Difference between revisions of "Applets:Spektrum"

From LNTwww
(Die Seite wurde neu angelegt: „ {{Header |Untermenü= |Vorherige Seite= |Nächste Seite= }} ==Nachricht - Information - Signal== Man unterscheidet grundsätzlich zwischen den Begriffen…“)
 
m (Tasnad verschob die Seite Spektrum nach Spektrum)
 
(180 intermediate revisions by 2 users not shown)
Line 1: Line 1:
+
==Zeitfunktion und zugehörige Spektralfunktion==
{{Header
 
|Untermenü=
 
|Vorherige Seite=
 
|Nächste Seite=
 
}}
 
  
 +
{{LntAppletLink|spektrum}}
  
 +
==Theoretischer Hintergrund==
 +
*Der Zusammenhang zwischen Zeitfunktion $x(t)$ und dem Spektrum $X(f)$ ist durch die Fouriertransformation (FT) $$X(f)=\int_{-\infty}^{+\infty}x(t)\cdot e^{-j2\pi f t}\hspace{0.15cm} {\rm d}t$$ und deren Inversen (IFT) $$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot e^{j2\pi f t} \hspace{0.15cm} {\rm d}f$$ gegeben.
 +
*In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:
 +
$$X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t$$  und
 +
$$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f.$$
 +
*$x(t)$ und $X(f)$ haben unterschiedliche Einheiten, z. B. $x(t)$ in V, $X(f)$ in V/Hz.
 +
*Alle Zeiten sind auf eine Normierungszeit $T$ und alle Frequenzen auf $1/T \Rightarrow$ das Spektrum $X(f)$ muss noch mit $T$ multipliziert werden.
 +
*Der Zusammenhang zwischen Impulse und deren Spektren und der ähnlich aufgebauten Animation „Tiefpass“ basiert auf dem Vertauschungssatz.
  
==Nachricht - Information - Signal==
+
==Gaußimpuls==
Man unterscheidet grundsätzlich zwischen den Begriffen „Nachricht” und „Information”, die heutzutage allerdings oft synonym verwendet werden.
+
*Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
 +
$$x(t)=K\cdot e^{-\pi\cdot(t/\Delta t)^2}.$$
 +
*Die äquivalente Zeitdauer $\Delta t$ ergibt sich aus dem flächengleichen Rechteck.
 +
*Der Wert bei t=$\Delta t/2$ ist um den Faktor 0.456 kleiner als der Wert bei $t=0$.
 +
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
 +
$$X(f)=K\cdot \Delta t \cdot e^{-\pi(f\cdot \Delta t)^2} .$$
 +
*Je kleiner die äquivalente Zeitdauer $\Delta t$ ist, um so breiter und niedriger ist das Spektrum (Reziprozitätsgesetz von Bandbreite und Impulsdauer).
 +
*Sowohl $x(t)$ als auch $X(f)$ sind zu keinem $ f$- bzw. $t$-Wert exakt gleich Null.
 +
*Praktisch ist der Gaußimpuls in Zeit und Frequenz begrenzt. Zum Beispiel ist $x(t)$ bereits bei $t=1.5 \Delta \cdot t$ auf $1\% $ des Maximums abgefallen.
 +
==Rechteckimpuls==  
 +
*Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
  
{{Beispiel}}
+
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K /2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.}  \\ \end{array}$$
Eine Email von Herrn Maier an Frau Müller ist stets eine Nachricht. Für Frau Müller bedeutet der Erhalt dieser Email allerdings nur dann einen Informationsgewinn, wenn sie dadurch etwas Neues erfährt. Die durch eine Nachricht übermittelte Information hängt also in starkem Maße vom Kenntnisstand des Empfängers ab. In der Praxis ist die in einer Nachricht enthaltene Information eher gering, insbesondere im Anwendungsbereich der Telefonie.
 
{{end}}
 
  
 +
*Der $\pm \Delta t/2$ - Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
 +
*Für die Spektralfunktion erhält man entsprechend den Gesetzmäßigkeiten der Fouriertransformation (1. Fourierintegral):
 +
$$X(f)=K\cdot \Delta t \cdot si(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ si(x)=\frac{sin(x)}{x}.$$
 +
*Der Spektralwert bei $f=0$ ist gleich der Rechteckfläche der Zeitfunktion.
 +
*Die Spektralfunktion besitzt Nullstellen in äquidistanten Abständen $1/\Delta t$.
 +
*Das Integral über der Spektralfunktion $X(f)$ ist gleich dem Signalwert zum Zeitpunkt $t=0$, also der Impulsamplitude $K$.
  
Für die Übertragung und die Speicherung einer Nachricht ist stets ein energetischer bzw. materieller Träger erforderlich, der Signal genannt wird. Physikalisch erfolgt die Darstellung einer Nachricht also durch Signale, die von ganz unterschiedlicher Natur sein können. Mögliche Erscheinungsformen sind:
+
==Dreieckimpuls==
*elektrische Signale (z. B. Strom- und Spannungsverlauf),
+
*Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
*elektromagnetische Wellen (z. B. bei der Funkübertragung),
 
*Verlauf von Druck, Temperatur oder anderer physikalischer Größen,
 
*akustische Signale (z. B. Ausgangssignal eines Lautsprechers),
 
*optische Signale (z. B. Ausgangssignal eines Lasers).
 
  
 +
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|t|}{\Delta t}\Big)  \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
  
Die zur '''Nachrichtenübertragung''' verwendeten Signale sind in der Regel Zeitfunktionen. Das bedeutet, dass (zumindest) einer der Signalparameter abhängig vom Zeitparameter $t$ ist. Solche Signalparameter sind beispielsweise bei einem Signalton die Amplitude („Lautstärke“) und die Frequenz („Tonhöhe“).
+
*Die absolute Zeitdauer ist $2 \cdot \Delta t$, d.h. doppelt so groß als die des Rechtecks.
 +
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
 +
$$X(f)=K\cdot \Delta f \cdot si^2(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ si(x)=\frac{sin(x)}{x}.$$
 +
*Obige Zeitfunktion ist gleich der Faltung zweier Rechteckimpulse, jeweils mit Breite $\Delta t \Rightarrow X(f)$ beinhaltet anstelle der $si$-Funktion die $si^2$-Funktion.
 +
*$X(f)$ weist somit ebenfalls Nullstellen im äquidistanten Abständen $1/\Delta f$ auf.
 +
*Der asymptotische Abfall von $X(f)$ erfolgt hier mit $1/f^2$, während zum Vergleich der Rechteckimpuls mit $1/f$ abfällt.
  
In einem '''Nachrichtenspeicher''' werden die Zeitfunktionen oft auch auf räumliche Funktionen geeigneter physikalischer Größen wie Magnetisierung (Magnetband) oder Schwärzungsgrad (Film) abgebildet.
+
==Trapezimpuls==
 +
Die Zeitfunktion mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:
  
Die Menge aller Nachrichtensignale lassen sich nach verschiedenen Kriterien katalogisieren, die im Kapitel [[Signaldarstellung/Klassifizierung_von_Signalen|Klassifizierung von Signalen]] benannt werden.
+
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
  
 +
*Für die äquivalente Zeitdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
 +
*Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
 +
$$r=\frac{t_2-t_1}{t_2+t_1}.$$
 +
*Sonderfall $r=0$: Rechteckimpuls. Sonderfall $r=1$: Dreieckimpuls.
 +
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
 +
$$X(f)=K\cdot \Delta t \cdot si(\pi\cdot \Delta t \cdot f)\cdot si(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{mit} \ si(x)=\frac{sin(x)}{x}.$$
 +
*Der asymptotische Abfall von $X(f)$ liegt zwischen $1/f$ (für Rechteck, $r=0$) und $1/f^2$ (für Dreieck, $r=1$).
  
==Blockschaltbild eines Nachrichtenübertragungssystems==
+
==Cosinus-Rolloff-Impuls==  
 +
Die Zeitfunktion mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:
  
{{Display}}
+
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot \frac{\pi}{2}\Big) \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
 +
 
 +
*Für die äquivalente Zeitdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
 +
*Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
 +
$$r=\frac{t_2-t_1}{t_2+t_1}.$$
 +
*Sonderfall $r=0$: Rechteckimpuls. Sonderfall $r=1$: Cosinus$^2$-Impuls.
 +
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
 +
$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot si(\pi \cdot \Delta t \cdot f).$$
 +
*Je größer der Rolloff-Faktor $r$ ist, desto schneller nimmt $X(f)$ asymptotisch mit $f$ ab.
 +
 
 +
==Cosinus-Quadrat-Impuls==
 +
*Dies ist ein Sonderfall des Cosinus-Rolloff-Impuls und ergibt sich für $r=1 \ (t_1=0, t_2= \Delta t)$:
 +
 
 +
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\cdot \pi}{2\cdot \Delta t}\Big)  \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
 +
 
 +
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
 +
$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot [si(\pi(\Delta t\cdot f +0.5))+si(\pi(\Delta t\cdot f -0.5))]\cdot si(\pi \cdot \Delta t \cdot f).$$
 +
*Wegen der letzten $si$-Funktion ist $X(f)=0$ für alle Vielfachen von $F=1/\Delta t$. Die äquidistanten Nulldurchgänge des Cos-Rolloff-Impulses bleiben erhalten.
 +
*Aufgrund des Klammerausdrucks weist $X(f)$ nun weitere Nulldurchgänge bei $f=\pm1.5 F$, $\pm2.5 F$, $\pm3.5 F$, ... auf.
 +
*Für die Frequenz $f=\pm F/2$ erhält man die Spektralwerte $K\cdot \Delta t/2$.
 +
*Der asymptotische Abfall von $X(f)$ verläuft in diesem Sonderfall mit $1/f^3$.
 +
 
 +
 
 +
{{LntAppletLink|spektrum}}

Latest revision as of 15:02, 27 September 2017

Zeitfunktion und zugehörige Spektralfunktion

Open Applet in a new tab

Theoretischer Hintergrund

  • Der Zusammenhang zwischen Zeitfunktion $x(t)$ und dem Spektrum $X(f)$ ist durch die Fouriertransformation (FT) $$X(f)=\int_{-\infty}^{+\infty}x(t)\cdot e^{-j2\pi f t}\hspace{0.15cm} {\rm d}t$$ und deren Inversen (IFT) $$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot e^{j2\pi f t} \hspace{0.15cm} {\rm d}f$$ gegeben.
  • In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:

$$X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t$$ und $$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f.$$

  • $x(t)$ und $X(f)$ haben unterschiedliche Einheiten, z. B. $x(t)$ in V, $X(f)$ in V/Hz.
  • Alle Zeiten sind auf eine Normierungszeit $T$ und alle Frequenzen auf $1/T \Rightarrow$ das Spektrum $X(f)$ muss noch mit $T$ multipliziert werden.
  • Der Zusammenhang zwischen Impulse und deren Spektren und der ähnlich aufgebauten Animation „Tiefpass“ basiert auf dem Vertauschungssatz.

Gaußimpuls

  • Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:

$$x(t)=K\cdot e^{-\pi\cdot(t/\Delta t)^2}.$$

  • Die äquivalente Zeitdauer $\Delta t$ ergibt sich aus dem flächengleichen Rechteck.
  • Der Wert bei t=$\Delta t/2$ ist um den Faktor 0.456 kleiner als der Wert bei $t=0$.
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:

$$X(f)=K\cdot \Delta t \cdot e^{-\pi(f\cdot \Delta t)^2} .$$

  • Je kleiner die äquivalente Zeitdauer $\Delta t$ ist, um so breiter und niedriger ist das Spektrum (Reziprozitätsgesetz von Bandbreite und Impulsdauer).
  • Sowohl $x(t)$ als auch $X(f)$ sind zu keinem $ f$- bzw. $t$-Wert exakt gleich Null.
  • Praktisch ist der Gaußimpuls in Zeit und Frequenz begrenzt. Zum Beispiel ist $x(t)$ bereits bei $t=1.5 \Delta \cdot t$ auf $1\% $ des Maximums abgefallen.

Rechteckimpuls

  • Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K /2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.} \\ \end{array}$$

  • Der $\pm \Delta t/2$ - Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
  • Für die Spektralfunktion erhält man entsprechend den Gesetzmäßigkeiten der Fouriertransformation (1. Fourierintegral):

$$X(f)=K\cdot \Delta t \cdot si(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ si(x)=\frac{sin(x)}{x}.$$

  • Der Spektralwert bei $f=0$ ist gleich der Rechteckfläche der Zeitfunktion.
  • Die Spektralfunktion besitzt Nullstellen in äquidistanten Abständen $1/\Delta t$.
  • Das Integral über der Spektralfunktion $X(f)$ ist gleich dem Signalwert zum Zeitpunkt $t=0$, also der Impulsamplitude $K$.

Dreieckimpuls

  • Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|t|}{\Delta t}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.} \\ \end{array}$$

  • Die absolute Zeitdauer ist $2 \cdot \Delta t$, d.h. doppelt so groß als die des Rechtecks.
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:

$$X(f)=K\cdot \Delta f \cdot si^2(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ si(x)=\frac{sin(x)}{x}.$$

  • Obige Zeitfunktion ist gleich der Faltung zweier Rechteckimpulse, jeweils mit Breite $\Delta t \Rightarrow X(f)$ beinhaltet anstelle der $si$-Funktion die $si^2$-Funktion.
  • $X(f)$ weist somit ebenfalls Nullstellen im äquidistanten Abständen $1/\Delta f$ auf.
  • Der asymptotische Abfall von $X(f)$ erfolgt hier mit $1/f^2$, während zum Vergleich der Rechteckimpuls mit $1/f$ abfällt.

Trapezimpuls

Die Zeitfunktion mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,} \\ {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.} \\ \end{array}$$

  • Für die äquivalente Zeitdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
  • Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:

$$r=\frac{t_2-t_1}{t_2+t_1}.$$

  • Sonderfall $r=0$: Rechteckimpuls. Sonderfall $r=1$: Dreieckimpuls.
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:

$$X(f)=K\cdot \Delta t \cdot si(\pi\cdot \Delta t \cdot f)\cdot si(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{mit} \ si(x)=\frac{sin(x)}{x}.$$

  • Der asymptotische Abfall von $X(f)$ liegt zwischen $1/f$ (für Rechteck, $r=0$) und $1/f^2$ (für Dreieck, $r=1$).

Cosinus-Rolloff-Impuls

Die Zeitfunktion mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot \frac{\pi}{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,} \\ {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.} \\ \end{array}$$

  • Für die äquivalente Zeitdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
  • Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:

$$r=\frac{t_2-t_1}{t_2+t_1}.$$

  • Sonderfall $r=0$: Rechteckimpuls. Sonderfall $r=1$: Cosinus$^2$-Impuls.
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:

$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot si(\pi \cdot \Delta t \cdot f).$$

  • Je größer der Rolloff-Faktor $r$ ist, desto schneller nimmt $X(f)$ asymptotisch mit $f$ ab.

Cosinus-Quadrat-Impuls

  • Dies ist ein Sonderfall des Cosinus-Rolloff-Impuls und ergibt sich für $r=1 \ (t_1=0, t_2= \Delta t)$:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\cdot \pi}{2\cdot \Delta t}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.} \\ \end{array}$$

  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:

$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot [si(\pi(\Delta t\cdot f +0.5))+si(\pi(\Delta t\cdot f -0.5))]\cdot si(\pi \cdot \Delta t \cdot f).$$

  • Wegen der letzten $si$-Funktion ist $X(f)=0$ für alle Vielfachen von $F=1/\Delta t$. Die äquidistanten Nulldurchgänge des Cos-Rolloff-Impulses bleiben erhalten.
  • Aufgrund des Klammerausdrucks weist $X(f)$ nun weitere Nulldurchgänge bei $f=\pm1.5 F$, $\pm2.5 F$, $\pm3.5 F$, ... auf.
  • Für die Frequenz $f=\pm F/2$ erhält man die Spektralwerte $K\cdot \Delta t/2$.
  • Der asymptotische Abfall von $X(f)$ verläuft in diesem Sonderfall mit $1/f^3$.


Open Applet in a new tab