f) \vert ^2} \,{\rm d} f \hspace{0.2cm}\ge\hspace{0.2cm}
 
  \left [ T \cdot \int_{-\infty}^{+\infty}\hspace{-0.5cm}H_{\rm Nyq}(f)  \,{\rm d} f \right ]^2  = 1. $$
 
  \left [ T \cdot \int_{-\infty}^{+\infty}\hspace{-0.5cm}H_{\rm Nyq}(f)  \,{\rm d} f \right ]^2  = 1. $$
(7) &nbsp; Damit ist gezeigt, dass der Systemwirkungsgrad bei Leistungsbegrenzung tatsächlich die Bedingung $\eta_{\rm L} \le 1$ erfüllt.
+
'''(7)''' &nbsp; Thus,&nbsp; it is shown that the system efficiency under power limitation indeed satisfies the condition &nbsp;$\eta_{\rm L} \le 1$.&nbsp;
  
(8) &nbsp; Die Auswertung zeigt, dass für $H_{\rm S, \hspace{0.05cm}opt}(f) = \gamma \cdot \sqrt{H_{\rm Nyq}(f)}$
+
'''(8)''' &nbsp; The evaluation shows that for &nbsp;$H_{\rm S, \hspace{0.08cm}opt}(f) = \gamma \cdot \sqrt{H_{\rm Nyq}(f)}$&nbsp;
in obiger Ungleichung das Gleichheitszeichen gilt:
+
in the above inequality,&nbsp; the equal sign holds:
 
:$$\gamma^2 \cdot T \cdot \int_{-\infty}^{+\infty}\hspace{-0.3cm} H_{\rm Nyq}(f) \,{\rm d} f \hspace{0.2cm} \cdot \hspace{0.2cm} \frac {1}{\gamma^2} \cdot T \cdot \int_{-\infty}^{+\infty} \hspace{-0.3cm}H_{\rm Nyq}(f) \,{\rm d} f =  \left [ T \cdot \int_{-\infty}^{+\infty}\hspace{-0.3cm}H_{\rm Nyq}(f)  \,{\rm d} f \right ]^2  = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \eta_{\rm L} =  1 \hspace{0.05cm}.$$
 
:$$\gamma^2 \cdot T \cdot \int_{-\infty}^{+\infty}\hspace{-0.3cm} H_{\rm Nyq}(f) \,{\rm d} f \hspace{0.2cm} \cdot \hspace{0.2cm} \frac {1}{\gamma^2} \cdot T \cdot \int_{-\infty}^{+\infty} \hspace{-0.3cm}H_{\rm Nyq}(f) \,{\rm d} f =  \left [ T \cdot \int_{-\infty}^{+\infty}\hspace{-0.3cm}H_{\rm Nyq}(f)  \,{\rm d} f \right ]^2  = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \eta_{\rm L} =  1 \hspace{0.05cm}.$$
(9) &nbsp; Dieses Ergebnis ist unabhängig vom Parameter $\gamma$, den wir deshalb vereinfachend zu $\gamma = 1$ setzen: &nbsp; $H_{\rm S, \hspace{0.05cm}opt}(f) = \sqrt{H_{\rm Nyq}(f)}$.}}
+
'''(9)''' &nbsp; This result is independent of the parameter &nbsp;$\gamma$,&nbsp; which we therefore simplify to &nbsp;$\gamma = 1$:&nbsp; &nbsp; $H_{\rm S, \hspace{0.08cm}opt}(f) = \sqrt{H_{\rm Nyq}(f)}$.
 +
<div align="right">'''q.e.d.'''</div>}}
  
  
  
==Wurzel–Nyquist–Systeme==
+
==Root Nyquist systems==
 
<br>
 
<br>
Das wesentliche Ergebnis der Berechnungen auf den letzten Seiten war, dass beim optimalen Binärsystem unter der Nebenbedingung [[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme#Leistungs.E2.80.93_und_Spitzenwertbegrenzung|Leistungsbegrenzung]]
+
The main result of the calculations on the last sections was that for the optimal binary system under the constraint of &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Power_and_peak_limitation|"power limitation"]]
*die Impulsantwort $h_{\rm E}(t)$ des Empfangsfilters formgleich mit dem Sendegrundimpuls $g_s(t)$ zu wählen ist; gleiches gilt für die zugehörigen Spektralfunktionen $H_{\rm E}(f)$ und $G_s(f)$,
+
*the basic detection pulse &nbsp;$g_d(t) = g_s(t) \star h_{\rm E}(t)$&nbsp; must satisfy the first Nyquist condition,&nbsp; and
*der Detektionsgrundimpuls $g_d(t) = g_s(t) \star h_{\rm E}(t)$ die erste Nyquistbedingung erfüllen muss.
+
*the impulse response &nbsp;$h_{\rm E}(t)$&nbsp; of the receiver filter must be chosen to be equal in shape to the basic transmission pulse &nbsp;$g_s(t)$;&nbsp; &nbsp;
 +
*the same applies to the spectral functions &nbsp;$H_{\rm E}(f)$&nbsp; and &nbsp;$G_s(f)$.
 +
 
 +
 
 +
If both &nbsp;$g_s(t)$&nbsp; and &nbsp;$h_{\rm E}(t)$&nbsp; are rectangular with &nbsp;$T_{\rm S} = T_{\rm E} \le T$,&nbsp; both conditions are satisfied.
 +
*However,&nbsp; the disadvantage of this configuration is the large bandwidth requirement due to the slowly decaying &nbsp;$\rm sinc$&ndash;shaped spectral functions  &nbsp;$G_s(f)$&nbsp; and &nbsp;$H_{\rm E}(f)$.
 +
*In the diagram below,&nbsp; the spectral function of the rectangular NRZ basic transmission pulse is plotted as a dashed purple curve.
  
Sind sowohl $g_s(t)$ als auch $h_{\rm E}(t)$ rechteckförmig mit $T_{\rm S} = T_{\rm E} \le T$, so werden beide Bedingungen erfüllt. Nachteilig für diese Konfiguration ist allerdings der große Bandbreitenbedarf aufgrund der nur langsam abfallenden, si&ndash;förmigen Spektralfunktionen  <i>G<sub>s</sub></i>(<i>f</i>) und <i>H</i><sub>E</sub>(<i>f</i>).<br><br>
 
Geht man von einem Nyquistspektrum mit Cosinus&ndash;Rolloff&ndash;Flanke (und Rolloff&ndash;Faktor <i>r</i>) aus,
 
::<math> G_d(f) =  G_s(f) \cdot H_{\rm E}(f)  =  g_0 \cdot T \cdot {H_{\rm
 
CRO}(f)}</math>
 
::<math>\Rightarrow \hspace{0.3cm}G_s(f) = g_0 \cdot T \cdot \sqrt{H_{\rm CRO}(f)},\hspace{0.5cm}H_{\rm
 
E}(f)= \sqrt{H_{\rm CRO}(f)}\hspace{0.05cm},</math>
 
so ergeben sich günstigere Spektraleigenschaften und ein geringerer Bandbreitenbedarf.<br>
 
Die folgende Grafik zeigt die normierten Sendespektren <i>G<sub>s</sub></i>(<i>f</i>)/(<i>g</i><sub>0</sub><i>T</i>) in logarithmierter Darstellung für die drei Rolloff&ndash;Faktoren<br>
 
*<i>r</i> = 0 (grüne Kurve),<br>
 
*<i>r</i> = 0.5 (blaue  Kurve), und<br>
 
*<i>r</i> = 1 (rote  Kurve).<br><br>
 
Die Spektralfunktion <i>G<sub>s</sub></i>(<i>f</i>)/(<i>g</i><sub>0</sub><i>T</i>), die sich bei einem rechteckförmigen NRZ&ndash;Sendegrundimpils ergibt, ist gestrichelt und violett eingezeichnet.<br><br>
 
[[File:P_ID1289__Dig_T_1_4_S4_v1.png|Verschiedene Sendespektren bei Basisbandübertragung|class=fit]]<br><br>
 
Anzumerken ist, dass der Bandbreitenbedarf bei der Basisbandübertragung nur eine untergeordnete Rolle spielt. Die Grafik gilt jedoch auch für die Trägerfrequenzsysteme entsprechend [http://en.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume&action=edit&redlink=1 Kapitel 4] bei Darstellung im äquivalenten Tiefpassbereich. Bei diesen Systemen spielt die Bandbreite eine wichtige  Rolle. Jedes zusätzliches Hertz an Bandbreite kann sehr teuer sein. <br>
 
  
 +
[[File:EN_Dig_T_1_4_S4_v3.png|right|frame|Different transmission spectra for baseband transmission|class=fit]]
 +
Assuming the cosine rolloff frequency response &nbsp; &rArr; &nbsp; $H_{\rm E}(f) = H_{\rm CRO}(f)$,&nbsp;
 +
:$$G_d(f) =  G_s(f) \cdot H_{\rm E}(f)  =  g_0 \cdot T \cdot {H_{\rm
 +
CRO}(f)} $$
 +
:$$\Rightarrow \hspace{0.3cm}G_s(f) = g_0 \cdot T \cdot \sqrt{H_{\rm CRO}(f)},\hspace{0.5cm}H_{\rm
 +
E}(f)= \sqrt{H_{\rm CRO}(f)}\hspace{0.05cm},$$
 +
then for each rolloff factor &nbsp;$r$,&nbsp; more favorable spectral characteristics and lower bandwidth requirements result.
  
== Systemoptimierung bei Spitzenwertbegrenzung==
+
The diagram shows the normalized transmission spectra &nbsp;$G_s(f)/(g_0 \cdot T)$&nbsp; in logarithmic representation for the three rolloff factors:
 +
*$r = 0$&nbsp; (green curve),
 +
*$r = 0.5$&nbsp; (blue curve), and
 +
*$r = 1$&nbsp; (red curve).
 +
<br clear=all>
 +
$\rm Notes$:
 +
*For baseband transmission,&nbsp; the bandwidth requirement plays only a minor role.
 +
*However,&nbsp; the diagram also applies to &nbsp;[[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Common_block_diagram_for_ASK_and_BPSK|"carrier frequency systems"]]&nbsp; when displayed in the equivalent low-pass range.
 +
*In these systems,&nbsp; bandwidth plays a very important role.&nbsp; Because:&nbsp; &nbsp; Every additional Hertz of bandwidth can be very expensive. <br clear=all>
 +
== System optimization with peak limitation==
 
<br>
 
<br>
Ist das (bipolare) Sendesignal auf &plusmn;<i>s</i><sub>0</sub> begrenzt, so gilt für die minimale Bitfehlerwahrscheinlichkeit::
+
For the AWGN channel with the (one-sided) noise power density &nbsp;$N_0$,&nbsp; the system optimization depends to a large extent on which constraint is specified:
<math>p_{\rm B, \hspace{0.05cm}min} = {\rm Q} \left( \sqrt{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm}A}}}\right)\hspace{0.5cm}{\rm mit}\hspace{0.5cm}
+
*In the case of &nbsp;"power limitation"&nbsp; (German:&nbsp; "Leistungsbegrenzung" &nbsp; &rArr; &nbsp; subscript:&nbsp; "'''L'''"),&nbsp; the energy of the basic transmission pulse &nbsp;$g_s(t)$&nbsp;  must not exceed a specified value &nbsp;$E_{\rm B}$.&nbsp; Here,&nbsp;  the following applies to the minimum bit error probability and the maximum SNR:
  \rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm}A}}={2 \cdot s_0^2 \cdot T}/{N_0}\hspace{0.05cm}.</math><br>
+
:$$p_{\rm B, \hspace{0.08cm}min} = {\rm Q} \left( \sqrt{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}\right)\hspace{0.5cm}{\rm with}\hspace{0.5cm}
Der Buchstabe <b>A</b> steht hierbei für Amplitudenbegrenzung (oder Spitzenwertbegrenzung). Es gibt nur ein einziges System, das diese minimale Fehlerwahrscheinlichkeit erreicht, nämlich eine Konfiguration mit NRZ&ndash;Rechteck&ndash;Sendegrundimpuls und daran angepasstem Empfangsfilter.<br>
+
  \rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}={2 \cdot E_{\rm B}}/{N_0}\hspace{0.05cm}.$$
{{Definition}}''':''' Der Systemwirkungsgrad bei Amplitudenbegrenzung (Spitzenwertbegrenzung) lautet::
+
*In the case of &nbsp;"peak limitation"&nbsp; (German:&nbsp; "Spitzenwertbegrenzung"&nbsp; or&nbsp; "Amplitudenbegrenzung" &nbsp; &rArr; &nbsp; subscript:&nbsp; "'''A'''"),&nbsp; on the other hand,&nbsp; the modulation range of the transmitter device is limited &nbsp; &rArr; &nbsp; $\vert s(t) \vert \le s_0\hspace{0.4cm}{\rm{for} }\hspace{0.15cm}{\rm
<math>\eta_{\rm A} =  \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}| \hspace{0.05cm}
+
all}\hspace{0.15cm}t$. Here, the following applies to the corresponding quantities:
A}}}=  \frac{g_0^2 /\sigma_d^2}{2 \cdot s_0^2 \cdot T/N_0}\hspace{0.05cm}.</math><br>
+
:$$p_{\rm B, \hspace{0.08cm}min} = {\rm Q} \left( \sqrt{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm}A}}}\right)\hspace{0.5cm}{\rm with}\hspace{0.5cm}
Hierbei sind folgende Systemgrößen verwendet:
+
  \rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm}A}}={2 \cdot s_0^2 \cdot T}/{N_0}\hspace{0.05cm}.$$
*<i>g</i><sub>0</sub> = <i>g<sub>d</sub></i>(<i>t</i> = 0) gibt die Amplitude des betrachteten Nyquistimpulses an.<br>
 
*<i>s</i><sub>0</sub> stellt den maximalen Betrag des bipolaren Sendesignals dar.<br>
 
*<i>N</i><sub>0</sub> ist die (einseitige) Rauschleistungsdichte.<br>
 
*<i>&sigma;<sub>d</sub></i><sup>2</sup> bezeichnet die Detektionsstörleistung.
 
{{end}}<br>
 
Dieser Wirkungsgrad unterscheidet sich vom Systemwirkungsgrad <i>&eta;</i><sub>L</sub> bei Leistungsbegrenzung dadurch, dass nun im Nenner <i>s</i><sub>0</sub><sup>2</sup> &middot; <i>T</i> anstelle von <i>E</i><sub>B</sub> steht. Es besteht folgender Zusammenhang::
 
<math>\eta_{\rm A} =  \frac{E_{\rm B}}{s_0^2 \cdot T} \cdot \eta_{\rm L}= {\eta_{\rm L}}/{C_{\rm S}^2}\hspace{0.05cm}.</math><br>
 
Hierbei bezeichnet der Crestfaktor das Verhältnis von Maximalwert <i>s</i><sub>0</sub> und Effektivwert <i>s</i><sub>eff</sub> von <i>s</i>(<i>t</i>)::
 
<math>C_{\rm S} = \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}=  {s_0}/{s_{\rm eff}}.</math><br>
 
<i>s</i><sub>eff</sub> ist gleich der Wurzel aus der Signalleistung (<i>E</i><sub>B</sub>/<i>T</i>).<br>
 
{{Beispiel}}''':'''  Wir betrachten wie im [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Optimierung_der_Basisband%C3%BCbertragungssysteme#Leistungs.E2.80.93_und_Spitzenwertbegrenzung_.282.29 vorherigen Beispiel] drei unterschiedliche Konfigurationen mit jeweils rechteckförmigen Zeitfunktionen <i>g<sub>s</sub></i>(<i>t</i>) und <i>h</i><sub>E</sub>(<i>t</i>) und geben hierfür die Systemwirkungsgrade an::
 
<math>\underline {{\rm System \hspace{0.15cm}A\hspace{-0.1cm}:}}\hspace{0.5cm}\rho_d =  {2 \cdot E_{\rm B}}/{N_0} = { 2 \cdot s_0^2 \cdot
 
T}/{N_0}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\eta_{\rm L} = 1,\hspace{0.3cm}\eta_{\rm A} =
 
1\hspace{0.05cm}.</math>
 
:<math>\underline {{\rm System \hspace{0.15cm}B\hspace{-0.1cm}:}}\hspace{0.5cm}\rho_d =  {E_{\rm B}}/{N_0} ={ s_0^2 \cdot
 
  T}/{N_0}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\eta_{\rm L} = 0.5,\hspace{0.3cm}\eta_{\rm A} =
 
0.5\hspace{0.05cm}.</math>
 
:<math>\underline {{\rm System \hspace{0.15cm}C\hspace{-0.1cm}:}}\hspace{0.5cm}
 
\rho_d = {2 \cdot E_{\rm B}}/{N_0} = { s_0^2 \cdot
 
T}/{N_0}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\eta_{\rm L} = 1,\hspace{0.3cm}\eta_{\rm A} =
 
0.5\hspace{0.05cm}.</math>
 
Man erkennt, dass beim System <b>B</b> beide Systemwirkungsgrade aufgrund der fehlenden Anpassung (<i>T</i><sub>E</sub> &ne; <i>T</i><sub>S</sub>) nur jeweils 0.5 sind. Beim System <b>C</b> hat zwar der Systemwirkungsgrad <i>&eta;</i><sub>L</sub> wegen <i>T</i><sub>E</sub> = <i>T</i><sub>s</sub> den Maximalwert. Dagegen ist <i>&eta;</i><sub>A</sub> nur 0.5, da der RZ&ndash;Impuls nicht die maximale Energie besitzt, die aufgrund der Spitzenwertbegrenzung erlaubt wäre. Der Crestfaktor hat hier den Wert
 
&bdquo;Wurzel aus 2&rdquo;. {{end}}<br>
 
  
 +
For this second case, we define:
  
== Systemoptimierung bei Spitzenwertbegrenzung (2) ==
+
{{BlaueBox|TEXT= 
<br>
+
$\text{Definition:}$&nbsp; The &nbsp;'''system efficiency under peak limitation'''&nbsp; ("amplitude limitation")&nbsp; is:
Nun betrachten wir eine [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Optimierung_der_Basisband%C3%BCbertragungssysteme#Wurzel.E2.80.93Nyquist.E2.80.93Systeme Wurzel&ndash;Nyquist&ndash;Konfiguration] mit Cosinus&ndash;Rolloff&ndash;Gesamtfrequenzgang::
+
:$$\eta_{\rm A} =  \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}\vert \hspace{0.05cm}
<math>G_s(f) = g_0 \cdot T \cdot \sqrt{H_{\rm CRO}(f)},\hspace{0.5cm}H_{\rm
+
A} } }=  \frac{g_0^2 /\sigma_d^2}{ 2 \cdot s_0^2 \cdot T/N_0}\hspace{0.05cm}.$$
  E}(f)= \sqrt{H_{\rm CRO}(f)}</math>
+
*This system efficiency also satisfies the condition &nbsp;$0 \le \eta_{\rm A} \le 1$.
:<math>\Rightarrow \hspace{0.3cm} G_d(f) =     g_0 \cdot T \cdot {H_{\rm CRO}(f)} = G_{\rm Nyq}(f)\hspace{0.05cm}.</math>
+
*There is only one system with the result &nbsp;$\eta_{\rm A} = 1$: &nbsp; '''The NRZ rectangular basic transmission pulse and the receiver filter matched to it.'''.}}
Die Grafik zeigt die Augendiagramme am Sender (oben) und am Empfänger (unten), jeweils für die Rolloff&ndash;Faktoren <i>r</i> = 0.25, <i>r</i> = 0.50 und <i>r</i> = 1. Es sei daran erinnert, dass eine solche Konfiguration unter der Nebenbedingung der Leistungsbegrenzung unabhängig vom Rolloff&ndash;Faktor <i>r</i> optimal ist.
+
 
<br><br>[[File:P_ID1290__Dig_T_1_4_S5_v2.png|Augendiagramme bei Wurzel-Nyquist-Konfigurationen|class=fit]]<br><br>
+
 
Man erkennt aus dieser Darstellung:
+
A comparison with the &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_power_limitation|"system efficiency under power limitation"]] &nbsp; &rArr; &nbsp; $\eta_{\rm L}$&nbsp; shows:
*Der Sendeimpuls <i>g<sub>s</sub></i>(<i>t</i>) erfüllt nicht die Nyquistbedingung: Das Auge am Sender (obere Bildreihe) ist nicht vollständig geöffnet; der Maximalwert des Sendesignals ist größer als sein Effektivwert.<br>
+
* $\eta_{\rm A}$&nbsp; differs from &nbsp;$\eta_{\rm L}$&nbsp; in that now the denominator contains &nbsp;$s_0^2 \cdot T$&nbsp; instead of &nbsp;$E_{\rm B}$.&nbsp; The following relationship holds:
 +
:$$\eta_{\rm A} = \frac{E_{\rm B}}{s_0^2 \cdot T} \cdot \eta_{\rm L}= \frac{\eta_{\rm L}}{C_{\rm S}^2}\hspace{0.05cm}.$$
 +
*Here, the &nbsp;[https://en.wikipedia.org/wiki/Crest_factor "crest factor"]&nbsp; $C_{\rm S}$&nbsp; denotes the ratio of the maximum value &nbsp;$s_0$&nbsp; and the rms value &nbsp;$s_{\rm eff}$&nbsp; of the transmitted signal:
 +
:$$C_{\rm S} =  \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}= \frac{s_0}{s_{\rm eff}}
 +
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{\rm eff} = \sqrt {E_{\rm B}/T}.$$
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp; As in &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Power_and_peak_limitation| "$\text{Example 1}$"]]&nbsp; we consider three different configurations,&nbsp; each with rectangular functions &nbsp;$g_s(t)$&nbsp; and &nbsp;$h_{\rm E}(t)$.&nbsp; The system efficiencies are:
 +
* $\text{System A:}$ &nbsp; &nbsp;$\rho_d =  {2 \cdot E_{\rm B} }/{N_0} = { 2 \cdot s_0^2 \cdot
 +
T}/{N_0}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\eta_{\rm L} = 1.0,\hspace{0.3cm}\eta_{\rm A} =
 +
1.0\hspace{0.05cm}.$
 +
* $\text{System B:}$ &nbsp; &nbsp;$\rho_d =  {E_{\rm B} }/{N_0} ={ s_0^2 \cdot
 +
T}/{N_0}\hspace{1.35cm}\Rightarrow \hspace{0.3cm}\eta_{\rm L} = 0.5,\hspace{0.3cm}\eta_{\rm A} =
 +
0.5\hspace{0.05cm}.$
 +
* $\text{System C:}$ &nbsp; &nbsp;$\rho_d =  {2 \cdot E_{\rm B} }/{N_0} = { s_0^2 \cdot
 +
T}/{N_0}\hspace{0.8cm}\Rightarrow \hspace{0.3cm}\eta_{\rm L} = 1.0,\hspace{0.3cm}\eta_{\rm A} =
 +
0.5\hspace{0.05cm}.$
 +
 
 +
 
 +
It can be seen:
 +
*For &nbsp;$\text{System A}$&nbsp; both system efficiencies are at most equal &nbsp;$1$.
 +
*For &nbsp;$\text{System B}$,&nbsp; both system efficiencies are only &nbsp;$0.5$&nbsp; each due to the lack of matching &nbsp;$(T_{\rm E} \ne T_{\rm S})$.&nbsp;
 +
*For &nbsp;$\text{System C}$&nbsp;  the system efficiency &nbsp;$\eta_{\rm L}$&nbsp; has the maximum value &nbsp;$\eta_{\rm L} = 1$&nbsp; because of &nbsp;$T_{\rm E} = T_{\rm S}$.&nbsp; In contrast, &nbsp;$\eta_{\rm A} = 0.5$ &nbsp; because the RZ pulse does not have the maximum energy that would be allowed due with the peak constraint.&nbsp; The crest factor here has the value &nbsp;$C_{\rm S} = \sqrt{2}$.}}
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp;
 +
We now consider a &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Root_Nyquist_systems |"root&ndash;Nyquist&ndash;configuration"]]&nbsp; with cosine&ndash;rolloff total frequency response:
 +
:$$H_{\rm S}(f)= \sqrt{H_{\rm CRO}(f)}, \hspace{0.5cm}H_{\rm
 +
  E}(f)= \sqrt{H_{\rm CRO}(f)}
 +
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm S}(f) \cdot H_{\rm E}(f) = {H_{\rm CRO}(f)}\hspace{0.05cm}.$$
 +
Here,&nbsp; the frequency responses&nbsp; $H_{\rm S}(f)$&nbsp; and&nbsp; $H_{\rm CRO}(f)$&nbsp; give the normalized spectral functions of the basic transmission pulse and the basic detection pulse.&nbsp; It holds: 
 +
:$$G_s(f) = g_0 \cdot T \cdot \sqrt{H_{\rm S}(f)},\hspace{0.5cm} G_d(f) = g_0 \cdot T \cdot {H_{\rm CRO}(f)} = G_{\rm Nyq}(f)\hspace{0.05cm}.$$
 +
The graphic shows the eye diagrams at the transmitter&nbsp; (top)&nbsp; resp. at the receiver&nbsp; (bottom)&nbsp; for the rolloff&ndash;factors &nbsp;$r = 0.25$, &nbsp;$r = 0.5$&nbsp; and &nbsp;$r = 0. 1$.&nbsp; It should be recalled,&nbsp; that such a configuration is optimal under the constraint of power limitation independent of the rolloff&ndash;factor &nbsp;$r$.&nbsp; In front of the decision device there is always a fully open eye&nbsp; (see lower row of figures)&nbsp; and it holds for the system efficiency: &nbsp; $\eta_{\rm L} = 1$.
 +
[[File:P_ID1290__Dig_T_1_4_S5_v2.png|right|frame|Eye diagrams for root Nyquist configurations|class=fit]]
 +
 
 +
One can see from this plot:
 +
*The basic transmission pulse &nbsp;$g_s(t)$&nbsp; does not satisfy the Nyquist condition: &nbsp; The eye at the transmitter&nbsp; (upper row of images)&nbsp; is not fully open and the maximum value of of the transmitted signal  is greater than its rms value.
 +
 
 +
*The crest factor &nbsp;$C_{\rm S} = s_0/s_{\rm eff}$&nbsp; is always greater than&nbsp; $1$&nbsp; and thus the efficiency &nbsp;$\eta_{\rm A}<1 $.&nbsp; For &nbsp;$r = 0.5$:&nbsp; &nbsp;$C_{\rm S} \approx 1.45$&nbsp; &rArr; &nbsp;$\eta_{\rm A} \approx 0.47$.&nbsp; The detection&ndash;SNR is then reduced by &nbsp;$10 \cdot \lg \ \eta_{\rm A} \approx 3.2 \ \rm dB$&nbsp; than in the rectangle&ndash;rectangle&ndash;configuration.
  
*Der Crestfaktor <i>C</i><sub>S</sub> = <i>s</i><sub>0</sub>/<i>s</i><sub>eff</sub> wird mit kleinerem <i>r</i> größer und damit der Wirkungsgrad <i>&eta;</i><sub>A</sub> kleiner. Für <i>r</i> = 0.5 ergibt sich  <i>C</i><sub>S</sub> &asymp; 1.45 und damit <i>&eta;</i><sub>A</sub> &asymp; 0.47. Das Detektions&ndash;SNR ist dann um den Betrag 10 &middot; lg <i>&eta;</i><sub>A</sub> &asymp; 3.2 dB geringer als bei der Rechteck&ndash;Rechteck&ndash;Konfiguration.<br>
+
*In the limiting case &nbsp;$r = 0$&nbsp; even &nbsp;$C_{\rm S} \to \infty$&nbsp; and &nbsp;$\eta_{\rm A} \to 0$.&nbsp; Here,&nbsp; the basic transmission pulse&nbsp;$g_s(t)$&nbsp; falls here even more slowly than with &nbsp;$1/t$&nbsp; and it holds:
 +
:$$\max_t\{ s(t) \} = \max_t \hspace{0.15cm}\left [  \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot
 +
T)\ \right ]\rightarrow \infty\hspace{0.05cm}.$$
  
*Im (theoretischen) Grenzfall <i>r</i> = 0 gilt sogar <i>C</i><sub>S</sub> &#8594; &#8734; und <i>&eta;</i><sub>A</sub> &#8594; 0. Der Sendegrundimpuls <i>g<sub>s</sub></i>(<i>t</i>) fällt hier noch langsamer als mit 1/<i>t</i> ab, und es gilt:
+
*Limiting the transmitted signal &nbsp;$s(t)$&nbsp; to a finite maximum value &nbsp;$s_0$ by a weighting factor approaching zero, leads to a closed eye in front of the decision device.}}
::<math>\max_t\{ s(t) \} = \max_t \hspace{0.15cm}\big [  \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot
 
T)\ \big ]\rightarrow \infty\hspace{0.05cm}.</math>
 
*Begrenzt man das Sendesignal <i>s</i>(<i>t</i>) durch einen gegen 0 gehenden Gewichtungsfaktor auf einen endlichen Maximalwert <i>s</i><sub>0</sub>, so führt dies zu einem geschlossenem Auge vor dem Entscheider.<br>
 
  
  
== Optimierung des Rolloff–Faktors bei Spitzenwertbegrenzung ==
+
== Optimization of the rolloff factor with peak limitation ==
 
<br>
 
<br>
Es wird von folgenden Voraussetzungen ausgegangen:
+
For this chapter, the following assumptions are made:
*Der Sendegrundimpuls <i>g<sub>s</sub></i>(<i>t</i>) sei NRZ&ndash;rechteckförmig; bei Spitzenwertbegrenzung ist dies optimal.<br>
+
*Let the basic transmission pulse &nbsp;$g_s(t)$&nbsp; be NRZ rectangular; &nbsp;with peak limitation this is optimal.<br>
*Der Gesamtfrequenzgang <i>H</i><sub>S</sub>(<i>f</i>) &middot; <i>H</i><sub>E</sub>(<i>f</i>) = <i>H</i><sub>Nyq</sub>(<i>f</i>) erfülle die Nyquistbedingung und werde durch einen Cosinus&ndash;Rolloff&ndash;Tiefpass <i>H</i><sub>CRO</sub>(<i>f</i>) beschrieben.<br>
+
*The overall frequency response &nbsp;$H_{\rm S}(f) \cdot H_{\rm E}(f) ={H_{\rm Nyq}(f)}$&nbsp; satisfy the Nyquist condition.
*Da die Impulsamplitude <i>g</i><sub>0</sub> unabhängig vom Rolloff&ndash;Faktor <i>r</i> ist, lässt sich die SNR&ndash;Maximierung hier auf die Minimierung der Rauschleistung vor dem Entscheider zurückführen::
+
*The Nyquist frequency response is realized by a cosine rolloff low-pass: &nbsp; $H_{\rm Nyq}(f) = H_{\rm CRO}(f)$.
<math>\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}|H_{\rm E}(f)|^2 \,{\rm d} f\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum,}
+
*Since the pulse amplitude &nbsp;$g_0$&nbsp; is independent of the rolloff factor &nbsp;$r$,&nbsp; the SNR maximization can be attributed to the minimization of the noise power at the decision:
  \hspace{0.5cm}{\rm wobei}\hspace{0.5cm}
+
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}|H_{\rm E}(f)|^2 \,{\rm d} f\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum,}
  H_{\rm E}(f) =\frac {H_{\rm CRO}(f)}{{\rm si}(\pi f T)}\hspace{0.05cm}.</math><br>
+
  \hspace{0.5cm}{\rm where}\hspace{0.5cm}
Die Grafik zeigt die Leistungsübertragungsfunktion |<i>H</i><sub>E</sub>(<i>f</i>)|<sup>2</sup> für drei verschiedene Rolloff&ndash;Faktoren. Die Flächen unter diesen Kurven sind jeweils ein Maß für die Rauschleistung vor dem Entscheider.
+
  H_{\rm E}(f) =\frac {H_{\rm CRO}(f)}{{\rm sinc}(f T)}\hspace{0.05cm}.$$
<br><br>[[File:P_ID1291__Dig_T_1_4_S6_v2.png|Zur Optimierung des Rolloff-Faktors bei Spitzenwertbegrenzung|class=fit]]<br><br>
+
The diagram shows the power transmission function &nbsp;$|H_{\rm E}(f)|^2$&nbsp; for three different rolloff factors. The areas under each of these curves are a measure of the noise power &nbsp;$\sigma_d^2$&nbsp; before the decision. One can see from this plot:
Man erkennt aus dieser Darstellung:
+
 
*Der Rolloff&ndash;Faktor <i>r</i> = 0 (Rechteck) führt trotz des sehr schmalbandigen Empfangsfilters nur zum Wirkungsgrad <i>&eta;</i><sub>A</sub> = 0.65, da <i>H</i><sub>E</sub>(<i>f</i>) wegen der si-Funktion im Nenner mit wachsendem <i>f</i> ansteigt.<br>
+
[[File:EN_Dig_T_1_4_S6.png|right|frame|For optimization of the rolloff factor with peak limitation|class=fit]]
*<i>r</i> = 1 bewirkt zwar ein doppelt so breites Nyquistspektrum, führt aber zu keiner Anhebung. Da die Fläche unter der roten Kurve kleiner ist als die grüne, ergibt sich ein besserer Wert: <i>&eta;</i><sub>A</sub> = 0.88.<br>
+
 
*Der größte Systemwirkungsgrad ergibt sich für <i>r</i><sub>opt</sub> &asymp; 0.8 (flaches Maximum) mit <i>&eta;</i><sub>A</sub> = 0.89. Hierfür erreicht man den bestmöglichen Kompromiss zwischen Bandbreite und Überhöhung.<br>
+
*The rolloff factor &nbsp;$r = 0$&nbsp; (rectangular frequency response)&nbsp; leads only to efficiency &nbsp;$\eta_{\rm A} \approx 0.65$,&nbsp; despite the very narrowband receiver filter,&nbsp; since &nbsp;$H_{\rm E}(f)$&nbsp; increases with increasing &nbsp;$f$&nbsp; because of the &nbsp;$\rm sinc$-function in the denominator.<br>
*Durch Vergleich mit dem optimalen Frequenzgang <i>H</i><sub>E</sub>(<i>f</i>) = si(&pi;<i>f</i><i>T</i>) bei Spitzenwertbegrenzung, der zum Ergebnis <i>&sigma;<sub>d</sub></i><sup>2</sup> = <i>N</i><sub>0</sub>/(2<i>T</i>) &nbsp; &#8658; &nbsp; <i>&eta;</i><sub>A</sub> = 1 führt, erhält man für den Systemwirkungsgrad:
+
* Although $r = 1$&nbsp; causes a spectrum twice as wide,&nbsp;  but it does not lead to any noise enhancement.&nbsp; Since the area under the red curve is smaller than that under the green curve,&nbsp; the result is a better value: &nbsp; $\eta_{\rm A} \approx 0.88$.
::<math>eta_{\rm A} = \left  [T \cdot
+
*The highest system efficiency results for &nbsp;$r \approx 0.8$ &nbsp; (flat maximum) &nbsp; with &nbsp; $\eta_{\rm A} \approx 0.89$. For this one achieves the best possible compromise between bandwidth and boost.<br>
 +
*By comparison with the optimal frequency response &nbsp;$H_{\rm E}(f) = {\rm sinc}(f T)$&nbsp; with peak limitation,&nbsp; which leads to the result &nbsp;$\sigma_d^2 = N_0/(2T)$ &nbsp; &#8658; &nbsp; $\eta_{\rm A}= 1$,&nbsp; we obtain for the system efficiency:
 +
:$$\eta_{\rm A} = \left  [T \cdot
 
  \int_{-\infty}^{+\infty}\hspace{-0.15cm} |H_{\rm E}(f)|^2 \,{\rm d} f \right ]^{-1}
 
  \int_{-\infty}^{+\infty}\hspace{-0.15cm} |H_{\rm E}(f)|^2 \,{\rm d} f \right ]^{-1}
   \hspace{0.05cm}.</math><br>
+
   \hspace{0.05cm}.$$
*Das bedeutet: Das beste Cosinus-Rolloff-Nyquistspektrum mit <i>r</i><sub>opt</sub> = 0.8 (blaue Kurve) ist gegenüber dem Matched-Filter (violett-gestrichelte Kurve) um ca. 0.5 dB schlechter, da die Fläche unter der blauen Kurve um ca. 12% größer ist als die Fläche unter der violetten Kurve.<br>
+
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp;
 +
*The absolute optimum at peak limitation &nbsp; &#8658; &nbsp; $\eta_{\rm A}= 1$&nbsp; results only with a rectangular basic transmission pulse &nbsp;$g_s(t)$&nbsp; and a likewise rectangular receiver filter pulse response &nbsp;$h_{\rm E}(t)$&nbsp; of the same width &nbsp;$T$.
 +
*The best cosine rolloff Nyquist spectrum with &nbsp;$r = 0.8$&nbsp; (blue curve)&nbsp; is about &nbsp;$0.5 \ \rm  dB$&nbsp; worse compared to the matched filter&nbsp; (violet-dashed curve),&nbsp; because the area under the blue curve is about &nbsp;$12\%$&nbsp; larger than the area under the violet curve.
 +
*The so-called &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Root_Nyquist_systems|"root&ndash;root configuration"]] &nbsp; &rArr; &nbsp; $H_{\rm S}(f) = H_{\rm E}(f) =\sqrt{H_{\rm CRO}(f)}$&nbsp; thus only makes sense if one assumes power limitation.}}
  
  
==Aufgaben==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:1.6_Wurzel–_Nyquist–_System|A1.6 Wurzel–Nyquist–System]]
+
[[Aufgaben:Exercise_1.6:_Root_Nyquist_System|Exercise 1.6: Root Nyquist System]]
  
[[Zusatzaufgaben:1.6Z_Zwei_Optimalsysteme|Z1.6 Zwei Optimalsysteme]]
+
[[Aufgaben:Exercise_1.6Z:_Two_Optimal_Systems|Exercise 1.6Z: Two Optimal Systems]]
  
[[Aufgaben:1.7_Systemwirkungsgrade|A1.7 Systemwirkungsgrade]]
+
[[Aufgaben:Exercise_1.7:_System_Efficiencies|Exercise 1.7: System Efficiencies]]
  
==Quellenverzeichnis==
+
==References==
  
 
<references/>
 
<references/>

Latest revision as of 14:51, 23 January 2023


Prerequisites and optimization criterion


The following block diagram applies to this chapter  "Optimization of Baseband Transmission Systems".  Unless explicitly stated otherwise,  the following prerequisites are assumed in the following:

Block diagram of a baseband transmission system
  • The transmission is binary, bipolar and redundancy-free. The spacing between symbols is  $T$  and the  (equivalent)  bit rate  $R = 1/T$.  Multilevel and/or redundant systems are not discussed until the  main chapter 2:   "Coded and Multilevel Transmission"  of this book.
  • The basic transmission pulse  $g_s(t)$  is rectangular and has the amplitude  $s_0$  and the pulse duration  $T_{\rm S} \le T$.  If the pulse duration  $T_{\rm S}$  coincides with the symbol duration $T$,  we speak of NRZ  ("non-return-to-zero")  rectangular pulses.  In the case  $T_{\rm S} < T$,  the RZ  ("return-to-zero")  format is present.
  • The AWGN model with the  (one-sided)  noise power density  $N_0$  is used as the transmission channel,  so that  $r(t) = s(t) + n(t)$  applies to the received signal.  The two-sided noise power density  $(N_0/2)$  is more suitable for system-theoretical investigations.
  • Let the impulse response  $h_{\rm E}(t)$  of the receiver filter  (German:  "Empfangsfilter"   ⇒   subscript:  "E")  also be rectangular,  but with width  $T_{\rm E}$  and height  $1/T_{\rm E}$.  The DC transfer factor is therefore  $H_{\rm E}(f = 0) = 1$.  Only in the special case  $T_{\rm E} = T_{\rm S} $  ⇒  $H_{\rm E}(f)$  can be called a  "matched filter".
  • In order to exclude intersymbol interfering,  the constraint  $T_{\rm S} + T_{\rm E} \le 2T$  must always be observed during optimization.  Intersymbol interfering will not be considered until the  main chapter 3:   "Intersymbol Interfering and Equalization Methods"  of this book.
  • To obtain the sink symbol sequence  $〈v_ν〉$  as the best possible estimate for the source symbol sequence  $〈q_ν〉$,  we use a simple threshold decision with the optimal decision threshold  $E = 0$  and optimal detection times  $($under the given conditions at  $\nu \cdot T)$. 


$\text{Definition:}$  By  "system optimization"  we mean here to determine the parameters  $T_{\rm S}$  and  $T_{\rm E}$  of the basic transmission pulse  $g_s(t)$  and the receiver filter impulse response  $h_{\rm E}(t)$  in such a way that the bit error probability  $p_{\rm B}$  assumes the smallest possible value.


Power and peak limitation


The optimization of the system variables is decisively influenced by

  1. whether "power limitation" 
  2. or  "peak limitation" 


of the transmitted signal  $s(t)$  is required as a constraint of the optimization.

$\text{Definition:}$   Power limitation  means that the  (average)  transmission power  (German:  "Sendeleistung"   ⇒   subscript:  "S")  $P_{\rm S}$  must not exceed a specified maximum value  $P_\text{S, max}$: 

$$P_{\rm S}= {\rm E}[s(t)^2] = \overline{s(t)^2} \le P_{\rm S,\hspace{0.05cm} max}\hspace{0.05cm}.$$
  • In order to achieve the minimum error probability,  one will naturally choose the average transmission power  $P_{\rm S}$  as large as possible in the allowed range.
  • Therefore,  $P_{\rm S} = P_\text{S, max}$  is always set in the following.


The question of whether power limitation can actually be assumed as a secondary condition of optimization depends on the technical boundary conditions.

  • This assumption is especially justified for radio transmission systems,  among other things
  • because the impairment of humans and animals known as  "electrosmog"  depends to a large extent on the  (average)  radiated power.


Note:   Of course,  a radio transmission system does not operate in baseband.  However,  the description variables defined here using baseband transmission as an example are modified in the  main chapter 4:   "Generalized Description of Digital Modulation Methods"  of this book to the effect that they are also applicable to digital carrier frequency systems.

$\text{Definition:}$   Peak limitation  is always referred to when the output range of the transmitter is limited.  For bipolar signaling,  the corresponding condition is:

$$\vert s(t) \vert \le s_0\hspace{0.4cm}{\rm{for} }\hspace{0.15cm}{\rm all}\hspace{0.15cm}t.$$
  • Of course,  "peak limitation"  limits also the power,  but the "peak power", not the  "average power".
  • Often,  instead of  "peak limitation",  the term  "amplitude limitation"  is also used,  but this does not quite reflect the facts.


The condition  "peak limitation"  is useful and even necessary,  for example,  if

  • the output power range of the transmitter is limited due to nonlinearities of components and power amplifiers,  or
  • the crosstalk noise must not exceed a limit value at any time.  This is especially important when communicating over two-wire lines.


$\text{Example 1:}$  We consider three different constellations.  Let the basic transmission pulse  $g_s(t)$  and the receiver filter impulse response  $h_{\rm E}(t)$  each be rectangular and the amplitude  $g_0$  of the output pulse  $g_d(t)$  always coincide with the amplitude  $s_0$  of the input pulse  $g_s(t)$ . 


$\text{System A}$  $(T_{\rm S} = T, \ T_{\rm E} = T)$:

Impulse response  $h_{\rm E}(t)$ and pulses  $g_s(t)$  as well as  $g_d(t)$  for  $\text{System A}$
  • NRZ basic transmission pulse,
  • Matched filter,  since  $T_{\rm E} = T_{\rm S}$,
  • Basic detection pulse:   triangle,
  • Energy per bit:   $E_{\rm B} = s_0^2 \cdot T$,
  • Noise power:   $\sigma_d^2 = N_0/(2T)$,
  • Best possible constellation
  • Bit error probability:   $p_{\rm B}\hspace{-0.01cm} =\hspace{-0.01cm}{\rm Q} \left( g_0/\sigma_d\right)$
$$\Rightarrow \hspace{0.3cm}p_{\rm B}= {\rm Q} \left( \sqrt{ {2 \cdot s_0^2 \cdot T}/{N_0} }\right) = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)\hspace{0.05cm}.$$


$\text{System B}$  $(T_{\rm S} = T, \ T_{\rm E} = T/2)$:

Impulse response  $h_{\rm E}(t)$ and pulses  $g_s(t)$  as well as  $g_d(t)$  for  $\text{System B}$
  • NRZ basic transmission pulse,
  • No matched filter,  since  $T_{\rm E} \ne T_{\rm S}$,
  • Basic detection pulse:   trapezoid,
  • Energy per bit:   $E_{\rm B} = s_0^2 \cdot T$,
  • Noise power:   $\sigma_d^2 = N_0/T$,
  • Always  $\text{3 dB}$  worse than  $\text{System A}$
  • Bit error probability:   $p_{\rm B}\hspace{-0.01cm} =\hspace{-0.01cm}{\rm Q} \left( g_0/\sigma_d\right)$
$$\Rightarrow \hspace{0.3cm}p_{\rm B}= {\rm Q} \left( \sqrt{ {s_0^2 \cdot T}/{N_0} }\right) = {\rm Q} \left( \sqrt{ E_{\rm B} /{N_0} }\right)\hspace{0.05cm}.$$


$\text{System C}$  $(T_{\rm S} = T/2, \ T_{\rm E} = T/2)$:

Impulse response  $h_{\rm E}(t)$ and pulses  $g_s(t)$  as well as  $g_d(t)$  for  $\text{System C}$
  • RZ basic transmission pulse,
  • Matched filter,  since  $T_{\rm E} = T_{\rm S}$,
  • Basic detection pulse:   smaller triangle,
  • Energy per bit:   $E_{\rm B} = 1/2 \cdot s_0^2 \cdot T$,
  • Noise power:   $\sigma_d^2 = N_0/T$,
  • with power limitation equivalent to  $\text{System A}$,
  • At peak limitation  $\text{3 dB}$  worse than  $\text{System A}$,
  • Bit error probability:   $p_{\rm B}\hspace{-0.01cm} =\hspace{-0.01cm}{\rm Q} \left( g_0/\sigma_d\right)$
$$\Rightarrow \hspace{0.3cm}p_{\rm B} = {\rm Q} \left( \sqrt{ { s_0^2 \cdot T}/{N_0} }\right)= {\rm Q} \left( \sqrt{2 \cdot {E_{\rm B} }/{N_0} }\right)\hspace{0.05cm}.$$


$\text{Example 2:}$  The same conditions as in $\text{Example 1}$ apply.  Graphically shown are the results from  $\text{Example 1}$.  The diagram shows the bit error probability  $p_{\rm B}$  as

System comparison for power and peak limitation
  • a function of the ratio  $E_{\rm B}/N_0$  (left diagram)  and
  • a function of the ratio  $s_0^2 \cdot T /N_0$  (right diagram).


These two diagrams in double logarithmic representation are to be interpreted as follows:

  • The left diagram compares the systems at the same average power  $(P_{\rm S})$  and at constant energy per bit  $(E_{\rm B})$,  resp.  Since the abscissa value is additionally related to  $N_0$,  the equation  $p_{\rm B}(E_{\rm B}/N_0)$  and its graphical representation correctly reflects the situation even for different noise power densities  $N_0$. 
  • When power is limited,  configurations  $\rm A$  and  $\rm C$  are equivalent and represent the optimum in each case.  As will be shown in the next sections,  an optimal system with power limitation always exists if  $g_s(t)$  and  $h_{\rm E}(t)$  have the same shape  $($"matched filter"$)$.  The smaller power of system  $\rm C$  is compensated by the abscissa chosen here.
  • In contrast,  for system  $\rm B$  the matched filter condition is not met  $(T_{\rm E} \ne T_{\rm S})$  and the error probability curve is now  $\text{3 dB}$  to the right of the boundary curve given by systems  $\rm A$  and  $\rm C$. 
  • The diagram on the right describes the optimization result with peak limitation,  which can be seen from the abscissa labeling.  The curve  $\rm A$  $($NRZ pulse,  matched filter$)$  also indicates here the limit curve,  which cannot be undershot by any other system.
  • Curve  $\rm B$  in the diagram on the right has exactly the same shape as in the diagram on the left, since NRZ transmission pulses are again used.  The distance of  $\text{3 dB}$  from the limit curve is again due to non-compliance with the matched filter condition.
  • In contrast to the left diagram,  the matched filter system  $\rm C$  is now also $\text{3 dB}$ to the right of the optimum.  The reason for this degradation is that for the same peak value  $($same peak power$)$,  system  $\rm C$  provides only half the average power as system  $\rm A$. 


System optimization with power limitation


The minimization of the bit error probability  $p_{\rm B} = {\rm Q} \left( \sqrt{\rho_d}\right)$  can be attributed to the maximization of the signal–to–noise power ratio  $\rho_d$  before the threshold decision  $($in short:   detection SNR$)$  due to the monotonic function progression of the complementary Gaussian error function  $ {\rm Q}(x)$: 

$$p_{\rm B} = {\rm Q} \left( \sqrt{\rho_d}\right)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum}\hspace{0.8cm}\Rightarrow \hspace{0.8cm}\rho_d ={g_0^2}/{\sigma_d^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Maximum}\hspace{0.05cm}.$$

Here,  $g_0 = g_d(t=0)$  indicates the amplitude of the considered Nyquist pulse and  $\sigma_d^2$  denotes the detection noise power for the given receiver filter.  At the same time it must be ensured that

  • the basic detection pulse  $g_d(t) = g_s(t) \star h_{\rm E}(t)$  satisfies the first Nyquist criterion, and
  • the energy of the basic transmission pulse  $g_s(t)$  does not exceed a predetermined value  $E_{\rm B}$. 


In the previous sections,  it has been mentioned several times that for the AWGN channel with the  (one-sided)  noise power density  $N_0$,  the following holds for the optimal system under the constraint of power limitation:

$$p_{\rm B, \hspace{0.08cm}min} = {\rm Q} \left( \sqrt{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}\right)\hspace{0.5cm}{\rm with}\hspace{0.5cm} \rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}={2 \cdot E_{\rm B}}/{N_0}\hspace{0.05cm}.$$

We use this result for the following definition:

$\text{Definition:}$  The system efficiency under power limitation  (German:  "Leistungsbegrenzung"   ⇒   subscript:  "L")  of a given configuration is the quotient of the actual and the highest possible signal–to–noise power ratio at the decision point  ("detection SNR"):

$$\eta_{\rm L} = \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}\vert \hspace{0.05cm} L} } }= \frac{g_0^2 /\sigma_d^2}{2 \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$

In the following it is proved that

  • the quantity thus defined actually satisfies the condition  $0 \le \eta_{\rm L} \le 1$  and thus can be interpreted as "efficiency",
  • the value  $\eta_{\rm L} = 1$  is obtained when the receiver filter impulse response  $h_{\rm E}(t)$  is equal in shape to the basic transmission pulse  $g_s(t)$.


$\text{Proof:}$  The proof is done in the frequency domain.  For presentation reasons,  we normalize the basic transmission pulse:

$$h_{\rm S}(t) = \frac{g_s(t)}{g_0 \cdot T} \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm} H_{\rm S}(f) = \frac{G_s(f)}{g_0 \cdot T} \hspace{0.05cm}.$$

Thus  $h_{\rm S}(t)$  has the unit  "$\rm 1/s$"  and  $H_{\rm S}(f)$  is dimensionless.  For the individual system quantities it follows:

(1)   Due to the first Nyquist criterion,  it must hold:

$$ G_d(f) = G_s(f) \cdot H_{\rm E}(f) = G_{\rm Nyq}(f) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm S}(f) \cdot H_{\rm E}(f)= H_{\rm Nyq}(f)= \frac{G_{\rm Nyq}(f)}{g_0 \cdot T}\hspace{0.05cm}.$$

(2)   The amplitude of the basic transmitter pulse is equal to

$$g_d(t=0) = g_0 \cdot T \cdot \int_{-\infty}^{+\infty}H_{\rm Nyq}(f) \,{\rm d} f = g_0\hspace{0.05cm}.$$

(3)   The energy of the basic transmission pulse is given as follows:

$$E_{\rm B} = g_0^2 \cdot T^2 \cdot \int_{-\infty}^{+\infty} \vert H_{\rm S}(f)\vert ^2 \,{\rm d} f \hspace{0.05cm}.$$

(4)   The detection noise power is:

$$ \sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} \vert H_{\rm E}(f) \vert^2 \,{\rm d} f = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}\frac {\vert H_{\rm Nyq}(f) \vert^2}{\vert H_{\rm S}(f) \vert^2} \,{\rm d} f\hspace{0.05cm}. $$

(5)   Substituting these partial results into the equation for the system efficiency,  we obtain:

$$\eta_{\rm L} = \left [ {T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm S}(f) \vert^2 \,{\rm d} f \hspace{0.2cm} \cdot \hspace{0.2cm}T \cdot \int_{-\infty}^{+\infty}\frac { \vert H_{\rm Nyq}(f) \vert ^2}{ \vert H_{\rm S}(f) \vert^2} \,{\rm d} f } \right ]^{-1}\hspace{0.05cm}.$$

(6)   We now apply Schwartz's inequality  [BSMM15][1]  to the expression in the parenthesis:

$$\frac{1}{\eta_{\rm L} } = T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm 1}(f) \vert^2 \,{\rm d} f \hspace{0.2cm} \cdot \hspace{0.2cm} T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm 2}(f) \vert^2 \,{\rm d} f \hspace{0.3cm}\ge\hspace{0.3cm} \left [ T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm 1}(f) \cdot H_{\rm 2}(f) \vert \,{\rm d} f \right ]^2$$
$$\Rightarrow \hspace{0.3cm}\frac{1}{\eta_{\rm L} } = T \cdot \int_{-\infty}^{+\infty} \vert H_{\rm S}(f) \vert^2 \,{\rm d} f \hspace{0.1cm} \cdot \hspace{0.1cm} T \cdot \int_{-\infty}^{+\infty}\frac { \vert H_{\rm Nyq}(f) \vert ^2}{ \vert H_{\rm S}(f) \vert ^2} \,{\rm d} f \hspace{0.2cm}\ge\hspace{0.2cm} \left [ T \cdot \int_{-\infty}^{+\infty}\hspace{-0.5cm}H_{\rm Nyq}(f) \,{\rm d} f \right ]^2 = 1. $$

(7)   Thus,  it is shown that the system efficiency under power limitation indeed satisfies the condition  $\eta_{\rm L} \le 1$. 

(8)   The evaluation shows that for  $H_{\rm S, \hspace{0.08cm}opt}(f) = \gamma \cdot \sqrt{H_{\rm Nyq}(f)}$  in the above inequality,  the equal sign holds:

$$\gamma^2 \cdot T \cdot \int_{-\infty}^{+\infty}\hspace{-0.3cm} H_{\rm Nyq}(f) \,{\rm d} f \hspace{0.2cm} \cdot \hspace{0.2cm} \frac {1}{\gamma^2} \cdot T \cdot \int_{-\infty}^{+\infty} \hspace{-0.3cm}H_{\rm Nyq}(f) \,{\rm d} f = \left [ T \cdot \int_{-\infty}^{+\infty}\hspace{-0.3cm}H_{\rm Nyq}(f) \,{\rm d} f \right ]^2 = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \eta_{\rm L} = 1 \hspace{0.05cm}.$$

(9)   This result is independent of the parameter  $\gamma$,  which we therefore simplify to  $\gamma = 1$:    $H_{\rm S, \hspace{0.08cm}opt}(f) = \sqrt{H_{\rm Nyq}(f)}$.

q.e.d.


Root Nyquist systems


The main result of the calculations on the last sections was that for the optimal binary system under the constraint of  "power limitation"

  • the basic detection pulse  $g_d(t) = g_s(t) \star h_{\rm E}(t)$  must satisfy the first Nyquist condition,  and
  • the impulse response  $h_{\rm E}(t)$  of the receiver filter must be chosen to be equal in shape to the basic transmission pulse  $g_s(t)$;   
  • the same applies to the spectral functions  $H_{\rm E}(f)$  and  $G_s(f)$.


If both  $g_s(t)$  and  $h_{\rm E}(t)$  are rectangular with  $T_{\rm S} = T_{\rm E} \le T$,  both conditions are satisfied.

  • However,  the disadvantage of this configuration is the large bandwidth requirement due to the slowly decaying  $\rm sinc$–shaped spectral functions  $G_s(f)$  and  $H_{\rm E}(f)$.
  • In the diagram below,  the spectral function of the rectangular NRZ basic transmission pulse is plotted as a dashed purple curve.


Different transmission spectra for baseband transmission

Assuming the cosine rolloff frequency response   ⇒   $H_{\rm E}(f) = H_{\rm CRO}(f)$, 

$$G_d(f) = G_s(f) \cdot H_{\rm E}(f) = g_0 \cdot T \cdot {H_{\rm CRO}(f)} $$
$$\Rightarrow \hspace{0.3cm}G_s(f) = g_0 \cdot T \cdot \sqrt{H_{\rm CRO}(f)},\hspace{0.5cm}H_{\rm E}(f)= \sqrt{H_{\rm CRO}(f)}\hspace{0.05cm},$$

then for each rolloff factor  $r$,  more favorable spectral characteristics and lower bandwidth requirements result.

The diagram shows the normalized transmission spectra  $G_s(f)/(g_0 \cdot T)$  in logarithmic representation for the three rolloff factors:

  • $r = 0$  (green curve),
  • $r = 0.5$  (blue curve), and
  • $r = 1$  (red curve).


$\rm Notes$:

  • For baseband transmission,  the bandwidth requirement plays only a minor role.
  • However,  the diagram also applies to  "carrier frequency systems"  when displayed in the equivalent low-pass range.
  • In these systems,  bandwidth plays a very important role.  Because:    Every additional Hertz of bandwidth can be very expensive.

System optimization with peak limitation


For the AWGN channel with the (one-sided) noise power density  $N_0$,  the system optimization depends to a large extent on which constraint is specified:

  • In the case of  "power limitation"  (German:  "Leistungsbegrenzung"   ⇒   subscript:  "L"),  the energy of the basic transmission pulse  $g_s(t)$  must not exceed a specified value  $E_{\rm B}$.  Here,  the following applies to the minimum bit error probability and the maximum SNR:
$$p_{\rm B, \hspace{0.08cm}min} = {\rm Q} \left( \sqrt{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}\right)\hspace{0.5cm}{\rm with}\hspace{0.5cm} \rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}={2 \cdot E_{\rm B}}/{N_0}\hspace{0.05cm}.$$
  • In the case of  "peak limitation"  (German:  "Spitzenwertbegrenzung"  or  "Amplitudenbegrenzung"   ⇒   subscript:  "A"),  on the other hand,  the modulation range of the transmitter device is limited   ⇒   $\vert s(t) \vert \le s_0\hspace{0.4cm}{\rm{for} }\hspace{0.15cm}{\rm all}\hspace{0.15cm}t$. Here, the following applies to the corresponding quantities:
$$p_{\rm B, \hspace{0.08cm}min} = {\rm Q} \left( \sqrt{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm}A}}}\right)\hspace{0.5cm}{\rm with}\hspace{0.5cm} \rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm}A}}={2 \cdot s_0^2 \cdot T}/{N_0}\hspace{0.05cm}.$$

For this second case, we define:

$\text{Definition:}$  The  system efficiency under peak limitation  ("amplitude limitation")  is:

$$\eta_{\rm A} = \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}\vert \hspace{0.05cm} A} } }= \frac{g_0^2 /\sigma_d^2}{ 2 \cdot s_0^2 \cdot T/N_0}\hspace{0.05cm}.$$
  • This system efficiency also satisfies the condition  $0 \le \eta_{\rm A} \le 1$.
  • There is only one system with the result  $\eta_{\rm A} = 1$:   The NRZ rectangular basic transmission pulse and the receiver filter matched to it..


A comparison with the  "system efficiency under power limitation"   ⇒   $\eta_{\rm L}$  shows:

  • $\eta_{\rm A}$  differs from  $\eta_{\rm L}$  in that now the denominator contains  $s_0^2 \cdot T$  instead of  $E_{\rm B}$.  The following relationship holds:
$$\eta_{\rm A} = \frac{E_{\rm B}}{s_0^2 \cdot T} \cdot \eta_{\rm L}= \frac{\eta_{\rm L}}{C_{\rm S}^2}\hspace{0.05cm}.$$
  • Here, the  "crest factor"  $C_{\rm S}$  denotes the ratio of the maximum value  $s_0$  and the rms value  $s_{\rm eff}$  of the transmitted signal:
$$C_{\rm S} = \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}= \frac{s_0}{s_{\rm eff}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{\rm eff} = \sqrt {E_{\rm B}/T}.$$


$\text{Example 3:}$  As in   "$\text{Example 1}$"  we consider three different configurations,  each with rectangular functions  $g_s(t)$  and  $h_{\rm E}(t)$.  The system efficiencies are:

  • $\text{System A:}$    $\rho_d = {2 \cdot E_{\rm B} }/{N_0} = { 2 \cdot s_0^2 \cdot T}/{N_0}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\eta_{\rm L} = 1.0,\hspace{0.3cm}\eta_{\rm A} = 1.0\hspace{0.05cm}.$
  • $\text{System B:}$    $\rho_d = {E_{\rm B} }/{N_0} ={ s_0^2 \cdot T}/{N_0}\hspace{1.35cm}\Rightarrow \hspace{0.3cm}\eta_{\rm L} = 0.5,\hspace{0.3cm}\eta_{\rm A} = 0.5\hspace{0.05cm}.$
  • $\text{System C:}$    $\rho_d = {2 \cdot E_{\rm B} }/{N_0} = { s_0^2 \cdot T}/{N_0}\hspace{0.8cm}\Rightarrow \hspace{0.3cm}\eta_{\rm L} = 1.0,\hspace{0.3cm}\eta_{\rm A} = 0.5\hspace{0.05cm}.$


It can be seen:

  • For  $\text{System A}$  both system efficiencies are at most equal  $1$.
  • For  $\text{System B}$,  both system efficiencies are only  $0.5$  each due to the lack of matching  $(T_{\rm E} \ne T_{\rm S})$. 
  • For  $\text{System C}$  the system efficiency  $\eta_{\rm L}$  has the maximum value  $\eta_{\rm L} = 1$  because of  $T_{\rm E} = T_{\rm S}$.  In contrast,  $\eta_{\rm A} = 0.5$   because the RZ pulse does not have the maximum energy that would be allowed due with the peak constraint.  The crest factor here has the value  $C_{\rm S} = \sqrt{2}$.


$\text{Example 4:}$  We now consider a  "root–Nyquist–configuration"  with cosine–rolloff total frequency response:

$$H_{\rm S}(f)= \sqrt{H_{\rm CRO}(f)}, \hspace{0.5cm}H_{\rm E}(f)= \sqrt{H_{\rm CRO}(f)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm S}(f) \cdot H_{\rm E}(f) = {H_{\rm CRO}(f)}\hspace{0.05cm}.$$

Here,  the frequency responses  $H_{\rm S}(f)$  and  $H_{\rm CRO}(f)$  give the normalized spectral functions of the basic transmission pulse and the basic detection pulse.  It holds:

$$G_s(f) = g_0 \cdot T \cdot \sqrt{H_{\rm S}(f)},\hspace{0.5cm} G_d(f) = g_0 \cdot T \cdot {H_{\rm CRO}(f)} = G_{\rm Nyq}(f)\hspace{0.05cm}.$$

The graphic shows the eye diagrams at the transmitter  (top)  resp. at the receiver  (bottom)  for the rolloff–factors  $r = 0.25$,  $r = 0.5$  and  $r = 0. 1$.  It should be recalled,  that such a configuration is optimal under the constraint of power limitation independent of the rolloff–factor  $r$.  In front of the decision device there is always a fully open eye  (see lower row of figures)  and it holds for the system efficiency:   $\eta_{\rm L} = 1$.

Eye diagrams for root Nyquist configurations

One can see from this plot:

  • The basic transmission pulse  $g_s(t)$  does not satisfy the Nyquist condition:   The eye at the transmitter  (upper row of images)  is not fully open and the maximum value of of the transmitted signal is greater than its rms value.
  • The crest factor  $C_{\rm S} = s_0/s_{\rm eff}$  is always greater than  $1$  and thus the efficiency  $\eta_{\rm A}<1 $.  For  $r = 0.5$:   $C_{\rm S} \approx 1.45$  ⇒  $\eta_{\rm A} \approx 0.47$.  The detection–SNR is then reduced by  $10 \cdot \lg \ \eta_{\rm A} \approx 3.2 \ \rm dB$  than in the rectangle–rectangle–configuration.
  • In the limiting case  $r = 0$  even  $C_{\rm S} \to \infty$  and  $\eta_{\rm A} \to 0$.  Here,  the basic transmission pulse $g_s(t)$  falls here even more slowly than with  $1/t$  and it holds:
$$\max_t\{ s(t) \} = \max_t \hspace{0.15cm}\left [ \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)\ \right ]\rightarrow \infty\hspace{0.05cm}.$$
  • Limiting the transmitted signal  $s(t)$  to a finite maximum value  $s_0$ by a weighting factor approaching zero, leads to a closed eye in front of the decision device.


Optimization of the rolloff factor with peak limitation


For this chapter, the following assumptions are made:

  • Let the basic transmission pulse  $g_s(t)$  be NRZ rectangular;  with peak limitation this is optimal.
  • The overall frequency response  $H_{\rm S}(f) \cdot H_{\rm E}(f) ={H_{\rm Nyq}(f)}$  satisfy the Nyquist condition.
  • The Nyquist frequency response is realized by a cosine rolloff low-pass:   $H_{\rm Nyq}(f) = H_{\rm CRO}(f)$.
  • Since the pulse amplitude  $g_0$  is independent of the rolloff factor  $r$,  the SNR maximization can be attributed to the minimization of the noise power at the decision:
$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}|H_{\rm E}(f)|^2 \,{\rm d} f\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum,} \hspace{0.5cm}{\rm where}\hspace{0.5cm} H_{\rm E}(f) =\frac {H_{\rm CRO}(f)}{{\rm sinc}(f T)}\hspace{0.05cm}.$$

The diagram shows the power transmission function  $|H_{\rm E}(f)|^2$  for three different rolloff factors. The areas under each of these curves are a measure of the noise power  $\sigma_d^2$  before the decision. One can see from this plot:

For optimization of the rolloff factor with peak limitation
  • The rolloff factor  $r = 0$  (rectangular frequency response)  leads only to efficiency  $\eta_{\rm A} \approx 0.65$,  despite the very narrowband receiver filter,  since  $H_{\rm E}(f)$  increases with increasing  $f$  because of the  $\rm sinc$-function in the denominator.
  • Although $r = 1$  causes a spectrum twice as wide,  but it does not lead to any noise enhancement.  Since the area under the red curve is smaller than that under the green curve,  the result is a better value:   $\eta_{\rm A} \approx 0.88$.
  • The highest system efficiency results for  $r \approx 0.8$   (flat maximum)   with   $\eta_{\rm A} \approx 0.89$. For this one achieves the best possible compromise between bandwidth and boost.
  • By comparison with the optimal frequency response  $H_{\rm E}(f) = {\rm sinc}(f T)$  with peak limitation,  which leads to the result  $\sigma_d^2 = N_0/(2T)$   ⇒   $\eta_{\rm A}= 1$,  we obtain for the system efficiency:
$$\eta_{\rm A} = \left [T \cdot \int_{-\infty}^{+\infty}\hspace{-0.15cm} |H_{\rm E}(f)|^2 \,{\rm d} f \right ]^{-1} \hspace{0.05cm}.$$

$\text{Conclusion:}$ 

  • The absolute optimum at peak limitation   ⇒   $\eta_{\rm A}= 1$  results only with a rectangular basic transmission pulse  $g_s(t)$  and a likewise rectangular receiver filter pulse response  $h_{\rm E}(t)$  of the same width  $T$.
  • The best cosine rolloff Nyquist spectrum with  $r = 0.8$  (blue curve)  is about  $0.5 \ \rm dB$  worse compared to the matched filter  (violet-dashed curve),  because the area under the blue curve is about  $12\%$  larger than the area under the violet curve.
  • The so-called  "root–root configuration"   ⇒   $H_{\rm S}(f) = H_{\rm E}(f) =\sqrt{H_{\rm CRO}(f)}$  thus only makes sense if one assumes power limitation.


Exercises for the chapter


Exercise 1.6: Root Nyquist System

Exercise 1.6Z: Two Optimal Systems

Exercise 1.7: System Efficiencies

References

  1. Bronshtein, I.N.; Semendyayew, K.A.; Musiol, G.; Mühlig, H.:  Handbook of Mathematics.  6. Edition. Heidelberg, New York, Dorderecht, London: Springer Verlag, 2015. ISBN: 978-3-662-46220-1