Difference between revisions of "Aufgaben:Exercise 1.6Z: Two Optimal Systems"

From LNTwww
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Optimierung der Basisbandübertragungssysteme
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems
 
}}
 
}}
  
  
[[File:P_ID1293__Dig_Z_1_6.png|right|frame|Optimalsysteme im Zeit- und Frequenzbereich]]
+
[[File:P_ID1293__Dig_Z_1_6.png|right|frame|Optimal systems in time and frequency domain]]
Betrachtet werden zwei binäre Übertragungssysteme '''A''' und '''B''', die bei einem AWGN–Kanal mit Rauschleistungsdichte $N_{0}$ das gleiche Fehlerverhalten aufweisen. In beiden Fällen gilt für die Bitfehlerwahrscheinlichkeit:
+
Consider two binary transmission systems  $\rm A$  and  $\rm B$,  which have the same error behavior for an AWGN channel with noise power density  $N_{0}$.  In both cases,  the bit error probability is:
 
:$$p_{\rm B} =  {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
 
:$$p_{\rm B} =  {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
Das System '''A''' verwendet den NRZ–Sendegrundimpuls $g_{s}(t)$ gemäß der oberen Skizze mit der Amplitude $s_{0} = 1 \ \rm V$ und der Dauer $T = 0.5\ \mu s$. Dagegen besitzt das System '''B''', das mit der gleichen Bitrate wie das System A arbeiten soll, ein rechteckförmiges Sendegrundimpulsspektrum:
+
*System  $\rm A$  uses the NRZ basic transmission pulse  $g_{s}(t)$  according to the upper sketch with amplitude  $s_{0} = 1 \ \rm V$  and duration  $T = 0.5\ \rm µ s$.  
 +
*In contrast,  system  $\rm B$,  which is to operate at the same bit rate as system  $\rm A$,  has a rectangular basic transmission pulse spectrum:
 
:$$G_s(f)  =  \left\{ \begin{array}{c} G_0  \\
 
:$$G_s(f)  =  \left\{ \begin{array}{c} G_0  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
+
\begin{array}{*{1}c} {\rm{for}}
\\  {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for}} \\ \end{array}\begin{array}{*{20}c}
 
|f| < f_0 \hspace{0.05cm}, \\
 
|f| < f_0 \hspace{0.05cm}, \\
 
  |f| > f_0 \hspace{0.05cm}.\\
 
  |f| > f_0 \hspace{0.05cm}.\\
 
\end{array}$$
 
\end{array}$$
  
''Hinweis:''
 
  
Diese Aufgabe bezieht sich auf das [[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme|Optimierung der Basisbandübertragungssysteme]] des vorliegenden Buches. Beachten Sie bitte, dass hier die Impulsamplitude in „Volt” angegeben ist, so dass die mittlere Energie pro Bit $(E_{\rm B})$ die Einheit $„V^{2}/Hz”$ aufweist.
 
  
  
  
===Fragebogen===
+
Notes:
 +
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems|"Optimization of Baseband Transmission Systems"]].
 +
 +
*Here,&nbsp; the pulse amplitude is given in&nbsp; "volts",&nbsp; so that the average energy per bit &nbsp;$(E_{\rm B})$&nbsp; has the unit &nbsp;$\rm V^{2}/Hz$.&nbsp;
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Mit welcher Bitrate arbeiten die beiden Systeme?
+
{At what bit rate do the two systems operate?
 
|type="{}"}
 
|type="{}"}
 
$R \ = \ $ { 2 3% } $\ \rm Mbit/s$
 
$R \ = \ $ { 2 3% } $\ \rm Mbit/s$
  
{Berechnen Sie die Energie pro Bit für das System '''A'''.
+
{Calculate the energy per bit for system &nbsp;$\rm A$.
 
|type="{}"}
 
|type="{}"}
$E_{\rm B} \ = \ $ { 5 3% } $\ \cdot 10^{-7} \ \rm V^{2}/Hz$
+
$E_{\rm B} \ = \ $ { 0.5 3% } $\ \cdot 10^{-6} \ \rm V^{2}/Hz$
  
{Welche Aussagen gelten für die Empfangsfilter der Systeme '''A''' und '''B'''?
+
{Which statements are true for the receiver filters of systems &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$?
 
|type="[]"}
 
|type="[]"}
+Bei System '''A''' hat $H_{\rm E}(f)$ einen si–förmigen Verlauf.
+
+For system &nbsp;$\rm A$,&nbsp; &nbsp;$H_{\rm E}(f)$&nbsp; has a sinc-shaped curve.
+Bei System '''B''' ist $H_{\rm E}(f)$ ein idealer, rechteckförmiger Tiefpass.  
+
+For system &nbsp;$\rm B$,&nbsp; &nbsp;$H_{\rm E}(f)$&nbsp; is an ideal rectangular low-pass filter.
-$H_{\rm E}(f)$ lässt sich bei System '''B''' durch einen Integrator realisieren.
+
-$H_{\rm E}(f)$&nbsp; can be realized by an integrator in system &nbsp;$\rm B$.&nbsp;
  
{Für welche Grenzfrequenz $f_{0}$ weist das System '''B''' die Symboldauer $T$ auf?
+
{For which cutoff frequency &nbsp;$f_{0}$&nbsp; does system &nbsp;$\rm B$&nbsp; have the symbol duration &nbsp;$T$?&nbsp;
 
|type="{}"}
 
|type="{}"}
 
$f_{0} \ = \ ${ 1 3% } $\ \rm MHz$
 
$f_{0} \ = \ ${ 1 3% } $\ \rm MHz$
  
{Wie groß ist die konstante Höhe $G_{0}$ des Spektrums von '''B''' zu wählen, damit sich die gleiche Energie pro Bit ergibt wie bei System '''A'''?
+
{How large should the constant height &nbsp;$G_{0}$&nbsp; of the spectrum &nbsp;$\rm B$&nbsp; be chosen so that the same energy per bit results as for system &nbsp; $\rm A$?
 
|type="{}"}
 
|type="{}"}
$G_{0} \ = \ $ { 5 3% } $\ \cdot 10^{-7} \ \rm V/Hz$
+
$G_{0} \ = \ $ { 0.5 3% } $\ \cdot 10^{-6} \ \rm V/Hz$
  
{Wäre eines der beiden Systeme auch bei Spitzenwertbegrenzung geeignet?
+
{Would one of the two systems be suitable even with peak limitation?
 
|type="[]"}
 
|type="[]"}
+System '''A''',
+
+System &nbsp;$\rm A$,
- System '''A'''.
+
- System &nbsp;$\rm B$.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Beide Systeme arbeiten gemäß der Angabe mit gleicher Bitrate. Der NRZ–Sendegrundimpuls von System '''A''' hat die Symboldauer $T = 0.5\ \rm \mu s$. Daraus ergibt sich für die Bitrate $R = 1/T$ $ \underline{= 2\ \rm Mbit/s}$.
+
'''(1)'''&nbsp; Both systems operate according to the specification with the same bit rate.  
 +
*The NRZ basic transmission pulse of system&nbsp; $\rm A$&nbsp; has the symbol duration $T = 0.5\ \rm &micro; s$.  
 +
*This results in the bit rate&nbsp; $R = 1/T$ $ \underline{= 2\ \rm Mbit/s}$.
 +
 
  
'''(2)'''&nbsp; Die Energie des NRZ–Sendegrundimpulses von System '''A''' ergibt sich zu
+
'''(2)'''&nbsp; The energy of the NRZ basic transmission pulse of system&nbsp; $\rm A$&nbsp; is given by
 
:$$E_{\rm B} =
 
:$$E_{\rm B} =
 
  \int_{-\infty}^{+\infty}g_s^2 (t)\,{\rm d} t  =
 
  \int_{-\infty}^{+\infty}g_s^2 (t)\,{\rm d} t  =
  s_0^2 \cdot T =  {1\,{\rm V^2}}\cdot {0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline { = 5 \cdot 10^{-7}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
+
  s_0^2 \cdot T =  {1\,{\rm V^2}}\cdot {0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline { = 0.5 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Die <u>beiden ersten Aussagen treffen zu</u>. In beiden Fällen muss $h_{\rm E}(t)$ formgleich mit $g_{s}(t)$ und $H_{\rm E}(f)$ formgleich mit $G_{s}(f)$ sein. Somit ergibt sich beim System '''A''' eine rechteckförmige Impulsantwort $h_{\rm E}(t)$ und damit ein si–förmiger Frquenzgang $H_{\rm E}(f)$. Beim System '''B''' ist $H_{\rm E}(f)$ wie $G_{s}(f)$ rechteckförmig und damit die Impulsantwort $h_{\rm E}(t)$ eine si–Funktion.
 
  
Die letzte Aussage ist falsch: Ein Integrator besitzt eine rechteckförmige Impulsantwort und würde sich für die Realisierung von System '''A''' anbieten, nicht jedoch für System '''B'''.
+
'''(3)'''&nbsp; The&nbsp; <u>first two statements are true</u>:
 +
*In both cases&nbsp; $h_{\rm E}(t)$&nbsp; must be equal in form to&nbsp; $g_{s}(t)$&nbsp; and&nbsp; $H_{\rm E}(f)$&nbsp; must be equal in form to&nbsp; $G_{s}(f)$.
 +
*Thus, for system&nbsp; $\rm A$,&nbsp; the impulse response&nbsp; $h_{\rm E}(t)$&nbsp; is rectangular and the frequency response&nbsp; $H_{\rm E}(f)$&nbsp; is sinc-shaped.
 +
*For system&nbsp; $\rm B$,&nbsp; $H_{\rm E}(f)$&nbsp; is rectangular like&nbsp; $G_{s}(f)$&nbsp; and thus the impulse response&nbsp; $h_{\rm E}(t)$&nbsp; is an sinc-function.
 +
*Statement 3 is false: &nbsp;  An integrator has a rectangular impulse response and would be suitable for the realization of system&nbsp; $\rm A$,&nbsp; but not for system&nbsp; $\rm B$.
  
'''(4)'''&nbsp; Beim System '''B''' stimmt $G_{d}(f)$ mit $G_{d}(f)$ nahezu überein. Lediglich bei der Nyquistfrequenz gibt es einen Unterschied, der sich aber für die hier angestellten Betrachtungen nicht weiter auswirkt: Während $G_{s}(f_{\rm Nyq}) = 1/2$ gilt, ist $G_{d}(f_{\rm Nyq}) = 1/4$.
 
  
Es ergibt sich also ein Nyquistsystem mit Rolloff–Faktor $r = 0$. Daraus folgt für die Nyquistfrequenz aus der Bedingung, dass die Symboldauer ebenfalls $T = 0.5\ \rm \mu s$ sein soll:
+
'''(4)'''&nbsp; For system&nbsp; $\rm B$ &nbsp; &rArr; &nbsp; $G_{d}(f)$&nbsp; nearly coincides with&nbsp; $G_{s}(f)$.
 +
*There is only a difference in the Nyquist frequency,&nbsp; but this does not affect the considerations here:
 +
*While&nbsp; $G_{s}(f_{\rm Nyq}) = 1/2$,&nbsp; $G_{d}(f_{\rm Nyq}) = 1/4$.
 +
 
 +
*This results in a Nyquist system with rolloff factor&nbsp; $r = 0$.  
 +
*From this follows for the Nyquist frequency from the condition that the symbol duration should also be&nbsp; $T = 0.5\ \rm &micro; s$:
 
:$$f_{\rm 0} = f_{\rm Nyq} = \frac{1 } {2 \cdot T} = \frac{1 } {2 \cdot 0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline {= 1\,{\rm MHz}}\hspace{0.05cm}.$$
 
:$$f_{\rm 0} = f_{\rm Nyq} = \frac{1 } {2 \cdot T} = \frac{1 } {2 \cdot 0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline {= 1\,{\rm MHz}}\hspace{0.05cm}.$$
 
+
 
+
'''(5)'''&nbsp; Für die Energie des Sendegrundimpulses kann auch geschrieben werden:
+
'''(5)'''&nbsp; For the energy of the basic transmission pulse can also be written:
 
:$$E_{\rm B} =
 
:$$E_{\rm B} =
 
  \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f  = G_0^2
 
  \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f  = G_0^2
 
  \cdot 2 f_0\hspace{0.05cm}.$$
 
  \cdot 2 f_0\hspace{0.05cm}.$$
Mit den Ergebnissen aus (2) und (4) folgt daraus:
+
*Using the results from&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)''',&nbsp; it follows:
 
:$$G_0^2 = \frac{E_{\rm B}}{2 f_0} = \frac{5 \cdot 10^{-7}\,{\rm V^2/Hz}}{2 \cdot 10^{6}\,{\rm
 
:$$G_0^2 = \frac{E_{\rm B}}{2 f_0} = \frac{5 \cdot 10^{-7}\,{\rm V^2/Hz}}{2 \cdot 10^{6}\,{\rm
 
  Hz}}= 2.5 \cdot 10^{-13}\,{\rm V^2/Hz^2}
 
  Hz}}= 2.5 \cdot 10^{-13}\,{\rm V^2/Hz^2}
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}G_0 \hspace{0.1cm}\underline {= 5 \cdot 10^{-7}\,{\rm V/Hz}}
+
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}G_0 \hspace{0.1cm}\underline {= 0.5 \cdot 10^{-6}\,{\rm V/Hz}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Das System '''A''' stellt auch bei Spitzenwertbegrenzung das optimale System dar. Dagegen wäre das System '''B''' aufgrund des äußerst ungünstigen Crestfaktors hierfür denkbar ungeeignet. Richtig ist also der <u>Lösungsvorschlag 1</u>.
+
'''(6)'''&nbsp; <u>Solution 1</u>&nbsp; is correct:
 +
*System&nbsp; $\rm A$&nbsp; represents the optimal system even with peak limitation.
 +
*On the other hand,&nbsp; system&nbsp; $\rm B$&nbsp; would be unsuitable due to the extremely unfavorable crest factor.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 92: Line 110:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.4 Optimierung der Basisbandsysteme^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.4 Optimization of Baseband Systems^]]

Latest revision as of 10:24, 4 May 2022


Optimal systems in time and frequency domain

Consider two binary transmission systems  $\rm A$  and  $\rm B$,  which have the same error behavior for an AWGN channel with noise power density  $N_{0}$.  In both cases,  the bit error probability is:

$$p_{\rm B} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
  • System  $\rm A$  uses the NRZ basic transmission pulse  $g_{s}(t)$  according to the upper sketch with amplitude  $s_{0} = 1 \ \rm V$  and duration  $T = 0.5\ \rm µ s$.
  • In contrast,  system  $\rm B$,  which is to operate at the same bit rate as system  $\rm A$,  has a rectangular basic transmission pulse spectrum:
$$G_s(f) = \left\{ \begin{array}{c} G_0 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} |f| < f_0 \hspace{0.05cm}, \\ |f| > f_0 \hspace{0.05cm}.\\ \end{array}$$



Notes:

  • Here,  the pulse amplitude is given in  "volts",  so that the average energy per bit  $(E_{\rm B})$  has the unit  $\rm V^{2}/Hz$. 


Questions

1

At what bit rate do the two systems operate?

$R \ = \ $

$\ \rm Mbit/s$

2

Calculate the energy per bit for system  $\rm A$.

$E_{\rm B} \ = \ $

$\ \cdot 10^{-6} \ \rm V^{2}/Hz$

3

Which statements are true for the receiver filters of systems  $\rm A$  and  $\rm B$?

For system  $\rm A$,   $H_{\rm E}(f)$  has a sinc-shaped curve.
For system  $\rm B$,   $H_{\rm E}(f)$  is an ideal rectangular low-pass filter.
$H_{\rm E}(f)$  can be realized by an integrator in system  $\rm B$. 

4

For which cutoff frequency  $f_{0}$  does system  $\rm B$  have the symbol duration  $T$? 

$f_{0} \ = \ $

$\ \rm MHz$

5

How large should the constant height  $G_{0}$  of the spectrum  $\rm B$  be chosen so that the same energy per bit results as for system   $\rm A$?

$G_{0} \ = \ $

$\ \cdot 10^{-6} \ \rm V/Hz$

6

Would one of the two systems be suitable even with peak limitation?

System  $\rm A$,
System  $\rm B$.


Solution

(1)  Both systems operate according to the specification with the same bit rate.

  • The NRZ basic transmission pulse of system  $\rm A$  has the symbol duration $T = 0.5\ \rm µ s$.
  • This results in the bit rate  $R = 1/T$ $ \underline{= 2\ \rm Mbit/s}$.


(2)  The energy of the NRZ basic transmission pulse of system  $\rm A$  is given by

$$E_{\rm B} = \int_{-\infty}^{+\infty}g_s^2 (t)\,{\rm d} t = s_0^2 \cdot T = {1\,{\rm V^2}}\cdot {0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline { = 0.5 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$


(3)  The  first two statements are true:

  • In both cases  $h_{\rm E}(t)$  must be equal in form to  $g_{s}(t)$  and  $H_{\rm E}(f)$  must be equal in form to  $G_{s}(f)$.
  • Thus, for system  $\rm A$,  the impulse response  $h_{\rm E}(t)$  is rectangular and the frequency response  $H_{\rm E}(f)$  is sinc-shaped.
  • For system  $\rm B$,  $H_{\rm E}(f)$  is rectangular like  $G_{s}(f)$  and thus the impulse response  $h_{\rm E}(t)$  is an sinc-function.
  • Statement 3 is false:   An integrator has a rectangular impulse response and would be suitable for the realization of system  $\rm A$,  but not for system  $\rm B$.


(4)  For system  $\rm B$   ⇒   $G_{d}(f)$  nearly coincides with  $G_{s}(f)$.

  • There is only a difference in the Nyquist frequency,  but this does not affect the considerations here:
  • While  $G_{s}(f_{\rm Nyq}) = 1/2$,  $G_{d}(f_{\rm Nyq}) = 1/4$.
  • This results in a Nyquist system with rolloff factor  $r = 0$.
  • From this follows for the Nyquist frequency from the condition that the symbol duration should also be  $T = 0.5\ \rm µ s$:
$$f_{\rm 0} = f_{\rm Nyq} = \frac{1 } {2 \cdot T} = \frac{1 } {2 \cdot 0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline {= 1\,{\rm MHz}}\hspace{0.05cm}.$$


(5)  For the energy of the basic transmission pulse can also be written:

$$E_{\rm B} = \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = G_0^2 \cdot 2 f_0\hspace{0.05cm}.$$
  • Using the results from  (2)  and  (4),  it follows:
$$G_0^2 = \frac{E_{\rm B}}{2 f_0} = \frac{5 \cdot 10^{-7}\,{\rm V^2/Hz}}{2 \cdot 10^{6}\,{\rm Hz}}= 2.5 \cdot 10^{-13}\,{\rm V^2/Hz^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}G_0 \hspace{0.1cm}\underline {= 0.5 \cdot 10^{-6}\,{\rm V/Hz}} \hspace{0.05cm}.$$


(6)  Solution 1  is correct:

  • System  $\rm A$  represents the optimal system even with peak limitation.
  • On the other hand,  system  $\rm B$  would be unsuitable due to the extremely unfavorable crest factor.