Difference between revisions of "Aufgaben:Exercise 3.7: Optimal Nyquist Equalization once again"
From LNTwww
(18 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Digital_Signal_Transmission/Linear_Nyquist_Equalization}} |
− | [[File:P_ID1435__Dig_A_3_7.png|right|frame| | + | [[File:P_ID1435__Dig_A_3_7.png|right|frame|Transversal filter <br>frequency response]] |
− | + | We assume the following for this exercise: | |
− | * | + | * binary bipolar NRZ rectangular pulses |
− | :$$|H_{\rm S}(f)|= {\rm | + | :$$|H_{\rm S}(f)|= {\rm sinc}(f T) \hspace{0.05cm},$$ |
− | * | + | * coaxial cable with characteristic cable attenuation $a_* = 9.2 \ {\rm Np} \ (\approx 80 \ \rm dB)$: |
− | :$$|H_{\rm K}(f)|= {\rm | + | :$$|H_{\rm K}(f)|= {\rm e}^{ -9.2 |
− | \cdot \sqrt{2 \cdot |f| \cdot T} | + | \cdot \sqrt{2 \cdot |f| \cdot T} }\hspace{0.05cm},$$ |
− | * | + | * optimal Nyquist equalizer consisting of matched filter and transversal filter: |
− | :$$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f)\hspace{0. | + | :$$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f)$$ |
− | + | :$$\hspace{0.8cm}{\rm where}\hspace{0.2cm}H_{\rm MF}(f) = H_{\rm S}^{\star}(f) \cdot H_{\rm K}^{\star}(f)\hspace{0.05cm},\hspace{0.2cm} | |
H_{\rm TF}(f) = | H_{\rm TF}(f) = | ||
\frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - | \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - | ||
Line 17: | Line 17: | ||
|^2}\hspace{0.05cm}.$$ | |^2}\hspace{0.05cm}.$$ | ||
− | + | :Here, $H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$ denotes the product of transmitter and channel frequency response. | |
− | + | ||
+ | Because of Nyquist equalization, the eye is maximally open. For the error probability holds: | ||
:$$p_{\rm S} \left ( = p_{\rm U} \right ) = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right ) | :$$p_{\rm S} \left ( = p_{\rm U} \right ) = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right ) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | The normalized noise power at the decision is given by the following equations: | |
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot | :$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot | ||
\int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f | \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f | ||
− | \hspace{0. | + | \hspace{0.5cm} = \hspace{0.5cm} |
− | + | \sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot | |
− | \int_{-1/(2T)}^{+1/(2T)} H_{\rm TF}(f) \,{\rm d} f = T | + | \int_{-1/(2T)}^{+1/(2T)} H_{\rm TF}(f) \,{\rm d} f \hspace{0.5cm}= \hspace{0.5cm}T |
\cdot \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f | \cdot \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | The validity of this equation follows from the periodicity of the transversal filter frequency response $H_{\rm TF}(f)$. | |
+ | *In the graph, the normalized noise power can be seen as the area highlighted in red. | ||
+ | |||
+ | *As an approximation, the normalized noise power can be calculated by the triangular area shown in blue in the graph. | ||
+ | |||
+ | |||
− | + | Notes: | |
− | * | + | *The exercise belongs to the chapter [[Digital_Signal_Transmission/Linear_Nyquist_Equalization|"Linear Nyquist Equalization"]]. |
− | * | + | |
+ | * To determine the error probability you can use the interactive calculation module [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]]. | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Calculate the magnitude of the transmitter channel frequency response for the frequencies $f = 0$, $f = 1/(2T)= f_{\rm Nyq}$ and $f = 1/T = 2 \cdot f_{\rm Nyq}$. |
− | |type=" | + | |type="{}"} |
− | + | $|H_{\rm SK} (f = 0)| \hspace{0.8cm} = \ $ { 1 3% } | |
− | + | $|H_{\rm SK} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $ { 6.43 3% } $\ \cdot 10^{-5}$ | |
+ | $|H_{\rm SK} (f = 1/T)| \hspace{0.25cm} = \ $ { 0. } | ||
+ | |||
+ | {Calculate the maximum value of $H_{\rm TF}(f)$ at frequency $f = f_{\rm Nyq}$. | ||
+ | |type="{}"} | ||
+ | $|H_{\rm TF} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $ { 1.21 3% } $\ \cdot 10^8$ | ||
+ | |||
+ | {Calculate the normalized noise power according to the triangular approximation. | ||
+ | |type="{}"} | ||
+ | $\sigma_{d, \ \rm norm}^2 \hspace{0.2cm} = \ $ { 1.7 3% } $\ \cdot 10^7$ | ||
− | { | + | {What is the symbol error probability with $s_0^2 \cdot T/N_0 = 10^8$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $p_{\rm S} \hspace{0.2cm} = \ $ { 0.8 3% } $\ \%$ |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' In general, for all frequencies $f \ge 0$: |
− | '''(2)''' | + | :$$|H_{\rm SK}(f)|= {\rm sinc}(f T) \cdot {\rm e}^{ -9.2 |
− | '''( | + | \cdot \sqrt{2 \cdot |f| \cdot T} }\hspace{0.05cm}.$$ |
− | '''( | + | *This gives the special cases we are looking for: |
− | '''( | + | :$$f= 0 \text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = 0)|= {\rm sinc}(0) \cdot {\rm e}^0 \hspace{0.15cm}\underline {= 1} |
+ | \hspace{0.05cm},$$ | ||
+ | :$$ f= f_{\rm Nyq}\text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{2T})|= {\rm sinc}({1}/{2}) \cdot {\rm e}^{-9.2} | ||
+ | \hspace{0.15cm}\underline { \approx 6.43 \cdot 10^{-5}} | ||
+ | \hspace{0.05cm},$$ | ||
+ | :$$ f= {1}/{T} \text{:}\ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{T})|= {\rm sinc}({1}) \cdot {\rm e}^{...} | ||
+ | \hspace{0.15cm}\underline { = 0} \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | '''(2)''' The graph shows that $H_{\rm TF}(f)$ becomes maximal at $f = f_{\rm Nyq}$. | ||
+ | |||
+ | *It follows with the given equation that | ||
+ | :$${\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - | ||
+ | \frac{\kappa}{T}) | ||
+ | |^2}$$ | ||
+ | |||
+ | :is minimal at the Nyquist frequency. | ||
+ | *However, for $f = f_{\rm Nyq}$, of the infinite sum, only the terms with $\kappa = 0$ and $\kappa = 1$ contribute relevantly to the result. | ||
+ | *From this follows further with the result from subtask '''(1)''': | ||
+ | :$${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm | ||
+ | Nyq})= | ||
+ | {1}/{2 \cdot |H_{\rm SK}(f = f_{\rm | ||
+ | Nyq}) |^2} = \ \frac{1}{2 \cdot (6.43 \cdot 10^{-5})^2}= | ||
+ | \frac{10^{10}}{82.69} \hspace{0.15cm}\underline {\approx 1.21 \cdot 10^{8}} | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | '''(3)''' Approximating the integral over $H_{\rm TF}(f)$ by the triangular area plotted in the graph, we obtain: | ||
+ | :$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot | ||
+ | \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx T \cdot | ||
+ | \frac{1}{2}\cdot 1.21 \cdot 10^{8}\cdot (0.64 -0.36)\hspace{0.15cm}\underline {\approx 1.7 | ||
+ | \cdot 10^{7}} \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | '''(4)''' According to the given equation, we obtain for the (mean) symbol error probability: | ||
+ | :$$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right | ||
+ | ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7 | ||
+ | \cdot 10^{7}}} \right ) \approx {\rm Q}(2.42)\hspace{0.3cm} | ||
+ | \Rightarrow | ||
+ | \hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$ | ||
+ | |||
+ | :Since a binary Nyquist system is present, the worst–case probability $p_{\rm U}$ is just as large. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Digital Signal Transmission: Exercises|^3.5 Linear Nyquist Equalization^]] |
Latest revision as of 10:38, 23 June 2022
We assume the following for this exercise:
- binary bipolar NRZ rectangular pulses
- $$|H_{\rm S}(f)|= {\rm sinc}(f T) \hspace{0.05cm},$$
- coaxial cable with characteristic cable attenuation $a_* = 9.2 \ {\rm Np} \ (\approx 80 \ \rm dB)$:
- $$|H_{\rm K}(f)|= {\rm e}^{ -9.2 \cdot \sqrt{2 \cdot |f| \cdot T} }\hspace{0.05cm},$$
- optimal Nyquist equalizer consisting of matched filter and transversal filter:
- $$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f)$$
- $$\hspace{0.8cm}{\rm where}\hspace{0.2cm}H_{\rm MF}(f) = H_{\rm S}^{\star}(f) \cdot H_{\rm K}^{\star}(f)\hspace{0.05cm},\hspace{0.2cm} H_{\rm TF}(f) = \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - {\kappa}/{T}) |^2}\hspace{0.05cm}.$$
- Here, $H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$ denotes the product of transmitter and channel frequency response.
Because of Nyquist equalization, the eye is maximally open. For the error probability holds:
- $$p_{\rm S} \left ( = p_{\rm U} \right ) = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right ) \hspace{0.05cm}.$$
The normalized noise power at the decision is given by the following equations:
- $$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f \hspace{0.5cm} = \hspace{0.5cm} \sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{-1/(2T)}^{+1/(2T)} H_{\rm TF}(f) \,{\rm d} f \hspace{0.5cm}= \hspace{0.5cm}T \cdot \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \hspace{0.05cm}.$$
The validity of this equation follows from the periodicity of the transversal filter frequency response $H_{\rm TF}(f)$.
- In the graph, the normalized noise power can be seen as the area highlighted in red.
- As an approximation, the normalized noise power can be calculated by the triangular area shown in blue in the graph.
Notes:
- The exercise belongs to the chapter "Linear Nyquist Equalization".
- To determine the error probability you can use the interactive calculation module "Complementary Gaussian Error Functions".
Questions
Solution
(1) In general, for all frequencies $f \ge 0$:
- $$|H_{\rm SK}(f)|= {\rm sinc}(f T) \cdot {\rm e}^{ -9.2 \cdot \sqrt{2 \cdot |f| \cdot T} }\hspace{0.05cm}.$$
- This gives the special cases we are looking for:
- $$f= 0 \text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = 0)|= {\rm sinc}(0) \cdot {\rm e}^0 \hspace{0.15cm}\underline {= 1} \hspace{0.05cm},$$
- $$ f= f_{\rm Nyq}\text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{2T})|= {\rm sinc}({1}/{2}) \cdot {\rm e}^{-9.2} \hspace{0.15cm}\underline { \approx 6.43 \cdot 10^{-5}} \hspace{0.05cm},$$
- $$ f= {1}/{T} \text{:}\ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{T})|= {\rm sinc}({1}) \cdot {\rm e}^{...} \hspace{0.15cm}\underline { = 0} \hspace{0.05cm}.$$
(2) The graph shows that $H_{\rm TF}(f)$ becomes maximal at $f = f_{\rm Nyq}$.
- It follows with the given equation that
- $${\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - \frac{\kappa}{T}) |^2}$$
- is minimal at the Nyquist frequency.
- However, for $f = f_{\rm Nyq}$, of the infinite sum, only the terms with $\kappa = 0$ and $\kappa = 1$ contribute relevantly to the result.
- From this follows further with the result from subtask (1):
- $${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm Nyq})= {1}/{2 \cdot |H_{\rm SK}(f = f_{\rm Nyq}) |^2} = \ \frac{1}{2 \cdot (6.43 \cdot 10^{-5})^2}= \frac{10^{10}}{82.69} \hspace{0.15cm}\underline {\approx 1.21 \cdot 10^{8}} \hspace{0.05cm}.$$
(3) Approximating the integral over $H_{\rm TF}(f)$ by the triangular area plotted in the graph, we obtain:
- $$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx T \cdot \frac{1}{2}\cdot 1.21 \cdot 10^{8}\cdot (0.64 -0.36)\hspace{0.15cm}\underline {\approx 1.7 \cdot 10^{7}} \hspace{0.05cm}.$$
(4) According to the given equation, we obtain for the (mean) symbol error probability:
- $$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7 \cdot 10^{7}}} \right ) \approx {\rm Q}(2.42)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$
- Since a binary Nyquist system is present, the worst–case probability $p_{\rm U}$ is just as large.