Difference between revisions of "Applets:Periodendauer periodischer Signale"
David.Jobst (talk | contribs) |
m (Text replacement - "„" to """) |
||
(51 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | + | Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an: | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | {{LntAppletLink|signalPeriod_en|Applet-Variante 1 in neuem Tab öffnen}} {{LntAppletLink|signalPeriodS_en|Applet-Variante 2 in neuem Tab öffnen}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==Programmbeschreibung== | |
− | + | <br> | |
− | + | Dieses Applet zeichnet den Verlauf und berechnet die Periodendauer $T_0$ der periodischen Funktion | |
− | + | :$$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$ | |
− | |||
− | + | Bitte beachten Sie: | |
− | . | + | *Die Phasen $\varphi_i$ sind hier im Bogenmaß einzusetzen. Umrechnung aus dem Eingabewert: $\varphi_i \text{[im Bogenmaß]} =\varphi_i \text{[in Grad]}/360 \cdot 2\pi$. |
− | + | *Ausgegeben werden auch der Maximalwert $x_{\rm max}$ und ein Signalwert $x(t_*)$ zu einer vorgebbaren Zeit $t_*$. | |
− | + | *Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung. | |
− | |||
− | |||
− | |||
− | + | Die englische Beschreibung finden Sie unter [[Period Duration of Periodic Signals]] (derzeit noch nicht realisiert) . | |
− | < | + | ==Theoretischer Hintergrund== |
+ | <br> | ||
+ | *Ein ''periodisches Signal'' $x(t)$ liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von $t$ und alle ganzzahligen Werte von $i$ mit einem geeigneten $T_{0}$ gilt: $x(t+i\cdot T_{0}) = x(t)$. Man bezeichnet $T_0$ als die '''Periodendauer''' und $f_0 = 1/T_0$ als die '''Grundfrequenz'''. | ||
− | + | *Bei einer harmonischen Schwingung $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$ gilt $f_0 = f_1$ und $T_0 = 1/f_1$, unabhängig von der Phase $\varphi_1$ und der Amplitude $A_1 \ne 0$. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | {{BlaueBox|TEXT= | |
+ | $\text{Berechnungsvorschrift:}$ Setzt sich das periodisches Signal $x(t)$ wie in diesem Applet aus zwei Anteilen $x_1(t)$ und $x_2(t)$ zusammen, dann gilt mit $A_1 \ne 0$, $f_1 \ne 0$, $A_2 \ne 0$, $f_2 \ne 0$ für Grundfrequenz und Periodendauer: | ||
− | + | :$$f_0 = {\rm ggT}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0,$$ | |
− | + | wobei "ggT" den ''größten gemeinsamen Teiler'' bezeichnet.}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | {{GraueBox|TEXT= | ||
+ | $\text{Beispiele:}$ Im Folgenden bezeichnen $f_0'$, $f_1'$ und $f_2'$ die auf $1\ \rm kHz$ normierten Signalfrequenzen: | ||
+ | '''(a)''' $f_1' = 1.0$, $f_2' = 3.0$ ⇒ $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$ ⇒ $T_0 = 1.0\ \rm ms$; | ||
− | + | '''(b)''' $f_1' = 1.0$, $f_2' = 3.5$ ⇒ $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$ ⇒ $T_0 = 2.0\ \rm ms$; | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | {{ | + | '''(c)''' $f_1' = 1.0$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$ ⇒ $T_0 = 2.0\ \rm ms$; |
+ | |||
+ | '''(d)''' $f_1' = 0.9$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$ ⇒ $T_0 = 10.0 \ \rm ms$; | ||
+ | |||
+ | '''(e)''' $f_2' = \sqrt{2} \cdot f_1' $ ⇒ $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$ ⇒ $T_0 \to \infty$ ⇒ Das Signal $x(t)$ ist nicht periodisch.}} | ||
+ | |||
+ | |||
+ | $\text{Anmerkung:}$ Die Periodendauer könnte auch als ''kleinstes gemeinsame Vielfache'' (kgV) entsprechend $T_0 = {\rm kgV}(T_1, \ T_2)$ ermittelt werden: | ||
+ | |||
+ | '''(c)''' $T_1 = 1.0\ \rm ms$, $T_2 = 0.4\ \rm kHz$ ⇒ $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms = 2.0\ \rm ms$ | ||
+ | |||
+ | Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel | ||
+ | |||
+ | '''(a)''' $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches. | ||
+ | |||
+ | ==Vorschlag für die Versuchsdurchführung== | ||
+ | <br> | ||
+ | Im Folgenden bezeichnen $A_1'$ und $A_2'$ die auf $1\ \rm V$ normierten Signalamplituden und $f_0'$, $f_1'$ und $f_2'$ die auf $1\ \rm kHz$ normierte Frequenzen: | ||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | '''(1)''' nach Voreinstellung: $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ A_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{:}$}} | ||
+ | |||
+ | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 2.0 \ \rm ms$ wegen ${\rm ggt}(2.0, 2.5) = 0.5$. | ||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | '''(2)''' Variieren Sie bei der bestehenden Einstellung $\varphi_1$ und $\varphi_2$ im gesamten möglichen Bereich $\pm 180^\circ\text{:}$}} | ||
+ | |||
+ | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer $T_0 = 2.0 \ \rm ms$ bleibt erhalten. | ||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | '''(3)''' Wählen Sie die Voreinstellung ⇒ "Recall Parameters" und variieren Sie $A_1'$ im gesamten möglichen Bereich $0 \le A_1' \le 1\text{:}$}} | ||
+ | |||
+ | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer $T_0 = 2.0 \ \rm ms$ bleibt erhalten mit Ausnahme von $A_1' =0$. In diesem Fall ist $T_0 = 0.4 \ \rm ms$. | ||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | '''(4)''' Wählen Sie die Voreinstellung ⇒ "Recall Parameters" und ändern Sie $f_2' = 0.2\text{:}$}} | ||
+ | |||
+ | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 5.0 \ \rm ms$ wegen ${\rm ggt}(2.0, 0.2) = 0.2$. | ||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | '''(5)''' Wählen Sie die Voreinstellung ⇒ "Recall Parameters" und ändern Sie $f_1' = 0.2$. Speichern Sie diese Einstellung mit "Store Parameters":}} | ||
+ | |||
+ | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 10.0 \ \rm ms$ wegen ${\rm ggt}(0.2, 2.5) = 0.1$. | ||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | '''(6)''' Wählen Sie die letzte Einstellung ⇒ "Recall Parameters" und ändern Sie $f_2' = 0.6$. Speichern Sie diese Einstellung mit "Store Parameters":}} | ||
+ | |||
+ | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 5.0 \ \rm ms$ wegen ${\rm ggt}(0.2,0.6) = 0.2$. | ||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | '''(7)''' Wie groß ist bei gleicher Einstellung der maximale Signalwert $x_{\rm max}\text{?}$}} | ||
+ | |||
+ | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist $x_{\rm max} =x(t_* + i \cdot T_0) = 1.39 \ \rm V$ mit $t_* = 0.3 \ \rm ms$ und $T_0 = 5.0 \ \rm ms$ | ||
+ | {{BlaueBox|TEXT= | ||
+ | '''(8)''' Wählen Sie die letzte Einstellung ⇒ "Recall Parameters" und ändern Sie $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen:}} | ||
+ | |||
+ | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun mit $x_{\rm max} =x(t_* + i \cdot T_0) = 1.5 \ \rm V$, also gleich $A_1 + A_2$ ⇒ $t_* = 0$, $T_0 = 5.0 \ \rm ms$. | ||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | '''(9)''' Wählen Sie die vorletzte Einstellung ⇒ "Recall Parameters" und ändern Sie $\varphi_1 = 90^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Sinusschwingungen:}} | ||
+ | |||
+ | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun mit $x_{\rm max} = 1.08 \ \rm V$, also ungleich $A_1 + A_2$ ⇒ $t_* = 0.6 \ \rm ms$, $T_0 = 5.0 \ \rm ms$. | ||
+ | |||
+ | |||
+ | |||
+ | ==Zur Handhabung der Applet-Variante 1== | ||
+ | [[File:Periodendauer_fertig_version1.png|left]] | ||
+ | '''(A)''' Parametereingabe per Slider | ||
+ | |||
+ | '''(B)''' Bereich der graphischen Darstellung | ||
+ | |||
+ | '''(C)''' Variationsmöglichkeit für die graphische Darstellung | ||
+ | |||
+ | '''(D)''' Abspeichern und Zurückholen von Parametersätzen | ||
+ | |||
+ | '''(E)''' Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie | ||
+ | |||
+ | '''(F)''' Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ | ||
+ | |||
+ | '''(G)''' Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte | ||
+ | |||
+ | '''(H)''' Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ | ||
+ | |||
+ | '''Details zum obigen Punkt (C)''' | ||
+ | |||
+ | '''(*)''' Zoom–Funktionen "$+$" (Vergrößern), "$-$" (Verkleinern) und $\rm o$ (Zurücksetzen) | ||
+ | |||
+ | '''(*)''' Verschieben mit "$\leftarrow$" (Ausschnitt nach links, Ordinate nach rechts), "$\uparrow$" "$\downarrow$" und "$\rightarrow$" | ||
+ | |||
+ | '''Andere Möglichkeiten''': | ||
+ | |||
+ | '''(*)''' Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem, | ||
+ | |||
+ | '''(*)''' Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems. | ||
+ | <br clear = all> | ||
+ | |||
+ | ==Zur Handhabung der Applet-Variante 2== | ||
+ | [[File:Periodendauer_SB_version2.png|left]] | ||
+ | '''(A)''' Parametereingabe | ||
+ | |||
+ | '''(B)''' Bereich der graphischen Darstellung | ||
+ | |||
+ | '''(C)''' Größe der graphischen Darstellung | ||
+ | |||
+ | '''(D)''' Speichern/Zurückholen von Eingaben | ||
+ | |||
+ | '''(E)''' Numerikausgabe des Hauptergebnisses $T_0$; <br> in Grafik: blaue Linien im Abstand $T_0$ | ||
+ | |||
+ | '''(F)''' Eingabe $t_\star$, Ausgabe von $x(t_*)$ und $x_{\rm max}$ | ||
+ | <br clear = all> | ||
+ | |||
+ | ==Über die Autoren== | ||
+ | Dieses interaktive Berechnungstool wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert. | ||
+ | *Die erste Version wurde 2004 von [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit "FlashMX–Actionscript" erstellt (Betreuer: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] ). | ||
+ | *2017 wurde dieses Programm von [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]] im Rahmen seiner Ingenieurspraxis (Betreuer: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]) auf "HTML5" umgesetzt und neu gestaltet ⇒ Applet-Variante 1. | ||
+ | *Parallel dazu erarbeitete [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Bastian_Siebenwirth_.28Bachelorarbeit_LB_2017.29|Bastian Siebenwirth]] im Rahmen seiner Bachelorarbeit (Betreuer: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]) die HTML5-Variante 2. | ||
+ | |||
+ | ==Nochmalige Aufrufmöglichkeit der Applets in neuem Fenster== | ||
+ | Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an: | ||
+ | |||
+ | {{LntAppletLink|signalPeriod_en|Applet-Variante 1 in neuem Tab öffnen}} {{LntAppletLink|signalPeriodS_en|Applet-Variante 2 in neuem Tab öffnen}} |
Latest revision as of 15:49, 28 May 2021
Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:
Applet-Variante 1 in neuem Tab öffnen Applet-Variante 2 in neuem Tab öffnen
Contents
Programmbeschreibung
Dieses Applet zeichnet den Verlauf und berechnet die Periodendauer $T_0$ der periodischen Funktion
- $$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$
Bitte beachten Sie:
- Die Phasen $\varphi_i$ sind hier im Bogenmaß einzusetzen. Umrechnung aus dem Eingabewert: $\varphi_i \text{[im Bogenmaß]} =\varphi_i \text{[in Grad]}/360 \cdot 2\pi$.
- Ausgegeben werden auch der Maximalwert $x_{\rm max}$ und ein Signalwert $x(t_*)$ zu einer vorgebbaren Zeit $t_*$.
- Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung.
Die englische Beschreibung finden Sie unter Period Duration of Periodic Signals (derzeit noch nicht realisiert) .
Theoretischer Hintergrund
- Ein periodisches Signal $x(t)$ liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von $t$ und alle ganzzahligen Werte von $i$ mit einem geeigneten $T_{0}$ gilt: $x(t+i\cdot T_{0}) = x(t)$. Man bezeichnet $T_0$ als die Periodendauer und $f_0 = 1/T_0$ als die Grundfrequenz.
- Bei einer harmonischen Schwingung $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$ gilt $f_0 = f_1$ und $T_0 = 1/f_1$, unabhängig von der Phase $\varphi_1$ und der Amplitude $A_1 \ne 0$.
$\text{Berechnungsvorschrift:}$ Setzt sich das periodisches Signal $x(t)$ wie in diesem Applet aus zwei Anteilen $x_1(t)$ und $x_2(t)$ zusammen, dann gilt mit $A_1 \ne 0$, $f_1 \ne 0$, $A_2 \ne 0$, $f_2 \ne 0$ für Grundfrequenz und Periodendauer:
- $$f_0 = {\rm ggT}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0,$$
wobei "ggT" den größten gemeinsamen Teiler bezeichnet.
$\text{Beispiele:}$ Im Folgenden bezeichnen $f_0'$, $f_1'$ und $f_2'$ die auf $1\ \rm kHz$ normierten Signalfrequenzen:
(a) $f_1' = 1.0$, $f_2' = 3.0$ ⇒ $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$ ⇒ $T_0 = 1.0\ \rm ms$;
(b) $f_1' = 1.0$, $f_2' = 3.5$ ⇒ $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$ ⇒ $T_0 = 2.0\ \rm ms$;
(c) $f_1' = 1.0$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$ ⇒ $T_0 = 2.0\ \rm ms$;
(d) $f_1' = 0.9$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$ ⇒ $T_0 = 10.0 \ \rm ms$;
(e) $f_2' = \sqrt{2} \cdot f_1' $ ⇒ $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$ ⇒ $T_0 \to \infty$ ⇒ Das Signal $x(t)$ ist nicht periodisch.
$\text{Anmerkung:}$ Die Periodendauer könnte auch als kleinstes gemeinsame Vielfache (kgV) entsprechend $T_0 = {\rm kgV}(T_1, \ T_2)$ ermittelt werden:
(c) $T_1 = 1.0\ \rm ms$, $T_2 = 0.4\ \rm kHz$ ⇒ $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms = 2.0\ \rm ms$
Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel
(a) $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.
Vorschlag für die Versuchsdurchführung
Im Folgenden bezeichnen $A_1'$ und $A_2'$ die auf $1\ \rm V$ normierten Signalamplituden und $f_0'$, $f_1'$ und $f_2'$ die auf $1\ \rm kHz$ normierte Frequenzen:
(1) nach Voreinstellung: $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ A_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{:}$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 2.0 \ \rm ms$ wegen ${\rm ggt}(2.0, 2.5) = 0.5$.
(2) Variieren Sie bei der bestehenden Einstellung $\varphi_1$ und $\varphi_2$ im gesamten möglichen Bereich $\pm 180^\circ\text{:}$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer $T_0 = 2.0 \ \rm ms$ bleibt erhalten.
(3) Wählen Sie die Voreinstellung ⇒ "Recall Parameters" und variieren Sie $A_1'$ im gesamten möglichen Bereich $0 \le A_1' \le 1\text{:}$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer $T_0 = 2.0 \ \rm ms$ bleibt erhalten mit Ausnahme von $A_1' =0$. In diesem Fall ist $T_0 = 0.4 \ \rm ms$.
(4) Wählen Sie die Voreinstellung ⇒ "Recall Parameters" und ändern Sie $f_2' = 0.2\text{:}$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 5.0 \ \rm ms$ wegen ${\rm ggt}(2.0, 0.2) = 0.2$.
(5) Wählen Sie die Voreinstellung ⇒ "Recall Parameters" und ändern Sie $f_1' = 0.2$. Speichern Sie diese Einstellung mit "Store Parameters":
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 10.0 \ \rm ms$ wegen ${\rm ggt}(0.2, 2.5) = 0.1$.
(6) Wählen Sie die letzte Einstellung ⇒ "Recall Parameters" und ändern Sie $f_2' = 0.6$. Speichern Sie diese Einstellung mit "Store Parameters":
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 5.0 \ \rm ms$ wegen ${\rm ggt}(0.2,0.6) = 0.2$.
(7) Wie groß ist bei gleicher Einstellung der maximale Signalwert $x_{\rm max}\text{?}$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist $x_{\rm max} =x(t_* + i \cdot T_0) = 1.39 \ \rm V$ mit $t_* = 0.3 \ \rm ms$ und $T_0 = 5.0 \ \rm ms$
(8) Wählen Sie die letzte Einstellung ⇒ "Recall Parameters" und ändern Sie $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen:
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun mit $x_{\rm max} =x(t_* + i \cdot T_0) = 1.5 \ \rm V$, also gleich $A_1 + A_2$ ⇒ $t_* = 0$, $T_0 = 5.0 \ \rm ms$.
(9) Wählen Sie die vorletzte Einstellung ⇒ "Recall Parameters" und ändern Sie $\varphi_1 = 90^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Sinusschwingungen:
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun mit $x_{\rm max} = 1.08 \ \rm V$, also ungleich $A_1 + A_2$ ⇒ $t_* = 0.6 \ \rm ms$, $T_0 = 5.0 \ \rm ms$.
Zur Handhabung der Applet-Variante 1
(A) Parametereingabe per Slider
(B) Bereich der graphischen Darstellung
(C) Variationsmöglichkeit für die graphische Darstellung
(D) Abspeichern und Zurückholen von Parametersätzen
(E) Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie
(F) Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
(G) Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte
(H) Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
Details zum obigen Punkt (C)
(*) Zoom–Funktionen "$+$" (Vergrößern), "$-$" (Verkleinern) und $\rm o$ (Zurücksetzen)
(*) Verschieben mit "$\leftarrow$" (Ausschnitt nach links, Ordinate nach rechts), "$\uparrow$" "$\downarrow$" und "$\rightarrow$"
Andere Möglichkeiten:
(*) Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,
(*) Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
Zur Handhabung der Applet-Variante 2
(A) Parametereingabe
(B) Bereich der graphischen Darstellung
(C) Größe der graphischen Darstellung
(D) Speichern/Zurückholen von Eingaben
(E) Numerikausgabe des Hauptergebnisses $T_0$;
in Grafik: blaue Linien im Abstand $T_0$
(F) Eingabe $t_\star$, Ausgabe von $x(t_*)$ und $x_{\rm max}$
Über die Autoren
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2004 von Ji Li im Rahmen ihrer Diplomarbeit mit "FlashMX–Actionscript" erstellt (Betreuer: Günter Söder ).
- 2017 wurde dieses Programm von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf "HTML5" umgesetzt und neu gestaltet ⇒ Applet-Variante 1.
- Parallel dazu erarbeitete Bastian Siebenwirth im Rahmen seiner Bachelorarbeit (Betreuer: Günter Söder) die HTML5-Variante 2.
Nochmalige Aufrufmöglichkeit der Applets in neuem Fenster
Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:
Applet-Variante 1 in neuem Tab öffnen Applet-Variante 2 in neuem Tab öffnen