Difference between revisions of "Aufgaben:Exercise 4.5: Irrelevance Theorem"

From LNTwww
 
(19 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Struktur des optimalen Empfängers}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver}}
  
[[File:P_ID2014__Dig_A_4_5.png|right|frame|Betrachtetes Optimalsystem mit Detektor und Entscheider]]
+
[[File:EN_Dig_A_4_5.png|right|frame|Considered optimal system with  "detector"  and  "decision"]]
Untersucht werden soll das durch die Grafik vorgegebene Kommunikationssystem. Die binäre Nachricht $m ∈ \{m_0, m_1\}$ mit gleichen Auftrittswahrscheinlichkeiten
+
The communication system given by the graph is to be investigated.  The binary message  $m ∈ \{m_0, m_1\}$  with equal occurrence probabilities
 
:$${\rm Pr} (m_0 ) = {\rm Pr} (m_1 ) = 0.5$$
 
:$${\rm Pr} (m_0 ) = {\rm Pr} (m_1 ) = 0.5$$
  
wird durch die beiden Signale
+
is represented by the two signals
 
:$$s_0 = \sqrt{E_s} \hspace{0.05cm},\hspace{0.2cm}s_1 = -\sqrt{E_s}$$
 
:$$s_0 = \sqrt{E_s} \hspace{0.05cm},\hspace{0.2cm}s_1 = -\sqrt{E_s}$$
  
dargestellt, wobei die Zuordnungen $m_0 ⇔ s_0$ und $m_1 ⇔ s_1$ eineindeutig sind. Der Detektor (im Bild grün hinterlegt) liefert zwei Entscheidungswerte
+
where the assignments  $m_0 ⇔ s_0$  and  $m_1 ⇔ s_1$  are one-to-one.
 +
 
 +
The detector  $($highlighted in green in the figure$)$  provides two decision values
 
:$$r_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} s + n_1\hspace{0.05cm},$$
 
:$$r_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} s + n_1\hspace{0.05cm},$$
 
:$$r_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} n_1 + n_2\hspace{0.05cm},$$
 
:$$r_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} n_1 + n_2\hspace{0.05cm},$$
  
aus denen der Entscheider die Schätzwerte $\mu ∈ \{m_0, m_1\}$ für die gesendete Nachricht $m$ bildet. Der Entscheider beinhaltet zwei Gewichtungsfaktoren $K_1$ und $K_2$, eine Summationsstelle und einen Schwellenwertentscheider mit der Schwelle bei $0$.
+
from which the decision forms the estimated values  $\mu ∈ \{m_0,\ m_1\}$  for the transmitted message  $m$.  The decision includes
 +
*two weighting factors  $K_1$  and  $K_2$,
 +
 +
*a summation point,  and
 +
 +
*a threshold decision with the threshold at  $0$.
  
Betrachtet werden in dieser Aufgabe drei Auswertungen:
 
* Entscheidung basierend auf $r_1$  ($K_1 ≠ 0, K_2 = 0$),
 
* Entscheidung basierend auf $r_2$  ($K_1 = 0, K_2 ≠ 0$),
 
* gemeinsame Auswertung von $r_1$ und $r_2$  ($K_1 ≠ 0, K_2 ≠ 0$).
 
  
 +
Three evaluations are considered in this exercises:
 +
# Decision based on  $r_1$   $(K_1 ≠ 0,\ K_2 = 0)$,
 +
# decision based on  $r_2$   $(K_1 = 0,\ K_2 ≠ 0)$,
 +
# joint evaluation of  $r_1$  und  $r_2$   $(K_1 ≠ 0,\ K_2 ≠ 0)$.
  
Die zwei Rauschquellen $n_1$ und $n_2$ seien voneinander unabhängig und auch unabhängig vom Sendesignal $s ∈ \{s_0, s_1\}$. $n_1$ und $n_2$ können jeweils durch AWGN–Rauschquellen (weiß, gaußverteilt, mittelwertfrei, Varianz $\sigma^2 = N_0/2$) modelliert werden. Verwenden Sie für numerische Berechnungen die Werte
+
 
 +
 
 +
<u>Notes:</u>
 +
* The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver|"Structure of the Optimal Receiver"]]&nbsp; of this book.
 +
 
 +
* In particular,&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#The_irrelevance_theorem|"the irrelevance theorem"]]&nbsp; is referred to here,&nbsp; but besides that also the&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Optimal_receiver_for_the_AWGN_channel|"Optimal receiver for the AWGN channel"]].
 +
 +
* For more information on topics relevant to this exercise, see the following links:
 +
** [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Fundamental_approach_to_optimal_receiver_design|"Decision rules for MAP and ML receivers"]],
 +
** [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Implementation_aspects|"Realization as correlation receiver or matched filter receiver"]],
 +
** [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Probability_density_function_of_the_received_values|"Conditional Gaussian probability density functions"]].
 +
 
 +
* For the error probability of a system&nbsp; $r = s + n$&nbsp; $($because of&nbsp; $N = 1$&nbsp; here &nbsp;$s,\ n,\ r$&nbsp; are scalars$)$&nbsp; is valid:
 +
::$$p_{\rm S} = {\rm Pr} ({\rm symbol\ \ error} )  = {\rm Q} \left ( \sqrt{{2 E_s}/{N_0}}\right ) \hspace{0.05cm},$$
 +
 
 +
:where a binary message signal&nbsp; $s &#8712; \{s_0,\ s_1\}$&nbsp; with&nbsp; $s_0 = \sqrt{E_s} \hspace{0.05cm},\hspace{0.2cm}s_1 = -\sqrt{E_s}$&nbsp; is assumed.
 +
*Let the two noise sources&nbsp; $n_1$&nbsp; and&nbsp; $n_2$&nbsp; be independent of each other and also independent of the transmitted signal&nbsp; $s &#8712; \{s_0,\ s_1\}$.  
 +
 
 +
*$n_1$&nbsp; and&nbsp; $n_2$&nbsp; can each be modeled by AWGN noise sources&nbsp; $($white,&nbsp; Gaussian distributed,&nbsp; mean-free,&nbsp; variance&nbsp; $\sigma^2 = N_0/2)$. &nbsp;
 +
 
 +
*For numerical calculations, use the values
 
:$$E_s = 8 \cdot 10^{-6}\,{\rm Ws}\hspace{0.05cm},\hspace{0.2cm}N_0 = 10^{-6}\,{\rm W/Hz} \hspace{0.05cm}.$$
 
:$$E_s = 8 \cdot 10^{-6}\,{\rm Ws}\hspace{0.05cm},\hspace{0.2cm}N_0 = 10^{-6}\,{\rm W/Hz} \hspace{0.05cm}.$$
  
Die [[komplementäre Gaußsche Fehlerfunktion]] liefert folgende Ergebnisse:
+
*The&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error function"]]&nbsp; gives the following results:
 
:$${\rm Q}(0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5\hspace{0.05cm},\hspace{1.35cm}{\rm Q}(2^{0.5}) = 0.786 \cdot 10^{-1}\hspace{0.05cm},\hspace{1.1cm}{\rm Q}(2) = 0.227 \cdot 10^{-1}\hspace{0.05cm},$$
 
:$${\rm Q}(0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5\hspace{0.05cm},\hspace{1.35cm}{\rm Q}(2^{0.5}) = 0.786 \cdot 10^{-1}\hspace{0.05cm},\hspace{1.1cm}{\rm Q}(2) = 0.227 \cdot 10^{-1}\hspace{0.05cm},$$
 
:$${\rm Q}(2 \cdot 2^{0.5}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.234 \cdot 10^{-2}\hspace{0.05cm},\hspace{0.2cm}{\rm Q}(4) = 0.317 \cdot 10^{-4}
 
:$${\rm Q}(2 \cdot 2^{0.5}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.234 \cdot 10^{-2}\hspace{0.05cm},\hspace{0.2cm}{\rm Q}(4) = 0.317 \cdot 10^{-4}
 
\hspace{0.05cm},\hspace{0.2cm}{\rm Q}(4 \cdot 2^{0.5}) = 0.771 \cdot 10^{-8}\hspace{0.05cm}.$$
 
\hspace{0.05cm},\hspace{0.2cm}{\rm Q}(4 \cdot 2^{0.5}) = 0.771 \cdot 10^{-8}\hspace{0.05cm}.$$
  
''Hinweise:''
 
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers| Struktur des optimalen Empfängers]] dieses Buches.
 
* Insbesondere wird hier auf das [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Das_Theorem_der_Irrelevanz| Theorem der Irrelevanz]] Bezug genommen, daneben aber auch auf den [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Optimaler_Empf.C3.A4nger_f.C3.BCr_den_AWGN-Kanal|Optimalen Empfänger für den AWGN&ndash;Kanal]].
 
* Weitere Informationen zu den für diese Aufgabe relevanten Themen finden Sie unter folgenden Links:
 
** [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Fundamentaler_Ansatz_zum_optimalen_Empf.C3.A4ngerentwurf|Entscheidungsregeln für MAP&ndash; und ML&ndash;Empfänger]],
 
** [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Implementierungsaspekte|Realisierung als Korrelationsempfänger bzw. Matched&ndash;Filter&ndash;Empfänger]],
 
** [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Wahrscheinlichkeitsdichtefunktion_der_Empfangswerte|Bedingte Gaußsche Wahrscheinlichkeitsdichtefunktionen]].
 
  
* Für die Fehlerwahrscheinlichkeit eines Systems $r = s + n$ (wegen $N = 1$ sind hier $s, n, r$ Skalare) gilt
 
:$$p_{\rm S} = {\rm Pr} ({\rm Symbolfehler} )  = {\rm Q} \left ( \sqrt{{2 E_s}/{N_0}}\right ) \hspace{0.05cm},$$
 
  
# wobei ein binäres Nachrichtensignal $s &#8712; \{s_0, s_1\}$ mit
 
:$$s_0 = \sqrt{E_s} \hspace{0.05cm},\hspace{0.2cm}s_1 = -\sqrt{E_s}$$
 
  
# vorausgesetzt wird und die zweiseitige Rauschleistungsdichte von $n$ konstant gleich $\sigma^2 = N_0/2$ ist.
+
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten hier bezüglich des Empfängers?
+
{What statements apply here regarding the receiver?
 
|type="()"}
 
|type="()"}
- Der ML&ndash;Empfänger ist hier besser als der MAP&ndash;Empfänger.
+
- The ML receiver is better than the MAP receiver.
- Der MAP&ndash;Empfänger ist hier besser als der ML&ndash;Empfänger.
+
- The MAP receiver is better than the ML receiver.
+ Beide Empfänger liefern hier das gleiche Ergebnis.
+
+ Both receivers deliver the same result.
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit $K_2 = 0$?
+
{What is the error probability with&nbsp; $K_2 = 0$?
 
|type="{}"}
 
|type="{}"}
$K_2 = 0 \text{:} \hspace{0.2cm} {\rm Pr(Symbolfehler)}$ = { 0.317 3% } $\ \cdot 10^{\rm &ndash;4}$
+
${\rm Pr(symbol\hspace{0.15cm} error)}\ = \ $ { 0.00317 3% } $\ \%$
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit $K_1 = 0$?
+
{What is the error probability with&nbsp; $K_1 = 0$?
 
|type="{}"}
 
|type="{}"}
$K_1 = 0 \text{:} \hspace{0.2cm} {\rm Pr(Symbolfehler)}$ = { 0.5 3% } $\ \cdot 10^0$
+
${\rm Pr(symbol\hspace{0.15cm}error)}\ = \ $ { 50 3% } $\ \%$
  
{Kann durch die Verwendung von $r_1$ <b>und</b> $r_2$ eine Verbesserung erzielt werden?
+
{Can an improvement be achieved by using&nbsp; $r_1$&nbsp; <b>and</b> &nbsp;$r_2$?&nbsp;
 
|type="()"}
 
|type="()"}
+ Ja.
+
+ Yes.
- Nein.
+
- No.
  
{Welche Gleichungen gelten für den Schätzwert ($\mu$) bei AWGN&ndash;Rauschen?
+
{What are the equations for the estimated value &nbsp;$(\mu)$&nbsp; for AWGN noise?
 
|type="[]"}
 
|type="[]"}
- $\mu = {\rm arg \ min} \, [(\rho_1 + \rho_2) \cdot s_i]$,
+
- $\mu = {\rm arg \ min} \, \big[(\rho_1 + \rho_2) \cdot s_i \big]$,
+ $\mu = {\rm arg \ min} \, [(\rho_2 \, &ndash; 2 \rho_1) \cdot s_i]$,
+
+ $\mu = {\rm arg \ min} \, \big[(\rho_2 \, - 2 \rho_1) \cdot s_i \big]$,
+ $\mu = {\rm arg \ max} \, [(\rho_1 + \rho_2/2) \cdot s_i]$.
+
+ $\mu = {\rm arg \ max} \, \big[(\rho_1 - \rho_2/2) \cdot s_i \big]$.
  
{Wie kann diese Regel mit dem vorgegebenen Entscheider (Schwelle bei $0$) exakt umgesetzt werden? Es gelte $K_1 = 1$.
+
{How can this rule be implemented exactly with the given decision&nbsp; (threshold at zero)?&nbsp; Let &nbsp;$K_1 = 1$.
 
|type="{}"}
 
|type="{}"}
$K_2$ = { -0.515--0.485 }  
+
$K_2 \ = \ $ { -0.515--0.485 }  
  
{Welche (minimale) Fehlerwahrscheinlichkeit ergibt sich mit der Realisierung entsprechend der Teilaufgabe (6)?
+
{What is the&nbsp; (minimum)&nbsp; error probability with the realization according to subtask&nbsp; '''(6)'''?
 
|type="{}"}
 
|type="{}"}
${\rm Minimum \ [Pr(Symbolfehler)]}$ = { 0.771 3% } $\ \cdot 10^{\rm &ndash;8}$
+
${\rm Minimum \ \big[Pr(symbol\hspace{0.15cm}error)\big]} \ = \ $ { 0.771 3% } $\ \cdot 10^{\rm -8}$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist die <u>letzte Lösungsalternative</u>. Im Allgemeinen führt der MAP&ndash;Empfänger zu einer kleineren Fehlerwahrscheinlichkeit. Sind aber die Auftrittswahrscheinlichkeiten ${\rm Pr}(m = m_0) = {\rm Pr}(m = m_1) = 0.5$ gleich, so liefern beide Empfänger das gleiche Ergebnis.
+
'''(1)'''&nbsp; The&nbsp; <u>last alternative solution</u>&nbsp; is correct:
 +
*In general,&nbsp; the MAP receiver leads to a smaller error probability.
 +
*However,&nbsp; if the occurrence probabilities&nbsp; ${\rm Pr}(m = m_0) = {\rm Pr}(m = m_1) = 0.5$&nbsp; are equal,&nbsp; both receivers yield the same result.
  
  
'''(2)'''&nbsp; Mit $K_2 = 0$ und $K_1 = 1$ ergibt sich
+
'''(2)'''&nbsp; With&nbsp; $K_2 = 0$&nbsp; and&nbsp; $K_1 = 1$&nbsp; the result is
 
:$$r = r_1 = s + n_1\hspace{0.05cm}.$$
 
:$$r = r_1 = s + n_1\hspace{0.05cm}.$$
  
Bei bipolarem (antipodischem) Sendesignal und AWGN&ndash;Rauschen ist die Fehlerwahrscheinlichkeit des optimalen Empfängers (egal, ob als Korrelations&ndash; oder Matched&ndash;Filter&ndash;Empfänger realisiert) gleich
+
*With bipolar&nbsp; (antipodal)&nbsp; transmitted signal and AWGN noise,&nbsp; the error probability of the optimal receiver&nbsp; (whether implemented as a correlation or matched filter receiver)&nbsp; is equal to
:$$p_{\rm S} = {\rm Pr} ({\rm Symbolfehler} ) = {\rm Q} \left ( \sqrt{ E_s /{\sigma}}\right )
+
:$$p_{\rm S} = {\rm Pr} ({\rm symbol\hspace{0.15cm} error} ) = {\rm Q} \left ( \sqrt{ E_s /{\sigma}}\right )
 
  = {\rm Q} \left ( \sqrt{2 E_s /N_0}\right ) \hspace{0.05cm}.$$
 
  = {\rm Q} \left ( \sqrt{2 E_s /N_0}\right ) \hspace{0.05cm}.$$
  
Mit $E_s = 8 \cdot 10^{\rm &ndash;6} \ \rm Ws$ und $N_0 = 10^{\rm &ndash;6} \ \rm W/Hz$ erhält man weiter:
+
*With &nbsp; $E_s = 8 \cdot 10^{\rm &ndash;6} \ \rm Ws$ and $N_0 = 10^{\rm &ndash;6} \ \rm W/Hz$,&nbsp; we further obtain:
:$$p_{\rm S}  = {\rm Pr} ({\rm Symbolfehler} ) = {\rm Q} \left ( \sqrt{\frac{2 \cdot 8 \cdot 10^{-6}\,{\rm Ws}}{10^{-6}\,{\rm W/Hz} }}\right ) = {\rm Q}  (4)  \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}}\hspace{0.05cm}.$$
+
:$$p_{\rm S}  = {\rm Pr} ({\rm symbol\hspace{0.15cm}error} ) = {\rm Q} \left ( \sqrt{\frac{2 \cdot 8 \cdot 10^{-6}\,{\rm Ws}}{10^{-6}\,{\rm W/Hz} }}\right ) = {\rm Q}  (4)  \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.00317 \%}\hspace{0.05cm}.$$
  
Dieses Ergebnis ist unabhängig von $K_1$, da durch eine Verstärkung oder Dämpfung die Nutzleistung in gleicher Weise verändert wird wie die Rauschleistung.
+
*This result is independent of&nbsp; $K_1$,&nbsp; since amplification or attenuation changes the useful power in the same way as the noise power.
  
  
'''(3)'''&nbsp; Mit $K_1 = 0$ und $K_2 = 1$ gilt für die Entscheidungsgröße:
+
'''(3)'''&nbsp; With&nbsp; $K_1 = 0$&nbsp; and&nbsp; $K_2 = 1$,&nbsp; the decision variable is:
 
:$$r = r_2 = n_1 + n_2\hspace{0.05cm}.$$
 
:$$r = r_2 = n_1 + n_2\hspace{0.05cm}.$$
  
Diese beinhaltet keine Informationen über das Nutzsignal, sondern nur Rauschen, und es gilt unabhängig von $K_2$:
+
*This contains no information about the useful signal,&nbsp; only noise,&nbsp; and it holds independently of&nbsp; $K_2$:
:$$p_{\rm S}  = {\rm Pr} ({\rm Symbolfehler} ) =  {\rm Q}  (0) \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
+
:$$p_{\rm S}  = {\rm Pr} ({\rm symbol\hspace{0.15cm}error} ) =  {\rm Q}  (0) \hspace{0.15cm}\underline {= 50\%} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Die Entscheidungsregel des optimalen Empfängers (egal, ob als MAP oder als ML realisiert) lautet wegen ${\rm Pr}(m = m_0) = {\rm Pr}(m = m_1)$:
+
'''(4)'''&nbsp; Because of&nbsp; ${\rm Pr}(m = m_0) = {\rm Pr}(m = m_1)$,&nbsp; the decision rule of the optimal receiver&nbsp; (whether realized as MAP or as ML)&nbsp; is:
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} [  p_{m \hspace{0.05cm}|\hspace{0.05cm}r_1, \hspace{0.05cm}r_2  } \hspace{0.05cm} (m_i \hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}\rho_2  ) ] = $$
+
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} [  p_{m \hspace{0.05cm}|\hspace{0.05cm}r_1, \hspace{0.05cm}r_2  } \hspace{0.05cm} (m_i \hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}\rho_2  ) ] = {\rm arg} \max_i \hspace{0.1cm} [  p_{r_1, \hspace{0.05cm}r_2  \hspace{0.05cm}|\hspace{0.05cm} m} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} m_i ) \cdot  {\rm Pr} (m = m_i)] = {\rm arg} \max_i \hspace{0.1cm} [  p_{r_1, \hspace{0.05cm}r_2  \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} s_i ) ]
:$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} [  p_{r_1, \hspace{0.05cm}r_2  \hspace{0.05cm}|\hspace{0.05cm} m} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} m_i ) \cdot  {\rm Pr} (m = m_i)] = $$
 
:$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} [  p_{r_1, \hspace{0.05cm}r_2  \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} s_i ) ]
 
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Diese Verbundwahrscheinlichkeitsdichte kann wie folgt umgeschrieben werden:
+
*This composite probability density can be rewritten as follows:
 
:$$\hat{m} ={\rm arg} \max_i \hspace{0.1cm} [  p_{r_1  \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1 \hspace{0.05cm}|\hspace{0.05cm} s_i ) \cdot p_{r_2  \hspace{0.05cm}|\hspace{0.05cm} r_1, \hspace{0.05cm}s} \hspace{0.05cm} ( \rho_2 \hspace{0.05cm}|\hspace{0.05cm} \rho_1, \hspace{0.05cm}s_i ) ]
 
:$$\hat{m} ={\rm arg} \max_i \hspace{0.1cm} [  p_{r_1  \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1 \hspace{0.05cm}|\hspace{0.05cm} s_i ) \cdot p_{r_2  \hspace{0.05cm}|\hspace{0.05cm} r_1, \hspace{0.05cm}s} \hspace{0.05cm} ( \rho_2 \hspace{0.05cm}|\hspace{0.05cm} \rho_1, \hspace{0.05cm}s_i ) ]
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Da nun auch der zweite Multiplikand von der Nachricht ($s_i$) abhängt, sollte $r_2$ auf jeden Fall in den Entscheidungsprozess eingebunden werden. Richtig ist also: <u>JA</u>.
+
*Now,&nbsp; since the second multiplicand also depends on the message&nbsp; ($s_i$),&nbsp; $r_2$&nbsp; should definitely be included in the decision process.&nbsp; Thus,&nbsp; the correct answer is:&nbsp; <u>YES</u>.
  
  
'''(5)'''&nbsp; Bei AWGN&ndash;Rauschen mit der Varianz $\sigma^2$ ergeben sich für die beiden in der letzten Teilaufgabe eingeführten Verbunddichten und deren Produkt $P$:
+
'''(5)'''&nbsp; For AWGN noise with variance&nbsp; $\sigma^2$,&nbsp; the two composite densities introduced in&nbsp; '''(4)'''&nbsp; together with their product&nbsp; $P$&nbsp; give:
:$$p_{r_1\hspace{0.05cm}|\hspace{0.05cm} s}(\rho_1\hspace{0.05cm}|\hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_1 - s_i)^2}{2 \sigma^2}\right ]\hspace{0.05cm},$$
+
:$$p_{r_1\hspace{0.05cm}|\hspace{0.05cm} s}(\rho_1\hspace{0.05cm}|\hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_1 - s_i)^2}{2 \sigma^2}\right ]\hspace{0.05cm},\hspace{1cm}
:$$p_{r_2\hspace{0.05cm}|\hspace{0.05cm}r_1,\hspace{0.05cm} s}(\rho_2\hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}s_i) \hspace{-0.1cm} & = & \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_2 - (\rho_1 - s_i))^2}{2 \sigma^2}\right ]\hspace{0.05cm}$$
+
p_{r_2\hspace{0.05cm}|\hspace{0.05cm}r_1,\hspace{0.05cm} s}(\rho_2\hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_2 - (\rho_1 - s_i))^2}{2 \sigma^2}\right ]\hspace{0.05cm}$$
 
:$$ \Rightarrow \hspace{0.3cm}  
 
:$$ \Rightarrow \hspace{0.3cm}  
P \hspace{-0.1cm} & = & \hspace{-0.1cm} \frac{1}{{2\pi} \cdot \sigma^2}\cdot {\rm exp} \left [ - \frac{1}{2 \sigma^2} \cdot \left \{ (\rho_1 - s_i)^2
+
P \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{{2\pi} \cdot \sigma^2}\cdot {\rm exp} \left [ - \frac{1}{2 \sigma^2} \cdot \left \{ (\rho_1 - s_i)^2
 
+ (\rho_2 - (\rho_1 - s_i))^2\right \}\right ]\hspace{0.05cm}.$$
 
+ (\rho_2 - (\rho_1 - s_i))^2\right \}\right ]\hspace{0.05cm}.$$
  
Gesucht wird dasjenige Argument, das dieses Produkt $P$ maximiert, was gleichzeitig bedeutet, dass der Ausdruck in den geschweiften Klammern den kleinstmöglichen Wert annehmen soll:
+
*We are looking for the argument that maximizes this product&nbsp; $P$,&nbsp; which at the same time means that the expression in the curly brackets should take the smallest possible value:
 
:$$\mu = \hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm arg} \max_i \hspace{0.1cm} P  = {\rm arg} \min _i \hspace{0.1cm} \left \{ (\rho_1 - s_i)^2
 
:$$\mu = \hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm arg} \max_i \hspace{0.1cm} P  = {\rm arg} \min _i \hspace{0.1cm} \left \{ (\rho_1 - s_i)^2
+ (\rho_2 - (\rho_1 - s_i))^2\right \}= $$
+
+ (\rho_2 - (\rho_1 - s_i))^2\right \} $$
:$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm arg} \min _i \hspace{0.1cm}\left \{ \rho_1^2 - 2\rho_1 s_i + s_i^2
+
:$$\Rightarrow \hspace{0.3cm} \mu = \hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm arg} \min _i \hspace{0.1cm}\left \{ \rho_1^2 - 2\rho_1 s_i + s_i^2
 
+ \rho_2^2 - 2\rho_1 \rho_2 + 2\rho_2 s_i+ \rho_1^2 - 2\rho_1 s_i + s_i^2\right \}
 
+ \rho_2^2 - 2\rho_1 \rho_2 + 2\rho_2 s_i+ \rho_1^2 - 2\rho_1 s_i + s_i^2\right \}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Dabei bezeichnet $\mu$ den Schätzwert der Nachricht. Bei dieser Minimierung kann nun auf alle Terme verzichtet werden, die nicht von der Nachricht $s_i$ abhängen. Ebenso unberücksichtigt bleiben die Terme $s_i^2$, da $s_0^2 = s_1^2$ gilt. Somit erhält man die deutlich einfachere Entscheidungsregel:
+
*Here&nbsp; $\mu$&nbsp; denotes the estimated value of the message.&nbsp; In this minimization,&nbsp; all terms that do not depend on the message&nbsp; $s_i$&nbsp; can now be omitted.&nbsp; Likewise,&nbsp; the terms&nbsp; $s_i^2$&nbsp; are disregarded,&nbsp; since&nbsp; $s_0^2 = s_1^2$&nbsp; holds.&nbsp; Thus,&nbsp; the much simpler decision rule is obtained:
 
:$$\mu  = {\rm arg} \min _i \hspace{0.1cm}\left \{  - 4\rho_1 s_i + 2\rho_2 s_i  \right \}={\rm arg} \min _i \hspace{0.1cm}\left \{  (\rho_2 - 2\rho_1) \cdot  s_i \right \}
 
:$$\mu  = {\rm arg} \min _i \hspace{0.1cm}\left \{  - 4\rho_1 s_i + 2\rho_2 s_i  \right \}={\rm arg} \min _i \hspace{0.1cm}\left \{  (\rho_2 - 2\rho_1) \cdot  s_i \right \}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Richtig ist also schon mal der Lösungsvorschlag 2. Aber nach Multiplikation mit $&ndash;1/2$ erhält man auch die zuletzt genannte Entscheidungsregel:
+
*So,&nbsp; correct is already the proposed solution 2.&nbsp; But after multiplication by&nbsp; $&ndash;1/2$,&nbsp; we also get the last mentioned decision rule:
 
:$$\mu  = {\rm arg} \max_i \hspace{0.1cm}\left \{  (\rho_1 - \rho_2/2) \cdot  s_i \right \}
 
:$$\mu  = {\rm arg} \max_i \hspace{0.1cm}\left \{  (\rho_1 - \rho_2/2) \cdot  s_i \right \}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Richtig sind somit die <u>Lösungsvorschläge 2 und 3</u>.
+
*Thus,&nbsp; the <u>solutions 2 and 3</u>&nbsp; are correct.
  
  
'''(6)'''&nbsp; Setzt man die Konstante $K_1 = 1$ und $\underline {K_2 = \, &ndash;1/2}$, so lautet die optimale Entscheidungsregel mit der Realisierung $\rho = \rho_1 \, &ndash; \rho_2/2$:
+
'''(6)'''&nbsp; Setting $K_1 = 1$&nbsp; and&nbsp; $\underline {K_2 = \, -0.5}$,&nbsp; the optimal decision rule with realization&nbsp; $\rho = \rho_1 \, &ndash; \rho_2/2$ is:
 
:$$\mu =  
 
:$$\mu =  
 
\left\{ \begin{array}{c} m_0 \\
 
\left\{ \begin{array}{c} m_0 \\
 
  m_1  \end{array} \right.\quad
 
  m_1  \end{array} \right.\quad
  \begin{array}{*{1}c} {\rm f{\rm \ddot{u}r}}  \hspace{0.15cm} \rho > 0 \hspace{0.05cm},
+
  \begin{array}{*{1}c} {\rm f{or}}  \hspace{0.15cm} \rho > 0 \hspace{0.05cm},
\\  {\rm f{\rm \ddot{u}r}}  \hspace{0.15cm} \rho < 0 \hspace{0.05cm}.\\ \end{array}$$
+
\\  {\rm f{or}}  \hspace{0.15cm} \rho < 0 \hspace{0.05cm}.\\ \end{array}$$
  
Da $\rho = 0$ nur mit der Wahrscheinlichkeit $0$ auftritt, ist es im Sinne der Wahrscheinlichkeitsrechnung egal, ob man diesem Ereignis &bdquo;$\rho = 0$&rdquo; die Nachricht $\mu = m_0$ oder $\mu = m_1$ zuordnet.
+
*Since&nbsp; $\rho = 0$&nbsp; only occurs with probability&nbsp; $0$,&nbsp; it does not matter in the sense of probability theory whether one assigns the message&nbsp; $\mu = m_0$&nbsp; or&nbsp; $\mu = m_1$&nbsp; to this event&nbsp; "$\rho = 0$".
  
  
'''(7)'''&nbsp; Mit $K_2 = \, &ndash;1/2$ erhält man für den Eingangswert des Entscheiders:
+
'''(7)'''&nbsp; With&nbsp; $K_2 = \, -0.5$&nbsp; one obtains for the input value of the decision:
 
:$$r = r_1 - r_2/2 = s + n_1 - (n_1 + n_2)/2 = s + n \hspace{0.3cm}
 
:$$r = r_1 - r_2/2 = s + n_1 - (n_1 + n_2)/2 = s + n \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} n = \frac{n_1 - n_2}{2}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm} n = \frac{n_1 - n_2}{2}\hspace{0.05cm}.$$
  
Die Varianz dieser Zufallsgröße ist
+
*The variance of this random variable is
 
:$$\sigma_n^2 = {1}/{4} \cdot \left [ \sigma^2 + \sigma^2 \right ] = {\sigma^2}/{2}= {N_0}/{4}\hspace{0.05cm}.$$
 
:$$\sigma_n^2 = {1}/{4} \cdot \left [ \sigma^2 + \sigma^2 \right ] = {\sigma^2}/{2}= {N_0}/{4}\hspace{0.05cm}.$$
  
Daraus ergibt sich für die Fehlerwahrscheinlichkeit analog zur Teilaufgabe (2):
+
*From this,&nbsp; the error probability is analogous to subtask&nbsp; '''(2)''':
:$${\rm Pr} ({\rm Symbolfehler} )  = {\rm Q} \left ( \sqrt{\frac{E_s}{N_0/4}}\right ) =  
+
:$${\rm Pr} ({\rm symbol\hspace{0.15cm}error} )  = {\rm Q} \left ( \sqrt{\frac{E_s}{N_0/4}}\right ) =  
 
{\rm Q} \left ( 4 \cdot \sqrt{2}\right ) = {1}/{2} \cdot {\rm erfc}(4) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}
 
{\rm Q} \left ( 4 \cdot \sqrt{2}\right ) = {1}/{2} \cdot {\rm erfc}(4) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Durch Berücksichtigung von $r_2$ lässt sich also die Fehlerwahrscheinlichkeit von $0.317 \cdot 10^{\rm &ndash;4}$ auf den deutlich kleineren Wert $0.771 \cdot 10^8$ absenken, obwohl die Entscheidungskomponente $r_2$ nur Rauschen beinhaltet. Dieses Rauschen $r_2$ erlaubt aber eine Schätzung der Rauschkomponente $n_1$ von $r_1$.
+
*Thus,&nbsp; by taking&nbsp; $r_2$&nbsp; into account,&nbsp; the error probability can be lowered from&nbsp; $0.317 \cdot 10^{\rm &ndash;4}$&nbsp; to the much smaller value of&nbsp; $0.771 \cdot 10^{-8}$,&nbsp; although the decision component&nbsp; $r_2$&nbsp; contains only noise.&nbsp; However,&nbsp; this noise&nbsp; $r_2$&nbsp; allows an estimate of the noise component&nbsp; $n_1$&nbsp; of&nbsp; $r_1$.
  
Halbiert man die Sendeenergie von $8 \cdot 10^{\rm &ndash;6} \ \rm Ws$ auf $4 \cdot 10^{\rm &ndash;6} \ \rm Ws$, so ergibt sich hier immer noch die Fehlerwahrscheinlichkeit $0.317 \cdot 10^{\rm &ndash;4}$, wie in der Teilaufgabe (2) berechnet. Bei alleiniger Auswertung von $r_1$ würde die Fehlerwahrscheinlichkeit dagegen $0.234 \cdot 10^{\rm &ndash;2}$ betragen.
+
*Halving the transmit energy from&nbsp; $8 \cdot 10^{\rm &ndash;6} \ \rm Ws$&nbsp; to&nbsp; $4 \cdot 10^{\rm &ndash;6} \ \rm Ws$,&nbsp; we still get the error probability&nbsp; $0.317 \cdot 10^{\rm &ndash;4}$&nbsp; here,&nbsp; as calculated in subtask&nbsp; '''(2)'''.&nbsp; When evaluating&nbsp; $r_1$&nbsp; alone,&nbsp; on the other hand,&nbsp; the error probability would be&nbsp; $0.234 \cdot 10^{\rm &ndash;2}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.2 Struktur des optimalen Empfängers^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.2 Structure of the Optimal Receiver^]]

Latest revision as of 12:38, 18 July 2022

Considered optimal system with  "detector"  and  "decision"

The communication system given by the graph is to be investigated.  The binary message  $m ∈ \{m_0, m_1\}$  with equal occurrence probabilities

$${\rm Pr} (m_0 ) = {\rm Pr} (m_1 ) = 0.5$$

is represented by the two signals

$$s_0 = \sqrt{E_s} \hspace{0.05cm},\hspace{0.2cm}s_1 = -\sqrt{E_s}$$

where the assignments  $m_0 ⇔ s_0$  and  $m_1 ⇔ s_1$  are one-to-one.

The detector  $($highlighted in green in the figure$)$  provides two decision values

$$r_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} s + n_1\hspace{0.05cm},$$
$$r_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} n_1 + n_2\hspace{0.05cm},$$

from which the decision forms the estimated values  $\mu ∈ \{m_0,\ m_1\}$  for the transmitted message  $m$.  The decision includes

  • two weighting factors  $K_1$  and  $K_2$,
  • a summation point,  and
  • a threshold decision with the threshold at  $0$.


Three evaluations are considered in this exercises:

  1. Decision based on  $r_1$  $(K_1 ≠ 0,\ K_2 = 0)$,
  2. decision based on  $r_2$  $(K_1 = 0,\ K_2 ≠ 0)$,
  3. joint evaluation of  $r_1$  und  $r_2$  $(K_1 ≠ 0,\ K_2 ≠ 0)$.


Notes:

  • For the error probability of a system  $r = s + n$  $($because of  $N = 1$  here  $s,\ n,\ r$  are scalars$)$  is valid:
$$p_{\rm S} = {\rm Pr} ({\rm symbol\ \ error} ) = {\rm Q} \left ( \sqrt{{2 E_s}/{N_0}}\right ) \hspace{0.05cm},$$
where a binary message signal  $s ∈ \{s_0,\ s_1\}$  with  $s_0 = \sqrt{E_s} \hspace{0.05cm},\hspace{0.2cm}s_1 = -\sqrt{E_s}$  is assumed.
  • Let the two noise sources  $n_1$  and  $n_2$  be independent of each other and also independent of the transmitted signal  $s ∈ \{s_0,\ s_1\}$.
  • $n_1$  and  $n_2$  can each be modeled by AWGN noise sources  $($white,  Gaussian distributed,  mean-free,  variance  $\sigma^2 = N_0/2)$.  
  • For numerical calculations, use the values
$$E_s = 8 \cdot 10^{-6}\,{\rm Ws}\hspace{0.05cm},\hspace{0.2cm}N_0 = 10^{-6}\,{\rm W/Hz} \hspace{0.05cm}.$$
$${\rm Q}(0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5\hspace{0.05cm},\hspace{1.35cm}{\rm Q}(2^{0.5}) = 0.786 \cdot 10^{-1}\hspace{0.05cm},\hspace{1.1cm}{\rm Q}(2) = 0.227 \cdot 10^{-1}\hspace{0.05cm},$$
$${\rm Q}(2 \cdot 2^{0.5}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.234 \cdot 10^{-2}\hspace{0.05cm},\hspace{0.2cm}{\rm Q}(4) = 0.317 \cdot 10^{-4} \hspace{0.05cm},\hspace{0.2cm}{\rm Q}(4 \cdot 2^{0.5}) = 0.771 \cdot 10^{-8}\hspace{0.05cm}.$$




Questions

1

What statements apply here regarding the receiver?

The ML receiver is better than the MAP receiver.
The MAP receiver is better than the ML receiver.
Both receivers deliver the same result.

2

What is the error probability with  $K_2 = 0$?

${\rm Pr(symbol\hspace{0.15cm} error)}\ = \ $

$\ \%$

3

What is the error probability with  $K_1 = 0$?

${\rm Pr(symbol\hspace{0.15cm}error)}\ = \ $

$\ \%$

4

Can an improvement be achieved by using  $r_1$  and  $r_2$? 

Yes.
No.

5

What are the equations for the estimated value  $(\mu)$  for AWGN noise?

$\mu = {\rm arg \ min} \, \big[(\rho_1 + \rho_2) \cdot s_i \big]$,
$\mu = {\rm arg \ min} \, \big[(\rho_2 \, - 2 \rho_1) \cdot s_i \big]$,
$\mu = {\rm arg \ max} \, \big[(\rho_1 - \rho_2/2) \cdot s_i \big]$.

6

How can this rule be implemented exactly with the given decision  (threshold at zero)?  Let  $K_1 = 1$.

$K_2 \ = \ $

7

What is the  (minimum)  error probability with the realization according to subtask  (6)?

${\rm Minimum \ \big[Pr(symbol\hspace{0.15cm}error)\big]} \ = \ $

$\ \cdot 10^{\rm -8}$


Solution

(1)  The  last alternative solution  is correct:

  • In general,  the MAP receiver leads to a smaller error probability.
  • However,  if the occurrence probabilities  ${\rm Pr}(m = m_0) = {\rm Pr}(m = m_1) = 0.5$  are equal,  both receivers yield the same result.


(2)  With  $K_2 = 0$  and  $K_1 = 1$  the result is

$$r = r_1 = s + n_1\hspace{0.05cm}.$$
  • With bipolar  (antipodal)  transmitted signal and AWGN noise,  the error probability of the optimal receiver  (whether implemented as a correlation or matched filter receiver)  is equal to
$$p_{\rm S} = {\rm Pr} ({\rm symbol\hspace{0.15cm} error} ) = {\rm Q} \left ( \sqrt{ E_s /{\sigma}}\right ) = {\rm Q} \left ( \sqrt{2 E_s /N_0}\right ) \hspace{0.05cm}.$$
  • With   $E_s = 8 \cdot 10^{\rm –6} \ \rm Ws$ and $N_0 = 10^{\rm –6} \ \rm W/Hz$,  we further obtain:
$$p_{\rm S} = {\rm Pr} ({\rm symbol\hspace{0.15cm}error} ) = {\rm Q} \left ( \sqrt{\frac{2 \cdot 8 \cdot 10^{-6}\,{\rm Ws}}{10^{-6}\,{\rm W/Hz} }}\right ) = {\rm Q} (4) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.00317 \%}\hspace{0.05cm}.$$
  • This result is independent of  $K_1$,  since amplification or attenuation changes the useful power in the same way as the noise power.


(3)  With  $K_1 = 0$  and  $K_2 = 1$,  the decision variable is:

$$r = r_2 = n_1 + n_2\hspace{0.05cm}.$$
  • This contains no information about the useful signal,  only noise,  and it holds independently of  $K_2$:
$$p_{\rm S} = {\rm Pr} ({\rm symbol\hspace{0.15cm}error} ) = {\rm Q} (0) \hspace{0.15cm}\underline {= 50\%} \hspace{0.05cm}.$$


(4)  Because of  ${\rm Pr}(m = m_0) = {\rm Pr}(m = m_1)$,  the decision rule of the optimal receiver  (whether realized as MAP or as ML)  is:

$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} [ p_{m \hspace{0.05cm}|\hspace{0.05cm}r_1, \hspace{0.05cm}r_2 } \hspace{0.05cm} (m_i \hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}\rho_2 ) ] = {\rm arg} \max_i \hspace{0.1cm} [ p_{r_1, \hspace{0.05cm}r_2 \hspace{0.05cm}|\hspace{0.05cm} m} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} m_i ) \cdot {\rm Pr} (m = m_i)] = {\rm arg} \max_i \hspace{0.1cm} [ p_{r_1, \hspace{0.05cm}r_2 \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} s_i ) ] \hspace{0.05cm}.$$
  • This composite probability density can be rewritten as follows:
$$\hat{m} ={\rm arg} \max_i \hspace{0.1cm} [ p_{r_1 \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1 \hspace{0.05cm}|\hspace{0.05cm} s_i ) \cdot p_{r_2 \hspace{0.05cm}|\hspace{0.05cm} r_1, \hspace{0.05cm}s} \hspace{0.05cm} ( \rho_2 \hspace{0.05cm}|\hspace{0.05cm} \rho_1, \hspace{0.05cm}s_i ) ] \hspace{0.05cm}.$$
  • Now,  since the second multiplicand also depends on the message  ($s_i$),  $r_2$  should definitely be included in the decision process.  Thus,  the correct answer is:  YES.


(5)  For AWGN noise with variance  $\sigma^2$,  the two composite densities introduced in  (4)  together with their product  $P$  give:

$$p_{r_1\hspace{0.05cm}|\hspace{0.05cm} s}(\rho_1\hspace{0.05cm}|\hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_1 - s_i)^2}{2 \sigma^2}\right ]\hspace{0.05cm},\hspace{1cm} p_{r_2\hspace{0.05cm}|\hspace{0.05cm}r_1,\hspace{0.05cm} s}(\rho_2\hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_2 - (\rho_1 - s_i))^2}{2 \sigma^2}\right ]\hspace{0.05cm}$$
$$ \Rightarrow \hspace{0.3cm} P \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{{2\pi} \cdot \sigma^2}\cdot {\rm exp} \left [ - \frac{1}{2 \sigma^2} \cdot \left \{ (\rho_1 - s_i)^2 + (\rho_2 - (\rho_1 - s_i))^2\right \}\right ]\hspace{0.05cm}.$$
  • We are looking for the argument that maximizes this product  $P$,  which at the same time means that the expression in the curly brackets should take the smallest possible value:
$$\mu = \hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm arg} \max_i \hspace{0.1cm} P = {\rm arg} \min _i \hspace{0.1cm} \left \{ (\rho_1 - s_i)^2 + (\rho_2 - (\rho_1 - s_i))^2\right \} $$
$$\Rightarrow \hspace{0.3cm} \mu = \hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm arg} \min _i \hspace{0.1cm}\left \{ \rho_1^2 - 2\rho_1 s_i + s_i^2 + \rho_2^2 - 2\rho_1 \rho_2 + 2\rho_2 s_i+ \rho_1^2 - 2\rho_1 s_i + s_i^2\right \} \hspace{0.05cm}.$$
  • Here  $\mu$  denotes the estimated value of the message.  In this minimization,  all terms that do not depend on the message  $s_i$  can now be omitted.  Likewise,  the terms  $s_i^2$  are disregarded,  since  $s_0^2 = s_1^2$  holds.  Thus,  the much simpler decision rule is obtained:
$$\mu = {\rm arg} \min _i \hspace{0.1cm}\left \{ - 4\rho_1 s_i + 2\rho_2 s_i \right \}={\rm arg} \min _i \hspace{0.1cm}\left \{ (\rho_2 - 2\rho_1) \cdot s_i \right \} \hspace{0.05cm}.$$
  • So,  correct is already the proposed solution 2.  But after multiplication by  $–1/2$,  we also get the last mentioned decision rule:
$$\mu = {\rm arg} \max_i \hspace{0.1cm}\left \{ (\rho_1 - \rho_2/2) \cdot s_i \right \} \hspace{0.05cm}.$$
  • Thus,  the solutions 2 and 3  are correct.


(6)  Setting $K_1 = 1$  and  $\underline {K_2 = \, -0.5}$,  the optimal decision rule with realization  $\rho = \rho_1 \, – \rho_2/2$ is:

$$\mu = \left\{ \begin{array}{c} m_0 \\ m_1 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f{or}} \hspace{0.15cm} \rho > 0 \hspace{0.05cm}, \\ {\rm f{or}} \hspace{0.15cm} \rho < 0 \hspace{0.05cm}.\\ \end{array}$$
  • Since  $\rho = 0$  only occurs with probability  $0$,  it does not matter in the sense of probability theory whether one assigns the message  $\mu = m_0$  or  $\mu = m_1$  to this event  "$\rho = 0$".


(7)  With  $K_2 = \, -0.5$  one obtains for the input value of the decision:

$$r = r_1 - r_2/2 = s + n_1 - (n_1 + n_2)/2 = s + n \hspace{0.3cm} \Rightarrow \hspace{0.3cm} n = \frac{n_1 - n_2}{2}\hspace{0.05cm}.$$
  • The variance of this random variable is
$$\sigma_n^2 = {1}/{4} \cdot \left [ \sigma^2 + \sigma^2 \right ] = {\sigma^2}/{2}= {N_0}/{4}\hspace{0.05cm}.$$
  • From this,  the error probability is analogous to subtask  (2):
$${\rm Pr} ({\rm symbol\hspace{0.15cm}error} ) = {\rm Q} \left ( \sqrt{\frac{E_s}{N_0/4}}\right ) = {\rm Q} \left ( 4 \cdot \sqrt{2}\right ) = {1}/{2} \cdot {\rm erfc}(4) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}} \hspace{0.05cm}.$$
  • Thus,  by taking  $r_2$  into account,  the error probability can be lowered from  $0.317 \cdot 10^{\rm –4}$  to the much smaller value of  $0.771 \cdot 10^{-8}$,  although the decision component  $r_2$  contains only noise.  However,  this noise  $r_2$  allows an estimate of the noise component  $n_1$  of  $r_1$.
  • Halving the transmit energy from  $8 \cdot 10^{\rm –6} \ \rm Ws$  to  $4 \cdot 10^{\rm –6} \ \rm Ws$,  we still get the error probability  $0.317 \cdot 10^{\rm –4}$  here,  as calculated in subtask  (2).  When evaluating  $r_1$  alone,  on the other hand,  the error probability would be  $0.234 \cdot 10^{\rm –2}$.