Difference between revisions of "Aufgaben:Exercise 3.5: Eye Opening with Pseudoternary Coding"

From LNTwww
 
(28 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Impulsinterferenzen_bei_mehrstufiger_Übertragung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Intersymbol_Interference_for_Multi-Level_Transmission
 
}}
 
}}
  
[[File:P_ID1421__Dig_A_3_5.png|right|frame|Auge bei Pseudoternärcodierung]]
+
[[File:EN_Dig_A_3_5.png|right|frame|Eye diagrams with AMI and duobinary code]]
Betrachtet werden drei Nachrichtenübertragungssysteme, jeweils mit folgenden übereinstimmenden Eigenschaften:
+
Three digital transmission systems are considered,  each with the following matching properties:
* NRZ–Rechteckimpulse mit der Amplitude $s_0 = 2 \, {\rm V}$,
+
* NRZ rectangular pulses with amplitude  $s_0 = 2 \, {\rm V}$,
* Koaxialkabel mit charakteristischer Kabeldämpfung $a_* = 40 \, {\rm dB}$,
 
* AWGN–Rauschen mit der Rauschleistungsdichte $N_0$,
 
* Empfangsfilter, bestehend aus einem idealen Kanalentzerrer und einem Gaußtiefpass mit der normierten Grenzfrequenz $f_{\rm G} \cdot T \approx 0.5$.
 
* Schwellenwertentscheider mit optimalen Entscheiderschwellen und optimalem Detektionszeitpunkt $T_{\rm D} = 0$.
 
  
 +
* coaxial cable with characteristic cable attenuation  $a_* = 40 \, {\rm dB}$,
  
Die in der Aufgabe zu untersuchenden Systemvarianten unterscheiden sich ausschließlich hinsichtlich des Übertragungscodes:
+
* AWGN noise with noise power density  $N_0$,
  
<font color="#cc0000"><span style="font-weight: bold;">System A</span></font> verwendet ein binäres bipolares redundanzfreies Sendesignal. Von diesem System sind folgende Beschreibungsgrößen bekannt:
+
* receiver filter &nbsp;$H_{\rm E}(f) = 1/H_{\rm K}(f) \cdot H_{\rm G}(f) $ consisting of an ideal channel equalizer &nbsp;$H_{\rm K}(f)^{-1}$&nbsp; and a Gaussian low-pass filter &nbsp;$H_{\rm G}(f)$&nbsp; with normalized cutoff frequency &nbsp;$f_{\rm G} \cdot T \approx 0.5$,
* Grundimpulswerte $g_0 = 1.56 \, {\rm V}$, $g_1 = g_{\rm &ndash;1} = 0.22 \, {\rm V}$, $g_2 = g_{\rm &ndash;2} = \, ... \, \approx 0$
+
 
 +
* threshold decision with optimal decision thresholds and optimal detection time &nbsp;$T_{\rm D} = 0$.
 +
 
 +
 
 +
The system variants to be investigated in the exercise differ only in terms of the line code:
 +
 
 +
&rArr; &nbsp; $\text{System A}$&nbsp; uses a binary bipolar redundancy-free transmission signal. The following descriptive variables are known:
 +
* Basic detection pulse values &nbsp;$g_0 = 1.56 \, {\rm V}$, $g_1 = g_{\rm &ndash;1} = 0.22 \, {\rm V}$, $g_2 = g_{\rm &ndash;2} = \, \text{ ...} \, \approx 0$
 
:$$\Rightarrow \hspace{0.3cm}{\ddot{o}(T_{\rm D})}/{ 2}  = g_{0}
 
:$$\Rightarrow \hspace{0.3cm}{\ddot{o}(T_{\rm D})}/{ 2}  = g_{0}
 
  -g_{1}-g_{-1} = 1.12\,{\rm V}
 
  -g_{1}-g_{-1} = 1.12\,{\rm V}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
* Rauscheffektivwert $\sigma_d \approx = 0.2 \, {\rm V}$
+
* Noise rms value &nbsp;$\sigma_d \approx 0.2 \, {\rm V}$
:$$\Rightarrow \hspace{0.3cm}\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{
+
:$$\Rightarrow \hspace{0.3cm}\rho_{\rm U} = \frac{\big[\ddot{o}(T_{\rm D})/2\big]^2}{
 
  \sigma_d^2}\approx 31.36\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  \sigma_d^2}\approx 31.36\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \approx 15\,{\rm dB}\hspace{0.05cm}.$$
 
  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \approx 15\,{\rm dB}\hspace{0.05cm}.$$
  
<font color="#cc0000"><span style="font-weight: bold;">System B</span></font> verwendet AMI&ndash;Codierung. Hier treten die äußeren Symbole $&bdquo;+1&rdquo;$ bzw, $&bdquo;&ndash;1&rdquo;$ nur isoliert auf. Bei drei aufeinanderfolgenden Symbolen sind unter Anderem die zwei Folgen $&bdquo; \, ... \, , \, +1, \, +1, \, +1, \, ... \,&rdquo;$ und $&bdquo; \, ... \, , \, +1, \, 0, \, +1, \, ... \ &rdquo;$ nicht möglich im Gegensatz zu $&bdquo; \, ... \, , \, +1, \, &ndash;1, \, +1, \, ... \,&rdquo;$
+
&rArr; &nbsp; $\text{System B}$&nbsp; uses AMI coding:
 +
*Here the outer symbols &nbsp;$"+1"$&nbsp; or &nbsp;$"&ndash;1"$&nbsp; occur only in isolation.
 +
*In the case of three consecutive symbols, the sequences &nbsp;"$\hspace{-0.1cm}\text{ ...} \, , \, +1, \, +1, \, +1, \,\text{ ...}$"&nbsp; and &nbsp;"$\hspace{-0.1cm}\text{ ...} \, , \, +1, \, 0, \, +1, \, \text{ ...} $"&nbsp; among others,&nbsp; are not possible,
 +
* in contrast to the sequence &nbsp;"$\hspace{-0.1cm}\text{ ...\, , \, +1, \, &ndash;1, \, +1, \, \text{ ...} $".
 +
 
 +
 
 +
&rArr; &nbsp; $\text{System C}$&nbsp; uses the duobinary code:
 +
*Here the alternating sequence &nbsp;"$\hspace{-0.1cm} \text{ ...}  \, , \, &ndash;1, \, +1, \, &ndash;1, \, \text{ ...}  $"&nbsp; is excluded by the code,&nbsp; which has a favorable effect on the eye opening.
 +
 
 +
 
 +
 
  
<font color="#cc0000"><span style="font-weight: bold;">System C</span></font> verwendet Duobinärcode. Hier wird die alternierende Folge $&bdquo; \, ... \, , \, &ndash;1, \, +1, \, &ndash;1, \, ... \,&rdquo;$ durch den Code ausgeschlossen, was sich günstig auf die Augenöffnung auswirkt.  
+
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Intersymbol_Interference_for_Multi-Level_Transmission|"Intersymbol Interference for Multi-Level Transmission"]].
 +
 +
* Not all of the numerical values given here are necessary to solve this exercise.
  
''Hinweis:''
 
* Diese Aufgabe bezieht sich auf das Kapitel[[Digitalsignal%C3%BCbertragung/Impulsinterferenzen_bei_mehrstufiger_%C3%9Cbertragung|Impulsinterferenzen bei mehrstufiger Übertragung]].
 
* Nicht alle der hier angegebenen Zahlenwerte sind zur Lösung dieser Aufgabe erforderlich.
 
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die halbe Augenöffnung für den AMI&ndash;Code.
+
{Calculate the half eye opening for the&nbsp; '''AMI code'''.
 
|type="{}"}
 
|type="{}"}
${\rm System \, B}: \, \ddot{o}(T_{\rm D})/2$ = { 0.45 3% } ${\rm V}$
+
$\text{System B:}\hspace{0.4cm} \ddot{o}(T_{\rm D})/2 \ = \ $ { 0.45 3% } $\ {\rm V}$
  
{Berechnen Sie den ungünstigsten Störabstand dieses Systems.
+
{Calculate the worst-case signal-to-noise ratio for this system.
 
|type="{}"}
 
|type="{}"}
${\rm System \, B}: \, 10 \cdot {\rm lg} \, \rho_{\rm U}$ = { 7 3% } ${\rm dB}$
+
$\text{System B:}\hspace{0.4cm} 10 \cdot {\rm lg} \, \rho_{\rm U} \ = \ $ { 7 3% } $\ {\rm dB}$
  
{Wie müssen die Schwellenwerte $E_1$ und $E_2$ gewählt werden, damit das soeben berechnete Ergebnis stimmt?
+
{How must the thresholds &nbsp;$E_1$&nbsp; and &nbsp;$E_2$&nbsp; be chosen so that the result just calculated is correct?
 
|type="{}"}
 
|type="{}"}
$E_1$ = { -0.69--0.65 } ${\rm V}$
+
$E_1 \ \hspace{0.05cm} = \ ${ -0.69--0.65 } $\ {\rm V}$
$E_2$ = { 0.67 3% } ${\rm V}$
+
$E_2 \ = \ $ { 0.667 3% } $\ {\rm V}$
  
{Berechnen Sie die halbe Augenöffnung beim Duobinär&ndash;Code.
+
{Calculate the half eye opening at the&nbsp; '''duobinary code'''.
 
|type="{}"}
 
|type="{}"}
${\rm System \, C}: \, \ddot{o}(T_{\rm D})/2$ = { 0.67 3% } ${\rm V}$
+
$\text{System C:}\hspace{0.4cm}  \ddot{o}(T_{\rm D})/2 \ = \ $ { 0.67 3% } $\ {\rm V}$
  
{Berechnen Sie den ungünstigsten Störabstand bei Duobinärcodierung.
+
{Calculate the worst-case signal-to-noise ratio for duobinary coding.
 
|type="{}"}
 
|type="{}"}
${\rm System \, C}\, 10 \cdot {\rm lg} \, \rho_{\rm U}$ = { 10.5 3% } ${\rm dB}$
+
$\text{System C:}\hspace{0.4cm} 10 \cdot {\rm lg} \, \rho_{\rm U} \ = \ $ { 10.5 3% } $\ {\rm dB}$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)''' Da beim AMI&ndash;Code die Symbolrate gegenüber dem redundanzfreien Binärsystem nicht verändert wird, bleiben die Grundimpulswerte $g_0 = 1.56 \, {\rm V}, g_1 = g_{\rm &ndash;1} = 0.22 \, {\rm V}$ und $g_2 = g_{\rm &ndash;2} \approx 0$ unverändert.
+
'''(1)'''&nbsp; Since the symbol rate is not changed in the AMI code compared to the redundancy-free binary system,&nbsp; the basic detection pulse values remain unchanged:
 +
:$$g_0 = 1.56 \, {\rm V}, \ g_1 = g_{\rm &ndash;1} = 0.22 \, {\rm V}, \ g_2 = g_{\rm &ndash;2} \approx 0.$$
 +
 
 +
In pseudo-ternary coding,&nbsp; there are always two eye openings:
  
Bei Pseudoternärcodierung gibt es stets zwei Augenöffnungen. Die obere Begrenzungslinie des oberen Auges ergibt sich beim AMI&ndash;Code wie beim redundanzfreien Binärsystem:
+
*The upper boundary line of the upper eye results in the AMI code as in the redundancy-free binary system:
:$$d_{\rm oben}= g_0 - 2 \cdot g_1 \hspace{0.2cm}{\rm (zugeh\ddot{o}rige} \hspace{0.1cm}{\rm
+
:$$d_{\rm top}= g_0 - 2 \cdot g_1 \hspace{0.2cm}\text{(associated sequence: } "\hspace{-0.1cm}-1, +1, -1\hspace{-0.1cm}")
Folge:}-1, +1, -1{\rm )}
 
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Dagegen gilt für die untere Begrenzungslinie des oberen Auges:
+
*In contrast,&nbsp; for the lower boundary line of the upper eye:
:$$d_{\rm unten}= g_1 \hspace{0.2cm}{\rm (zugeh\ddot{o}rige} \hspace{0.1cm}{\rm
+
:$$d_{\rm bottom}= g_1 \hspace{0.2cm}\text{(associated sequences: }\  "\hspace{-0.1cm}0,\ 0, +1\hspace{-0.1cm}"\hspace{0.2cm}\text{ and } "\hspace{-0.1cm}+1,\ 0,\ 0\hspace{-0.1cm}")\hspace{0.05cm}.$$
  Folge:}\hspace{0.2cm}0, \hspace{0.05cm}0, +1\hspace{0.2cm}{\rm bzw.}\hspace{0.2cm}+1, \hspace{0.05cm}0, \hspace{0.05cm}0{\rm )}\hspace{0.05cm}.$$
 
  
Für die halbe Augenöffnung gilt somit:
+
Thus,&nbsp; for the half eye opening,&nbsp; the following holds true:
:$${\ddot{o}(T_{\rm D})}/{2}= {1}/{2} \cdot (d_{\rm oben} - d_{\rm unten}) = {1}/{2} \cdot g_0 - {3}/{2} \cdot g_1 \hspace{0.15cm}\underline {=
+
:$${\ddot{o}(T_{\rm D})}/{2}= {1}/{2} \cdot (d_{\rm top} - d_{\rm bottom}) = {1}/{2} \cdot g_0 - {3}/{2} \cdot g_1 \hspace{0.15cm}\underline {=
 
  0.45\,{\rm V}}\hspace{0.05cm}.$$
 
  0.45\,{\rm V}}\hspace{0.05cm}.$$
  
Die entsprechende Gleichung für das redundanzfreie Binärsystem lautet:
+
The corresponding equation for the redundancy-free binary system is: &nbsp;
 
:$${\ddot{o}(T_{\rm D})}/{2}=  g_0 - 2 \cdot g_1 \hspace{0.05cm}.$$
 
:$${\ddot{o}(T_{\rm D})}/{2}=  g_0 - 2 \cdot g_1 \hspace{0.05cm}.$$
  
  
'''(2)''' Bezüglich des Rauschens gibt es keinen Unterschied zwischen den Systemen A, B und C, da stets die gleiche Symbolrate vorliegt. Daraus folgt für den AMI&ndash;Code:
+
'''(2)'''&nbsp; In terms of noise,&nbsp; there is no difference between the three systems since the same symbol rate is always present.&nbsp; It follows for the AMI code:
 
:$$\rho_{\rm U} = \frac{(0.45\,{\rm V})^2}{(0.2\,{\rm V})^2} =
 
:$$\rho_{\rm U} = \frac{(0.45\,{\rm V})^2}{(0.2\,{\rm V})^2} =
 
  5.06  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  5.06  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
Line 84: Line 99:
 
lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline {\approx 7\,{\rm dB}} \hspace{0.05cm}.$$
 
lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline {\approx 7\,{\rm dB}} \hspace{0.05cm}.$$
  
Die Einbuße gegenüber dem redundanzfreien Binärsystem beträgt somit fast $8 \, {\rm dB}$. Der Grund für diesen gravierenden Störabstandverlust ist, dass beim AMI&ndashMCode trotz $37 %$ Redundanz die bezüglich der Impulsinterferenzen besonders ungünstige Symbolfolge $" \, ... \, , \, &ndash;1, \, +1, \, &ndash;1, \, ... \,"$ nicht ausgeschlossen wird.
+
*The loss compared to the redundancy-free binary system is thus almost&nbsp; $8 \, {\rm dB}$.
 +
 +
*The reason for this serious loss of signal-to-noise ratio is that with the AMI code,&nbsp; despite $37\%$&nbsp; redundancy,&nbsp; the symbol sequence &nbsp;"$\text{ ...} , \, &ndash;1, \, +1, \, &ndash;1, \text{ ...} $"&nbsp; is not excluded,&nbsp; which is particularly unfavorable with respect to intersymbol interference.
  
  
'''(3)''' Die Schwelle $E_2$ muss in der Mitte zwischen $d_{\rm oben}$ und $d_{\rm unten}$ liegen:
+
 
:$$E_2= {1}/{2} \cdot (d_{\rm oben} + d_{\rm unten}) = {1}/{2} \cdot (g_0 -  g_1 ) \hspace{0.15cm}\underline {=
+
'''(3)'''&nbsp; The threshold&nbsp; $E_2$&nbsp; must be in the middle between&nbsp; $d_{\rm top}$&nbsp; and&nbsp; $d_{\rm bottom}$:
 +
:$$E_2= {1}/{2} \cdot (d_{\rm top} + d_{\rm bottom}) = {1}/{2} \cdot (g_0 -  g_1 ) \hspace{0.15cm}\underline {=
 
  0.67\,{\rm V}}\hspace{0.05cm}.$$
 
  0.67\,{\rm V}}\hspace{0.05cm}.$$
 +
*The threshold value $E_1$ is symmetrical to this:&nbsp; $E_1 \, \underline {= \, &ndash;0.67 {\rm V}}$.
 +
  
Der Schwellenwert $E_1$ liegt symmetrisch dazu: $E_1 \, \underline {= \, &ndash;0.67 {\rm V}}$.
 
  
 +
'''(4)'''&nbsp; We again assume the same basic detection  pulse values.
 +
*The worst-case sequence with respect to the upper boundary line of the upper eye is &nbsp;"$\text{ ...} , 0, \, +1, \, 0, \text{ ...} $",
 +
*while the lower boundary line is defined by &nbsp;"$\text{ ...} ,  0, \, 0, \, +1, \text{ ...} $"&nbsp; or &nbsp;"$\text{ ...} , +1, \, 0, \, 0, \text{ ...} $"&nbsp; respectively.
  
'''(4)''' Wir gehen wieder von den gleichen Grundimpulswerten aus. Die ungünstigste Folge bezüglich der oberen Begrenzungslinie des oberen Auges ist $" \, ... \, , \, 0, \, +1, \, 0, \, ... \, "$, während die untere Begrenzungslinie durch $" \, ... \, , \, 0, \, 0, \, +1, \, ... \, "$ bzw. $" \, ... \, , \, +1, \, 0, \, 0, \, ... \, "$ bestimmt wird. Daraus folgt:
+
*From this follows:
:$$d_{\rm oben}= g_0, \hspace{0.2cm} d_{\rm unten} = g_1 \hspace{0.3cm}\Rightarrow
+
:$$d_{\rm top}= g_0, \hspace{0.2cm} d_{\rm bottom} = g_1 \hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm}{\ddot{o}(T_{\rm D})}/{2} = {g_0}/{2} -
 
\hspace{0.3cm}{\ddot{o}(T_{\rm D})}/{2} = {g_0}/{2} -
{g_1}/{2}\hspace{0.15cm}\underline { = 0.67\,{\rm V}} \hspace{0.05cm}.$$
+
{g_1}/{2}\hspace{0.15cm}\underline { = 0.667\,{\rm V}} \hspace{0.05cm}.$$
  
  
'''(5)''' Mit dem Ergebnis aus 4) erhält man analog zur Teilaufgabe 2)
+
'''(5)'''&nbsp; Using the result from&nbsp; '''(4)''',&nbsp; we obtain analogous to subtask&nbsp; '''(2)''':
 
:$$\rho_{\rm U} = \frac{(0.67\,{\rm V})^2}{(0.2\,{\rm V})^2} =
 
:$$\rho_{\rm U} = \frac{(0.67\,{\rm V})^2}{(0.2\,{\rm V})^2} =
 
  11.2  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  11.2  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
Line 107: Line 129:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Voraussetzung für dieses Ergebnis sind Schwellenwerte bei
+
*Prerequisite for this result are thresholds at
 
:$$E_2=  {1}/{2} \cdot (g_0 +  g_1 ) =
 
:$$E_2=  {1}/{2} \cdot (g_0 +  g_1 ) =
 
  0.89\,{\rm V}, \hspace{0.2cm}E_1 = - 0.89\,{\rm V}\hspace{0.05cm}.$$
 
  0.89\,{\rm V}, \hspace{0.2cm}E_1 = - 0.89\,{\rm V}\hspace{0.05cm}.$$
  
Anzumerken ist, dass hier stets von der gleichen Grenzfrequenz $f_G \cdot T = 0.5$ ausgegangen wurde.  
+
*It should be noted that the same cutoff frequency&nbsp; $f_{\rm G} \cdot T = 0.5$&nbsp; was always assumed here.
Bei Optimierung der Grenzfrequenz kann es durchaus sein, dass der Duobinärcode dem redundanzfreien Binärcode überlegen ist, wenn die charakteristische Kabeldämpfung hinreichend groß ist.
+
 +
*If the cutoff frequency is optimized,&nbsp; it may well be that the duobinary code is superior to the redundancy-free binary code if the characteristic cable attenuation is sufficiently large.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.4 Augendiagramm mehrstufiger Systeme^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.4 Eye Opening with Multilevel Systems^]]

Latest revision as of 15:45, 28 June 2022

Eye diagrams with AMI and duobinary code

Three digital transmission systems are considered,  each with the following matching properties:

  • NRZ rectangular pulses with amplitude  $s_0 = 2 \, {\rm V}$,
  • coaxial cable with characteristic cable attenuation  $a_* = 40 \, {\rm dB}$,
  • AWGN noise with noise power density  $N_0$,
  • receiver filter  $H_{\rm E}(f) = 1/H_{\rm K}(f) \cdot H_{\rm G}(f) $ consisting of an ideal channel equalizer  $H_{\rm K}(f)^{-1}$  and a Gaussian low-pass filter  $H_{\rm G}(f)$  with normalized cutoff frequency  $f_{\rm G} \cdot T \approx 0.5$,
  • threshold decision with optimal decision thresholds and optimal detection time  $T_{\rm D} = 0$.


The system variants to be investigated in the exercise differ only in terms of the line code:

⇒   $\text{System A}$  uses a binary bipolar redundancy-free transmission signal. The following descriptive variables are known:

  • Basic detection pulse values  $g_0 = 1.56 \, {\rm V}$, $g_1 = g_{\rm –1} = 0.22 \, {\rm V}$, $g_2 = g_{\rm –2} = \, \text{ ...} \, \approx 0$
$$\Rightarrow \hspace{0.3cm}{\ddot{o}(T_{\rm D})}/{ 2} = g_{0} -g_{1}-g_{-1} = 1.12\,{\rm V} \hspace{0.05cm}.$$
  • Noise rms value  $\sigma_d \approx 0.2 \, {\rm V}$
$$\Rightarrow \hspace{0.3cm}\rho_{\rm U} = \frac{\big[\ddot{o}(T_{\rm D})/2\big]^2}{ \sigma_d^2}\approx 31.36\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \approx 15\,{\rm dB}\hspace{0.05cm}.$$

⇒   $\text{System B}$  uses AMI coding:

  • Here the outer symbols  $"+1"$  or  $"–1"$  occur only in isolation.
  • In the case of three consecutive symbols, the sequences  "$\hspace{-0.1cm}\text{ ...} \, , \, +1, \, +1, \, +1, \,\text{ ...}$"  and  "$\hspace{-0.1cm}\text{ ...} \, , \, +1, \, 0, \, +1, \, \text{ ...} $"  among others,  are not possible,
  • in contrast to the sequence  "$\hspace{-0.1cm}\text{ ...} \, , \, +1, \, –1, \, +1, \, \text{ ...} $".


⇒   $\text{System C}$  uses the duobinary code:

  • Here the alternating sequence  "$\hspace{-0.1cm} \text{ ...} \, , \, –1, \, +1, \, –1, \, \text{ ...} $"  is excluded by the code,  which has a favorable effect on the eye opening.



Notes:

  • Not all of the numerical values given here are necessary to solve this exercise.


Questions

1

Calculate the half eye opening for the  AMI code.

$\text{System B:}\hspace{0.4cm} \ddot{o}(T_{\rm D})/2 \ = \ $

$\ {\rm V}$

2

Calculate the worst-case signal-to-noise ratio for this system.

$\text{System B:}\hspace{0.4cm} 10 \cdot {\rm lg} \, \rho_{\rm U} \ = \ $

$\ {\rm dB}$

3

How must the thresholds  $E_1$  and  $E_2$  be chosen so that the result just calculated is correct?

$E_1 \ \hspace{0.05cm} = \ $

$\ {\rm V}$
$E_2 \ = \ $

$\ {\rm V}$

4

Calculate the half eye opening at the  duobinary code.

$\text{System C:}\hspace{0.4cm} \ddot{o}(T_{\rm D})/2 \ = \ $

$\ {\rm V}$

5

Calculate the worst-case signal-to-noise ratio for duobinary coding.

$\text{System C:}\hspace{0.4cm} 10 \cdot {\rm lg} \, \rho_{\rm U} \ = \ $

$\ {\rm dB}$


Solution

(1)  Since the symbol rate is not changed in the AMI code compared to the redundancy-free binary system,  the basic detection pulse values remain unchanged:

$$g_0 = 1.56 \, {\rm V}, \ g_1 = g_{\rm –1} = 0.22 \, {\rm V}, \ g_2 = g_{\rm –2} \approx 0.$$

In pseudo-ternary coding,  there are always two eye openings:

  • The upper boundary line of the upper eye results in the AMI code as in the redundancy-free binary system:
$$d_{\rm top}= g_0 - 2 \cdot g_1 \hspace{0.2cm}\text{(associated sequence: } "\hspace{-0.1cm}-1, +1, -1\hspace{-0.1cm}") \hspace{0.05cm}.$$
  • In contrast,  for the lower boundary line of the upper eye:
$$d_{\rm bottom}= g_1 \hspace{0.2cm}\text{(associated sequences: }\ "\hspace{-0.1cm}0,\ 0, +1\hspace{-0.1cm}"\hspace{0.2cm}\text{ and } "\hspace{-0.1cm}+1,\ 0,\ 0\hspace{-0.1cm}")\hspace{0.05cm}.$$

Thus,  for the half eye opening,  the following holds true:

$${\ddot{o}(T_{\rm D})}/{2}= {1}/{2} \cdot (d_{\rm top} - d_{\rm bottom}) = {1}/{2} \cdot g_0 - {3}/{2} \cdot g_1 \hspace{0.15cm}\underline {= 0.45\,{\rm V}}\hspace{0.05cm}.$$

The corresponding equation for the redundancy-free binary system is:  

$${\ddot{o}(T_{\rm D})}/{2}= g_0 - 2 \cdot g_1 \hspace{0.05cm}.$$


(2)  In terms of noise,  there is no difference between the three systems since the same symbol rate is always present.  It follows for the AMI code:

$$\rho_{\rm U} = \frac{(0.45\,{\rm V})^2}{(0.2\,{\rm V})^2} = 5.06 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline {\approx 7\,{\rm dB}} \hspace{0.05cm}.$$
  • The loss compared to the redundancy-free binary system is thus almost  $8 \, {\rm dB}$.
  • The reason for this serious loss of signal-to-noise ratio is that with the AMI code,  despite $37\%$  redundancy,  the symbol sequence  "$\text{ ...} , \, –1, \, +1, \, –1, \text{ ...} $"  is not excluded,  which is particularly unfavorable with respect to intersymbol interference.


(3)  The threshold  $E_2$  must be in the middle between  $d_{\rm top}$  and  $d_{\rm bottom}$:

$$E_2= {1}/{2} \cdot (d_{\rm top} + d_{\rm bottom}) = {1}/{2} \cdot (g_0 - g_1 ) \hspace{0.15cm}\underline {= 0.67\,{\rm V}}\hspace{0.05cm}.$$
  • The threshold value $E_1$ is symmetrical to this:  $E_1 \, \underline {= \, –0.67 {\rm V}}$.


(4)  We again assume the same basic detection pulse values.

  • The worst-case sequence with respect to the upper boundary line of the upper eye is  "$\text{ ...} , 0, \, +1, \, 0, \text{ ...} $",
  • while the lower boundary line is defined by  "$\text{ ...} , 0, \, 0, \, +1, \text{ ...} $"  or  "$\text{ ...} , +1, \, 0, \, 0, \text{ ...} $"  respectively.
  • From this follows:
$$d_{\rm top}= g_0, \hspace{0.2cm} d_{\rm bottom} = g_1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\ddot{o}(T_{\rm D})}/{2} = {g_0}/{2} - {g_1}/{2}\hspace{0.15cm}\underline { = 0.667\,{\rm V}} \hspace{0.05cm}.$$


(5)  Using the result from  (4),  we obtain analogous to subtask  (2):

$$\rho_{\rm U} = \frac{(0.67\,{\rm V})^2}{(0.2\,{\rm V})^2} = 11.2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline {\approx 10.5\,{\rm dB}} \hspace{0.05cm}.$$
  • Prerequisite for this result are thresholds at
$$E_2= {1}/{2} \cdot (g_0 + g_1 ) = 0.89\,{\rm V}, \hspace{0.2cm}E_1 = - 0.89\,{\rm V}\hspace{0.05cm}.$$
  • It should be noted that the same cutoff frequency  $f_{\rm G} \cdot T = 0.5$  was always assumed here.
  • If the cutoff frequency is optimized,  it may well be that the duobinary code is superior to the redundancy-free binary code if the characteristic cable attenuation is sufficiently large.