Difference between revisions of "Aufgaben:Exercise 4.1Z: Other Basis Functions"

From LNTwww
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Signale, Basisfunktionen und Vektorräume}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces}}
  
[[File:P_ID1996__Dig_Z_4_1.png|right|frame|Energiebegrenzte Signale]]
+
[[File:P_ID1996__Dig_Z_4_1.png|right|frame|Energy-limited signals]]
Diese Aufgabe verfolgt das genau gleiche Ziel wie die [[Aufgaben:4.1_Gram-Schmidt-Verfahren| Aufgabe A4.1]]. Für $M = 4$ energiebegrenzte Signale $s_i(t)$ mit $i = 1, \ ... \ , 4$ sollen die $N$ erforderlichen orthonormalen Basisfunktionen $\varphi_{\it j}(t)$ gefunden werden, die folgende Bedingung erfüllen müssen.
+
This exercise pursues exactly the same goal as  [[Aufgaben:Eercise_4.1:_About_the_Gram-Schmidt_Process|"Exercise 4.1"]]:
:$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t =\\
+
 
\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm \delta}_{jk} =
+
For&nbsp; $M = 4$&nbsp; energy-limited signals&nbsp; $s_i(t)$&nbsp; with&nbsp; $i = 1, \ \text{...} \ , 4$,&nbsp; the&nbsp; $N$&nbsp; required orthonormal basis functions&nbsp; $\varphi_{\it j}(t)$&nbsp; are to be found,&nbsp; which must satisfy the following condition:
 +
:$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t = {\rm \delta}_{jk} =
 
\left\{ \begin{array}{c} 1 \\
 
\left\{ \begin{array}{c} 1 \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
Line 12: Line 13:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Mit $M$ Sendesignale $s_i(t)$ können bereits weniger Basisfunktionen $\varphi_{\it j}(t)$ ausreichen, nämlich $N$. Allgemein gilt also $N &#8804; M$.
+
With&nbsp; $M$&nbsp; transmitted signals&nbsp; $s_i(t)$,&nbsp; already fewer basis functions&nbsp; $\varphi_{\it j}(t)$&nbsp; can suffice,&nbsp; namely&nbsp; $N$.&nbsp; Thus,&nbsp; in general,&nbsp; $N &#8804; M$.
  
Es handelt sich hier um die genau gleichen energiebegrenzten Signale $s_i(t)$ wie in der Aufgabe A4.1. Der Unterschied ist die unterschiedliche Reihenfolge der Signale $s_i(t)$. Diese sind in dieser Aufgabe so sortiert, dass die Basisfunktionen auch ohne Anwendung des umständlicheren [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt| Gram&ndash;Schmidt&ndash;Verfahrens]] gefunden werden können.  
+
These are exactly the same energy-limited signals&nbsp; $s_i(t)$&nbsp; as in&nbsp; [[Aufgaben:Exercise_4.1:_About_the_Gram-Schmidt_Process|"Exercise 4.1"]]:
 +
*The difference is the different order of the signals&nbsp; $s_i(t)$.
 +
 +
*In this exercise,&nbsp; these are sorted in such a way that the basis functions can be found without using the more cumbersome&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram-Schmidt process"]].&nbsp;
  
''Hinweise:''
 
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]].
 
* Verwenden Sie für numerische Berechnungen:
 
:$$A = 1 \sqrt{\rm W} ,  \hspace{0.2cm} T = 1\,{\rm \mu s}  \hspace{0.05cm}.  $$
 
  
  
===Fragebogen===
+
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
 +
 +
*For numerical calculations,&nbsp; use&nbsp; $A = 1 \sqrt{\rm W} ,  \hspace{0.2cm} T = 1\,{\rm &micro; s}  \hspace{0.05cm}.  $
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{In Aufgabe A4.1 hat das Gram&ndash;Schmidt&ndash;Verfahren zu $N = 3$ Basisfunktionen geführt. Wieviele Basisfunktionen benötigt man hier?
+
{In Exercise 4.1,&nbsp; the Gram-Schmidt process resulted in&nbsp; $N = 3$&nbsp; basis functions.&nbsp; How many basis functions are needed here?
 
|type="{}"}
 
|type="{}"}
$N$ = { 3 3% }  
+
$N \ = \ $ { 3 3% }  
  
{Geben Sie die 2&ndash;Norm aller Signale an:
+
{Give the 2&ndash;norm of all these signals:
 
|type="{}"}
 
|type="{}"}
$||s_1(t)||$ = { 1 3% } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$||s_1(t)|| \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
$||s_2(t)||$ = { 1 3% } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$||s_2(t)|| \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
$||s_3(t)||$ = { 1 3% } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$||s_3(t)|| \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
$||s_4(t)||$ = { 1.414 3% } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$||s_4(t)|| \ = \ $ { 1.414 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
  
{Welche Aussagen gelten für die Basisfunktionen $\varphi_1(t)$, $\varphi_2(t)$ und $\varphi_3(t)$?
+
{Which statements are true for the basis functions&nbsp; $\varphi_1(t)$,&nbsp; $\varphi_2(t)$&nbsp; and&nbsp; $\varphi_3(t)$?
 
|type="[]"}
 
|type="[]"}
+ Die in A4.1 berechneten Basisfunktionen sind auch hier geeignet.
+
+ The basis functions computed in&nbsp; "Exericse 4.1"&nbsp; are also appropriate here.
- Es gibt unendlich viele Möglichkeiten für $\{\varphi_1(t), \varphi_2(t), \varphi_3(t)\}$.
+
- There are infinitely many possibilities for&nbsp; $\{\varphi_1(t),\ \varphi_2(t),\ \varphi_3(t)\}$.
- Ein möglicher Satz lautet $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\}$, mit $j = 1, 2, 3$.
+
- A possible set is&nbsp; $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\}$,&nbsp; with&nbsp; $j = 1,\ 2,\ 3$.
+ Ein möglicher Satz lautet $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, mit $j = 1, 2, 3$.
+
+ A possible set is&nbsp; $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$,&nbsp; with&nbsp; $j = 1,\ 2,\ 3$.
  
{Wie lauten die Koeffizienten des Signals $s_4(t)$, bezogen auf die Basisfunktionen $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, mit $j = 1, 2, 3$?
+
{What are the coefficients of the signal&nbsp; $s_4(t)$&nbsp; with respect to the basis functions&nbsp; $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, with&nbsp; $j = 1,\ 2,\ 3$?
 
|type="{}"}
 
|type="{}"}
$s_{\rm 41}$ = { 1 3% } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$s_{\rm 41} \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
$s_{\rm 42}$ = { -1.03--0.97 } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$s_{\rm 42} \ = \ $ { -1.03--0.97 } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
$s_{\rm 43}$ = { 3 3% } $\ 10^0 \ \rm (Ws)^{\rm 0.5} $
+
$s_{\rm 43} \ = \ $ { 0. } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der einzige Unterschied zur Aufgabe A4.1 ist die unterschiedliche Nummerierung der Signale $s_i(t)$. Damit ist offensichtlich, dass auch hier $\underline {N = 3}$ gelten muss.
+
'''(1)'''&nbsp; The only difference to Exercise 4.1 is the different numbering of the signals&nbsp; $s_i(t)$.  
 +
*Thus it is obvious that&nbsp; $\underline {N = 3}$&nbsp; must hold here as well.
  
  
'''(2)'''&nbsp; Die 2&ndash;Norm gibt die Wurzel aus der Signalenergie an und ist vergleichbar mit dem Effektivwert bei leistungsbegrenzten Signalen. Die ersten drei Signale haben alle die 2&ndash;Norm
+
'''(2)'''&nbsp; The&nbsp; "2&ndash;norm"&nbsp; gives the root of the signal energy and is comparable to the&nbsp; "rms value"&nbsp; for power-limited signals.
 +
*The first three signals all have the same 2&ndash;norm:
 
:$$||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline {  = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
 
:$$||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline {  = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
  
Die Norm des letzten Signals ist um den Faktor &bdquo;Wurzel aus 2&rdquo; größer:
+
*The norm of the last signal is larger by a factor of&nbsp; $\sqrt{2}$:
 
:$$||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
 
:$$||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Die <u>erste und die letzte Aussage sind zutreffend</u> im Gegensatz zu den Aussagen 2 und 3:
+
'''(3)'''&nbsp; The&nbsp; <u>first and last statements are true</u>&nbsp; in contrast to statements 2 and 3:
* Es wäre völlig unlogisch, wenn die gefundenen Basisfunktionen bei anderer Sortierung der Signale $s_i(t)$ nicht mehr gelten sollten.
+
* It would be completely illogical if the basis functions found should no longer hold when the signals&nbsp; $s_i(t)$&nbsp; are sorted differently.
* Das Gram&ndash;Schmidt&ndash;Verfahren liefert nur einen möglichen Basisfunktionssatz $\{\varphi_{\it j}(t)\}$. Bei anderer Sortierung ergibt sich (möglicherweise) ein anderer. Die Anzahl der Permutationen von $M = 4$ Signalen ist $4! = 24$. Mehr Basisfunktionssätze kann es auf keinen Fall geben. Daraus folgt: der Lösungsvorschlag 2 ist falsch.
+
 
* Wahrscheinlich gibt es (wegen $N = 3$) aber nur $3! = 6$ mögliche Basisfunktionssätze. Wie aus der [[Aufgaben:4.1_Gram-Schmidt-Verfahren| Musterlösung]] zur Aufgabe A4.1 ersichtlich ist, werden sich mit der Reihenfolge $s_1(t), s_2(t), s_4(t), s_3(t)$ die gleichen Basisfunktionen ergeben wie mit $s_1(t), s_2(t), s_3(t), s_4(t)$. Dies ist aber nur eine Vermutung der Autoren; wir haben es nicht überprüft.
+
* The Gram&ndash;Schmidt process yields only one possible set&nbsp; $\{\varphi_{\it j}(t)\}$&nbsp; of basis functions.&nbsp; A different sorting&nbsp; (possibly)&nbsp; yields a different basis function.
* Die Aussage 3 kann allein schon wegen den unterschiedlichen Einheiten von $s_i(t)$ und $\varphi_{\it j}(t)$ nicht stimmen. Die Signale weisen wie $A$ die Einheit &bdquo;Wurzel aus Watt&rdquo; auf, die Basisfunktionen die Einheit &bdquo;1 durch Wurzel aus Sekunde&rdquo;.
+
 
* Richtig ist somit die letzte Lösungsalternative, wobei für $K$ gilt:
+
*The number of permutations of &nbsp; $M = 4$ &nbsp; signals is &nbsp; $4! = 24$.&nbsp; In any case,&nbsp; there cannot be more basis function sets &nbsp; &rArr; &nbsp; solution 2 is wrong.
 +
 
 +
*However,&nbsp; there are probably&nbsp; $($because of&nbsp; $N = 3)$&nbsp; only&nbsp; $3! = 6$&nbsp; possible sets of basis functions.&nbsp;
 +
 
 +
*As can be seen from the&nbsp; [[Aufgaben:Exercise_4.1:_About_the_Gram-Schmidt_Process|"solution"]]&nbsp; to&nbsp; "Exercise 4.1",&nbsp; the same basis functions will result with the order&nbsp; $s_1(t),\ s_2(t),\ s_4(t),\ s_3(t)$&nbsp; as with&nbsp; $s_1(t),\ s_2(t),\ s_3(t),\ s_4(t)$.&nbsp; However,&nbsp; this is only a conjecture of the authors;&nbsp; we have not checked it.
 +
 
 +
* Statement 3 cannot be true simply because of the different units of&nbsp; $s_i(t)$&nbsp; and&nbsp; $\varphi_{\it j}(t)$.&nbsp; Like&nbsp; $A$,&nbsp; the signals have the unit&nbsp; $\sqrt{\rm W}$,&nbsp; the basis functions the unit $\sqrt{\rm 1/s}$.
 +
 
 +
* Thus,&nbsp; the last solution is correct,&nbsp; where for&nbsp; $K$&nbsp; holds:
 
:$$K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.$$
 
:$$K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Aus dem Vergleich der Diagramme auf der Angabenseite erkennt man:
+
'''(4)'''&nbsp; From the comparison of the diagrams in the specification section we can see:
 
:$$s_{4}(t)  = s_{1}(t) - s_{2}(t) = K \cdot \varphi_1(t) - K \cdot \varphi_2(t)\hspace{0.05cm}.$$
 
:$$s_{4}(t)  = s_{1}(t) - s_{2}(t) = K \cdot \varphi_1(t) - K \cdot \varphi_2(t)\hspace{0.05cm}.$$
  
Weiterhin gilt:
+
*Furthermore holds:
 
:$$s_{4}(t)  = s_{41}\cdot \varphi_1(t) + s_{42}\cdot \varphi_2(t) + s_{43}\cdot \varphi_3(t)$$
 
:$$s_{4}(t)  = s_{41}\cdot \varphi_1(t) + s_{42}\cdot \varphi_2(t) + s_{43}\cdot \varphi_3(t)$$
 
:$$\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm},
 
:$$\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm},
Line 81: Line 98:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.1 Signale, Basisfunktionen, Vektorräume^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.1 Basis Functions & Vector Spaces^]]

Latest revision as of 09:36, 12 August 2022

Energy-limited signals

This exercise pursues exactly the same goal as  "Exercise 4.1":

For  $M = 4$  energy-limited signals  $s_i(t)$  with  $i = 1, \ \text{...} \ , 4$,  the  $N$  required orthonormal basis functions  $\varphi_{\it j}(t)$  are to be found,  which must satisfy the following condition:

$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t = {\rm \delta}_{jk} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} j = k \\ j \ne k \\ \end{array} \hspace{0.05cm}.$$

With  $M$  transmitted signals  $s_i(t)$,  already fewer basis functions  $\varphi_{\it j}(t)$  can suffice,  namely  $N$.  Thus,  in general,  $N ≤ M$.

These are exactly the same energy-limited signals  $s_i(t)$  as in  "Exercise 4.1":

  • The difference is the different order of the signals  $s_i(t)$.
  • In this exercise,  these are sorted in such a way that the basis functions can be found without using the more cumbersome  "Gram-Schmidt process"



Notes:

  • For numerical calculations,  use  $A = 1 \sqrt{\rm W} , \hspace{0.2cm} T = 1\,{\rm µ s} \hspace{0.05cm}. $


Questions

1

In Exercise 4.1,  the Gram-Schmidt process resulted in  $N = 3$  basis functions.  How many basis functions are needed here?

$N \ = \ $

2

Give the 2–norm of all these signals:

$||s_1(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$||s_2(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$||s_3(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$||s_4(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$

3

Which statements are true for the basis functions  $\varphi_1(t)$,  $\varphi_2(t)$  and  $\varphi_3(t)$?

The basis functions computed in  "Exericse 4.1"  are also appropriate here.
There are infinitely many possibilities for  $\{\varphi_1(t),\ \varphi_2(t),\ \varphi_3(t)\}$.
A possible set is  $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\}$,  with  $j = 1,\ 2,\ 3$.
A possible set is  $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$,  with  $j = 1,\ 2,\ 3$.

4

What are the coefficients of the signal  $s_4(t)$  with respect to the basis functions  $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, with  $j = 1,\ 2,\ 3$?

$s_{\rm 41} \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$s_{\rm 42} \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$s_{\rm 43} \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$


Solution

(1)  The only difference to Exercise 4.1 is the different numbering of the signals  $s_i(t)$.

  • Thus it is obvious that  $\underline {N = 3}$  must hold here as well.


(2)  The  "2–norm"  gives the root of the signal energy and is comparable to the  "rms value"  for power-limited signals.

  • The first three signals all have the same 2–norm:
$$||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline { = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$
  • The norm of the last signal is larger by a factor of  $\sqrt{2}$:
$$||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$


(3)  The  first and last statements are true  in contrast to statements 2 and 3:

  • It would be completely illogical if the basis functions found should no longer hold when the signals  $s_i(t)$  are sorted differently.
  • The Gram–Schmidt process yields only one possible set  $\{\varphi_{\it j}(t)\}$  of basis functions.  A different sorting  (possibly)  yields a different basis function.
  • The number of permutations of   $M = 4$   signals is   $4! = 24$.  In any case,  there cannot be more basis function sets   ⇒   solution 2 is wrong.
  • However,  there are probably  $($because of  $N = 3)$  only  $3! = 6$  possible sets of basis functions. 
  • As can be seen from the  "solution"  to  "Exercise 4.1",  the same basis functions will result with the order  $s_1(t),\ s_2(t),\ s_4(t),\ s_3(t)$  as with  $s_1(t),\ s_2(t),\ s_3(t),\ s_4(t)$.  However,  this is only a conjecture of the authors;  we have not checked it.
  • Statement 3 cannot be true simply because of the different units of  $s_i(t)$  and  $\varphi_{\it j}(t)$.  Like  $A$,  the signals have the unit  $\sqrt{\rm W}$,  the basis functions the unit $\sqrt{\rm 1/s}$.
  • Thus,  the last solution is correct,  where for  $K$  holds:
$$K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.$$


(4)  From the comparison of the diagrams in the specification section we can see:

$$s_{4}(t) = s_{1}(t) - s_{2}(t) = K \cdot \varphi_1(t) - K \cdot \varphi_2(t)\hspace{0.05cm}.$$
  • Furthermore holds:
$$s_{4}(t) = s_{41}\cdot \varphi_1(t) + s_{42}\cdot \varphi_2(t) + s_{43}\cdot \varphi_3(t)$$
$$\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 0}\hspace{0.05cm}. $$