Difference between revisions of "Aufgaben:Exercise 3.7: Optimal Nyquist Equalization once again"

From LNTwww
 
(12 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Lineare Nyquistentzerrung}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Linear_Nyquist_Equalization}}
  
[[File:P_ID1435__Dig_A_3_7.png|right|frame|Transversalfilterfrequenzgang]]
+
[[File:P_ID1435__Dig_A_3_7.png|right|frame|Transversal filter <br>frequency response]]
Wir gehen bei dieser Aufgabe von folgenden Voraussetzungen aus:
+
We assume the following for this exercise:
* binäre bipolare NRZ&ndash;Rechteckimpulse
+
* binary bipolar NRZ rectangular pulses
:$$|H_{\rm S}(f)|= {\rm si}(\pi f T) \hspace{0.05cm},$$
+
:$$|H_{\rm S}(f)|= {\rm sinc}(f T) \hspace{0.05cm},$$
* Koaxialkabel mit Kabeldämpfung $a_* = 9.2 \ {\rm Np} \ (\approx 80 \ \rm dB)$:
+
* coaxial cable with characteristic cable attenuation &nbsp;$a_* = 9.2 \ {\rm Np} \ (\approx 80 \ \rm dB)$:
 
:$$|H_{\rm K}(f)|= {\rm e}^{ -9.2
 
:$$|H_{\rm K}(f)|= {\rm e}^{ -9.2
 
\cdot \sqrt{2 \cdot |f| \cdot T}  }\hspace{0.05cm},$$
 
\cdot \sqrt{2 \cdot |f| \cdot T}  }\hspace{0.05cm},$$
* optimaler Nyquistentzerrer, bestehend aus Matched&ndash;Filter und Transversalfilter:
+
* optimal Nyquist equalizer consisting of matched filter and transversal filter:
 
:$$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f)$$
 
:$$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f)$$
:$$\hspace{0.8cm}{\rm mit}\hspace{0.2cm}H_{\rm MF}(f) = H_{\rm S}^{\star}(f) \cdot H_{\rm K}^{\star}(f)\hspace{0.05cm},\hspace{0.2cm}
+
:$$\hspace{0.8cm}{\rm where}\hspace{0.2cm}H_{\rm MF}(f) = H_{\rm S}^{\star}(f) \cdot H_{\rm K}^{\star}(f)\hspace{0.05cm},\hspace{0.2cm}
 
   H_{\rm TF}(f) =
 
   H_{\rm TF}(f) =
 
  \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
  \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
Line 17: Line 17:
 
  |^2}\hspace{0.05cm}.$$
 
  |^2}\hspace{0.05cm}.$$
  
Hierbei bezeichnet $H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$ das Produkt von Sender&ndash; und Kanalfrequenzgang.
+
:Here, &nbsp;$H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$&nbsp; denotes the product of transmitter and channel frequency response.
  
Wegen der Nyquistentzerrung ist das Auge maximal geöffnet. Für die Fehlerwahrscheinlichkeit gilt:
+
 
 +
Because of Nyquist equalization,&nbsp; the eye is maximally open.&nbsp; For the error probability holds:
 
:$$p_{\rm S}  \left ( = p_{\rm U} \right ) = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right )
 
:$$p_{\rm S}  \left ( = p_{\rm U} \right ) = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right )
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Die normierte Störleistung am Entscheider ist durch folgende Gleichungen gegeben:
+
The normalized noise power at the decision is given by the following equations:
 
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot
 
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot
 
\int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f
 
\int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f
Line 32: Line 33:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die Gültigkeit dieser Gleichung ergibt sich aus der Periodizität des Transversalfilterfrequenzgangs $H_{\rm TF}(f)$.  
+
The validity of this equation follows from the periodicity of the transversal filter frequency response &nbsp;$H_{\rm TF}(f)$.  
*In der Grafik erkennt man die normierte Störleistung als die rot hinterlegte Fläche.  
+
*In the graph,&nbsp; the normalized noise power can be seen as the area highlighted in red.
*Näherungsweise kann die normierte Störleistung durch die in der Grafik blau eingezeichnete Dreieckfläche berechnet werden.
+
 
 +
*As an approximation,&nbsp; the normalized noise power can be calculated by the triangular area shown in blue in the graph.
 +
 
  
  
''Hinweise:''
+
Notes:  
*Die Aufgabe gehört zum  Kapitel [[Digitalsignal%C3%BCbertragung/Lineare_Nyquistentzerrung|Linare Nyquistentzerrung]].
+
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Linear_Nyquist_Equalization|"Linear Nyquist Equalization"]].
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
* Zur Bestimmung der Fehlerwahrscheinlichkeit können Sie das interaktive Berechnungsmodul [[Komplementäre Gaußsche Fehlerfunktion]] benutzen.
+
* To determine the error probability you can use the interactive calculation module&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].&nbsp;
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den Betrag des Sender&ndash;Kanal&ndash;Frequenzgangs für die Frequenzen $f = 0$, $f  = 1/(2T)= f_{\rm Nyq}$ und $f = 1/T =  2 \cdot f_{\rm Nyq}$.
+
{Calculate the magnitude of the transmitter channel frequency response for the frequencies &nbsp;$f = 0$, &nbsp;$f  = 1/(2T)= f_{\rm Nyq}$&nbsp; and&nbsp; $f = 1/T =  2 \cdot f_{\rm Nyq}$.
 
|type="{}"}
 
|type="{}"}
 
$|H_{\rm SK} (f = 0)| \hspace{0.8cm} = \ $ { 1 3% }  
 
$|H_{\rm SK} (f = 0)| \hspace{0.8cm} = \ $ { 1 3% }  
$|H_{\rm SK} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $ { 6.43 3% } $\ \cdot 10^{\rm &ndash;5}$
+
$|H_{\rm SK} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $ { 6.43 3% } $\ \cdot 10^{-5}$
 
$|H_{\rm SK} (f = 1/T)| \hspace{0.25cm} = \ $ { 0. }
 
$|H_{\rm SK} (f = 1/T)| \hspace{0.25cm} = \ $ { 0. }
  
{Berechnen Sie den Maximalwert von $H_{\rm TF}(f)$ bei der Frequenz$f = f_{\rm Nyq}$.
+
{Calculate the maximum value of &nbsp;$H_{\rm TF}(f)$&nbsp; at frequency &nbsp;$f = f_{\rm Nyq}$.
 
|type="{}"}
 
|type="{}"}
 
$|H_{\rm TF} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $ { 1.21 3% } $\ \cdot 10^8$
 
$|H_{\rm TF} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $ { 1.21 3% } $\ \cdot 10^8$
  
{Berechnen Sie die normierte Störleistung entsprechend der Dreiecknäherung.
+
{Calculate the normalized noise power according to the triangular approximation.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_{d, \ \rm  norm}^2 \hspace{0.2cm} = \ $ { 1.7 3% } $\ \cdot 10^7$
 
$\sigma_{d, \ \rm  norm}^2 \hspace{0.2cm} = \ $ { 1.7 3% } $\ \cdot 10^7$
  
{Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit $s_0^2 \cdot T/N_0 = 10^8$?
+
{What is the symbol error probability with &nbsp;$s_0^2 \cdot T/N_0 = 10^8$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \hspace{0.2cm} = \ $ { 0.8 3% } $\ \%$
 
$p_{\rm S} \hspace{0.2cm} = \ $ { 0.8 3% } $\ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Allgemein gilt für alle Frequenzen $f \ge  0$: &nbsp; $|H_{\rm SK}(f)|= {\rm si}(\pi f T) \cdot {\rm e}^{ -9.2
+
'''(1)'''&nbsp; In general,&nbsp; for all frequencies&nbsp; $f \ge  0$: &nbsp;  
\cdot \sqrt{2 \cdot |f| \cdot T}  }\hspace{0.05cm}.$ Daraus ergeben sich die gesuchten Sonderfälle:
+
:$$|H_{\rm SK}(f)|= {\rm sinc}(f T) \cdot {\rm e}^{ -9.2
:$$f= 0 \text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = 0)|= {\rm si}(0) \cdot {\rm e}^0 \hspace{0.15cm}\underline {= 1}
+
\cdot \sqrt{2 \cdot |f| \cdot T}  }\hspace{0.05cm}.$$
 +
*This gives the special cases we are looking for:
 +
:$$f= 0 \text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = 0)|= {\rm sinc}(0) \cdot {\rm e}^0 \hspace{0.15cm}\underline {= 1}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
:$$ f= f_{\rm Nyq}\text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{2T})|= {\rm si}({\pi}/{2}) \cdot {\rm e}^{-9.2}
+
:$$ f= f_{\rm Nyq}\text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{2T})|= {\rm sinc}({1}/{2}) \cdot {\rm e}^{-9.2}
 
\hspace{0.15cm}\underline { \approx 6.43 \cdot 10^{-5}}
 
\hspace{0.15cm}\underline { \approx 6.43 \cdot 10^{-5}}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
:$$ f= {1}/{T} \text{:}\ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{T})|= {\rm si}({\pi}) \cdot {\rm e}^{...}
+
:$$ f= {1}/{T} \text{:}\ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{T})|= {\rm sinc}({1}) \cdot {\rm e}^{...}
 
\hspace{0.15cm}\underline { = 0} \hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline { = 0} \hspace{0.05cm}.$$
  
'''(2)'''&nbsp; Die Grafik zeigt, dass $H_{\rm TF}(f)$ bei $f = f_{\rm Nyq}$ maximal wird. Daraus folgt mit der angegebenen Gleichung weiter, dass
+
 
 +
'''(2)'''&nbsp; The graph shows that&nbsp; $H_{\rm TF}(f)$&nbsp; becomes maximal at&nbsp; $f = f_{\rm Nyq}$.&nbsp;
 +
 
 +
*It follows with the given equation that
 
:$${\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
:$${\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
  \frac{\kappa}{T})
 
  \frac{\kappa}{T})
 
  |^2}$$
 
  |^2}$$
  
bei der Nyquistfrequenz minimal ist. Für $f = f_{\rm Nyq}$ tragen von der unendlichen Summe allerdings nur die Terme mit $\kappa = 0$ und $\kappa = 1$ relevant zum Ergebnis bei. Daraus folgt mit dem Ergebnis aus (1):
+
:is minimal at the Nyquist frequency.&nbsp;
 +
*However,&nbsp; for $f = f_{\rm Nyq}$,&nbsp; of the infinite sum, only the terms with&nbsp; $\kappa = 0$&nbsp; and&nbsp; $\kappa = 1$&nbsp; contribute relevantly to the result.
 +
*From this follows further with the result from subtask&nbsp; '''(1)''':
 
:$${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm
 
:$${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm
 
  Nyq})=
 
  Nyq})=
Line 90: Line 100:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Nähert man das Integral über $H_{\rm TF}(f)$ durch die in der Grafik eingezeichnete Dreieckfläche an, so erhält man:
+
 
 +
'''(3)'''&nbsp; Approximating the integral over&nbsp; $H_{\rm TF}(f)$&nbsp; by the triangular area plotted in the graph,&nbsp; we obtain:
 
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2  = T \cdot
 
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2  = T \cdot
 
\int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx  T \cdot
 
\int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx  T \cdot
Line 97: Line 108:
  
  
'''(4)'''&nbsp; Gemäß der gegebenen Gleichung erhält man für die (mittlere) Symbolfehlerwahrscheinlichkeit:
+
'''(4)'''&nbsp; According to the given equation,&nbsp; we obtain for the (mean) symbol error probability:
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right
 
  ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7
 
  ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7
Line 104: Line 115:
 
\hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$
 
\hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$
  
Da ein Nyquistsystem vorliegt, ist die ungünstigste (worst&ndash;case) Fehlerwahrscheinlichkeit $p_{\rm U}$ genau so groß.
+
:Since a binary Nyquist system is present,&nbsp; the worst&ndash;case probability&nbsp; $p_{\rm U}$&nbsp; is just as large.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.5 Lineare Nyquistentzerrung^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.5 Linear Nyquist Equalization^]]

Latest revision as of 10:38, 23 June 2022

Transversal filter
frequency response

We assume the following for this exercise:

  • binary bipolar NRZ rectangular pulses
$$|H_{\rm S}(f)|= {\rm sinc}(f T) \hspace{0.05cm},$$
  • coaxial cable with characteristic cable attenuation  $a_* = 9.2 \ {\rm Np} \ (\approx 80 \ \rm dB)$:
$$|H_{\rm K}(f)|= {\rm e}^{ -9.2 \cdot \sqrt{2 \cdot |f| \cdot T} }\hspace{0.05cm},$$
  • optimal Nyquist equalizer consisting of matched filter and transversal filter:
$$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f)$$
$$\hspace{0.8cm}{\rm where}\hspace{0.2cm}H_{\rm MF}(f) = H_{\rm S}^{\star}(f) \cdot H_{\rm K}^{\star}(f)\hspace{0.05cm},\hspace{0.2cm} H_{\rm TF}(f) = \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - {\kappa}/{T}) |^2}\hspace{0.05cm}.$$
Here,  $H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$  denotes the product of transmitter and channel frequency response.


Because of Nyquist equalization,  the eye is maximally open.  For the error probability holds:

$$p_{\rm S} \left ( = p_{\rm U} \right ) = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right ) \hspace{0.05cm}.$$

The normalized noise power at the decision is given by the following equations:

$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f \hspace{0.5cm} = \hspace{0.5cm} \sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{-1/(2T)}^{+1/(2T)} H_{\rm TF}(f) \,{\rm d} f \hspace{0.5cm}= \hspace{0.5cm}T \cdot \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \hspace{0.05cm}.$$

The validity of this equation follows from the periodicity of the transversal filter frequency response  $H_{\rm TF}(f)$.

  • In the graph,  the normalized noise power can be seen as the area highlighted in red.
  • As an approximation,  the normalized noise power can be calculated by the triangular area shown in blue in the graph.


Notes:


Questions

1

Calculate the magnitude of the transmitter channel frequency response for the frequencies  $f = 0$,  $f = 1/(2T)= f_{\rm Nyq}$  and  $f = 1/T = 2 \cdot f_{\rm Nyq}$.

$|H_{\rm SK} (f = 0)| \hspace{0.8cm} = \ $

$|H_{\rm SK} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $

$\ \cdot 10^{-5}$
$|H_{\rm SK} (f = 1/T)| \hspace{0.25cm} = \ $

2

Calculate the maximum value of  $H_{\rm TF}(f)$  at frequency  $f = f_{\rm Nyq}$.

$|H_{\rm TF} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $

$\ \cdot 10^8$

3

Calculate the normalized noise power according to the triangular approximation.

$\sigma_{d, \ \rm norm}^2 \hspace{0.2cm} = \ $

$\ \cdot 10^7$

4

What is the symbol error probability with  $s_0^2 \cdot T/N_0 = 10^8$?

$p_{\rm S} \hspace{0.2cm} = \ $

$\ \%$


Solution

(1)  In general,  for all frequencies  $f \ge 0$:  

$$|H_{\rm SK}(f)|= {\rm sinc}(f T) \cdot {\rm e}^{ -9.2 \cdot \sqrt{2 \cdot |f| \cdot T} }\hspace{0.05cm}.$$
  • This gives the special cases we are looking for:
$$f= 0 \text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = 0)|= {\rm sinc}(0) \cdot {\rm e}^0 \hspace{0.15cm}\underline {= 1} \hspace{0.05cm},$$
$$ f= f_{\rm Nyq}\text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{2T})|= {\rm sinc}({1}/{2}) \cdot {\rm e}^{-9.2} \hspace{0.15cm}\underline { \approx 6.43 \cdot 10^{-5}} \hspace{0.05cm},$$
$$ f= {1}/{T} \text{:}\ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{T})|= {\rm sinc}({1}) \cdot {\rm e}^{...} \hspace{0.15cm}\underline { = 0} \hspace{0.05cm}.$$


(2)  The graph shows that  $H_{\rm TF}(f)$  becomes maximal at  $f = f_{\rm Nyq}$. 

  • It follows with the given equation that
$${\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - \frac{\kappa}{T}) |^2}$$
is minimal at the Nyquist frequency. 
  • However,  for $f = f_{\rm Nyq}$,  of the infinite sum, only the terms with  $\kappa = 0$  and  $\kappa = 1$  contribute relevantly to the result.
  • From this follows further with the result from subtask  (1):
$${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm Nyq})= {1}/{2 \cdot |H_{\rm SK}(f = f_{\rm Nyq}) |^2} = \ \frac{1}{2 \cdot (6.43 \cdot 10^{-5})^2}= \frac{10^{10}}{82.69} \hspace{0.15cm}\underline {\approx 1.21 \cdot 10^{8}} \hspace{0.05cm}.$$


(3)  Approximating the integral over  $H_{\rm TF}(f)$  by the triangular area plotted in the graph,  we obtain:

$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx T \cdot \frac{1}{2}\cdot 1.21 \cdot 10^{8}\cdot (0.64 -0.36)\hspace{0.15cm}\underline {\approx 1.7 \cdot 10^{7}} \hspace{0.05cm}.$$


(4)  According to the given equation,  we obtain for the (mean) symbol error probability:

$$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7 \cdot 10^{7}}} \right ) \approx {\rm Q}(2.42)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$
Since a binary Nyquist system is present,  the worst–case probability  $p_{\rm U}$  is just as large.