Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.3: Different Frequencies"

From LNTwww
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Signale, Basisfunktionen und Vektorräume}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces}}
  
[[File:P_ID1999__Dig_A_4_3.png|right|frame|Vorgegebene Signalmenge]]
+
[[File:P_ID1999__Dig_A_4_3.png|right|frame|Given signal set  {si(t)}]]
In der Grafik sind M=5 Signale si(t) dargestellt. Entgegen der Nomenklatur im Theorieteil sind für die Laufvariable i die $0, \ ... \ , M–$ möglich. Anzumerken ist:
+
In the diagram  M=5  different signals  si(t)  are shown.  Contrary to the nomenclature in the theory section,  the indexing variable  i  can have the values  $0, \ \text{...} \ , M-1$.   
* Alle Signale sind zeitbegrenzt auf 0 bis T; damit ist auch die Energie aller Signale endlich.
 
* Das Signal s1(t) hat die Periodendauer T0=T. Die Frequenz ist damit gleich $f_0 = 1/T$.
 
* Die Signale si(t), $i ≠ 0,sindCosinusschwingungenmitderFrequenzi \cdot f_0.Dagegenists_0(t)zwischen0undT$ konstant.
 
* Der Maximalwert aller Signale ist A und es gilt |s_i(t)| ≤ A.
 
  
 +
To be noted:
 +
* All signals are time-limited to  0  ...   T;  thus the energy of all signals is finite.
  
Gesucht sind in dieser Aufgabe die $N$ Basisfunktionen, die hier entgegen der bisherigen Beschreibung im Theorieteil mit $j = 0, \ ... \ , N–1$ durchnummeriert werden.
+
* The signal  $s_1(t)$  has the period  $T_0 = T$.  The frequency is therefore  $f_0 = 1/T$.
  
''Hinweis:''
+
* The signals  si(t)  with  i ≠ 0  are cosine oscillations with frequency  if0.
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]].  
+
 +
*In contrast,  s0(t)  is constant between  0  and  T. 
 +
 +
* The maximum value of all signals is  A  and  $|s_i(t)| ≤ A$ holds.
  
  
 +
In this exercise we are looking for the  N  basis functions,  which are numbered here with  j=0, ... ,N1. 
  
===Fragebogen===
+
 
 +
 
 +
Note:  The exercise belongs to the chapter   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
 +
 +
 
 +
 
 +
 
 +
===Question===
 
<quiz display=simple>
 
<quiz display=simple>
{Beschreiben Sie die Signalmenge $\{s_i(t)\}, 0 &#8804; i &#8804; 4$ möglichst kompakt. Welche Beschreibungsform ist richtig?
+
{Describe the signal set&nbsp; $\{s_i(t)\}&nbsp; with&nbsp;0 &#8804; i &#8804; 4$&nbsp; as compactly as possible. <br>Which description form is correct?
|type="[]"}
+
|type="()"}
- si(t)=Acos(2πit/T).
+
- $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$.
+ si(t)=Acos(2πit/T) für 0 &#8804; t < T, sonst 0.
+
+ $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$&nbsp; for &nbsp;0 &#8804; t < T, &nbsp;otherwise 0.
- s_i(t) = A \cdot \cos {(2\pi t/T \, &ndash; \, i \cdot \pi/2)} für 0 &#8804; t < T, sonst 0.
+
- s_i(t) = A \cdot \cos {(2\pi t/T \, &ndash; \, i \cdot \pi/2)}&nbsp; for &nbsp;0 &#8804; t < T, &nbsp;otherwise 0.
  
{Geben Sie die Anzahl N der erforderlichen Basisfunktionen an.
+
{Specify the number&nbsp; N&nbsp; of basis functions required.
 
|type="{}"}
 
|type="{}"}
N = { 5 3% }
+
$N \ = \ $ { 5 3% }
  
{Wie lautet die Basisfunktion φ0(t), die formgleich s0(t) ist?
+
{What is the basis function&nbsp; φ0(t) that is equal in form to&nbsp; s0(t)?&nbsp;
|type="[]"}
+
|type="()"}
 
- φ0(t)=s0(t),
 
- φ0(t)=s0(t),
+ $\varphi_0(t) = (1/T)^{\rm 0.5}$ für 0 &#8804; t < T, außerhalb 0.
+
+ $\varphi_0(t) = \sqrt{1/T}$&nbsp; for&nbsp; 0 &#8804; t < T, &nbsp;outside &nbsp;0.
- $\varphi_0(t) = (2/T)^{\rm 0.5}$ für 0 &#8804; t < T, außerhalb 0.
+
- $\varphi_0(t) = \sqrt{2/T}$&nbsp; for&nbsp; 0 &#8804; t < T, &nbsp;outside &nbsp;0.
  
{Wie lautet die Basisfunktion φ1(t), die formgleich s1(t) ist?
+
{What is the basis function&nbsp; φ1(t)&nbsp; that is equal in form to&nbsp;  s1(t)?&nbsp;
|type="[]"}
+
|type="()"}
 
- φ1(t)=s1(t),
 
- φ1(t)=s1(t),
- $\varphi_1(t) = (1/T)^{\rm 0.5} \cdot \cos {(2\pi t/T)}$ für 0 &#8804; t < T, außerhalb 0.
+
- $\varphi_1(t) = \sqrt{1/T} \cdot \cos {(2\pi t/T)}$ for 0 &#8804; t < T, &nbsp;outside 0.
+ $\varphi_1(t) = (2/T)^{\rm 0.5} \cdot \cos {(2\pi t/T)}$ für 0 &#8804; t < T, außerhalb 0.
+
+ $\varphi_1(t) =\sqrt{2/T} \cdot \cos {(2\pi t/T)}$ for 0 &#8804; t < T, &nbsp;outside 0.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorchlag 2</u>, der die unterschiedlichen Frequenzen und die Begrenzung auf den Bereich 0 &#8804; t < T berücksichtigt. Die Signale si(t) gemäß Vorschlag 3 unterscheiden sich dagegen nicht bezüglich der Frequenz, sondern weisen unterschiedliche Phasenlagen auf.
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>solution 2</u>:
 +
* This takes into account the different frequencies and the limitation to the range&nbsp; 0 &#8804; t < T.
 +
 +
*The signals&nbsp; si(t)&nbsp; according to suggestion 3,&nbsp; on the other hand,&nbsp; do not differ with respect to frequency,&nbsp; but have different phase positions.
 +
 
  
  
'''(2)'''&nbsp; Die energiebegrenzten Signale si(t)=Acos(2πit/T) sind alle zueinander orthogonal, das heißt, das innere Produkt zweier Signale si(t) und sk(t) mit i &ne; k ist stets 0:
+
'''(2)'''&nbsp; The energy-limited signals &nbsp; $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$ &nbsp; are orthogonal to each other &nbsp; &rArr; &nbsp; the inner product of two signals&nbsp; si(t),&nbsp; sk(t)&nbsp; with&nbsp; i &ne; k&nbsp; is always&nbsp; 0:
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A^2 \cdot \int_{0}^{T}\cos(2\pi i \cdot t/T) \cdot \cos(2\pi k \cdot t/T)\,{\rm d} t =$$
+
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A^2 \cdot \int_{0}^{T}\cos(2\pi \cdot i \cdot t/T) \cdot \cos(2\pi \cdot k \cdot t/T)\,{\rm d} t $$
:$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{A^2}{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t +
+
:$$ \Rightarrow \hspace{0.3cm} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} {A^2}/{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t +
 
  \frac{A^2}{2} \cdot \int_{0}^{T}\cos(2\pi (i+k) t/T) \,{\rm d} t
 
  \frac{A^2}{2} \cdot \int_{0}^{T}\cos(2\pi (i+k) t/T) \,{\rm d} t
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Mit i &#8712; \{0, \ ... \ , 4\} und k &#8712; \{0, \ ... \ , 4\} sowie i &ne; j ist sowohl $i \, &ndash; k$ ganzzahlig ungleich $0$, ebenso die Summe i+k. Dadurch liefern beide Integrale das Ergebnis 0:
+
*With&nbsp; $i &#8712; \{0, \ \text{...} \ , 4\}$&nbsp; and&nbsp; $k &#8712; \{0, \ \text{...}\ , 4\}$&nbsp; as well as&nbsp; i &ne; j,&nbsp; both&nbsp; $i \, - k$&nbsp; is integer&nbsp; $\ne0$,&nbsp; as is the&nbsp; sum i+k.  
 +
*Thus,&nbsp; both integrals yield the result zero:
 
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0  
 
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5}
Line 59: Line 73:
  
  
'''(3)'''&nbsp; Die Energie des innerhalb T konstanten Signals s0(t) ist gleich
+
'''(3)'''&nbsp; The energy of the signal&nbsp; s0(t),&nbsp; which is constant within&nbsp; T,&nbsp; is equal to
 
:$$E_0 = ||s_0(t)||^2 = A^2 \cdot T  
 
:$$E_0 = ||s_0(t)||^2 = A^2 \cdot T  
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T} $$
+
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T} \hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm} \varphi_0 (t) = \frac{s_0(t)}{||s_0(t)||} =  
+
\Rightarrow \hspace{0.3cm} \varphi_0 (t) = \frac{s_0(t)}{||s_0(t)||} =  
 
\left\{ \begin{array}{c} 1/\sqrt{T} \\
 
\left\{ \begin{array}{c} 1/\sqrt{T} \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
\\  {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
  
Richtig ist also der <u>Lösungsvorschlag 2</u>.
+
Therefore,&nbsp; <u>solution 2</u>&nbsp; is correct.
  
  
'''(4)'''&nbsp; Richtig ist hier der <u>letzte Lösungsvorschlag</u> wegen
+
'''(4)'''&nbsp; The&nbsp; <u>last solution</u>&nbsp; is correct because of
 
:$$E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2}  
 
:$$E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2}  
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} $$
+
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} \hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm} \varphi_1 (t) = \frac{s_1(t)}{||s_1(t)||} =  
+
\Rightarrow \hspace{0.3cm} \varphi_1 (t) = \frac{s_1(t)}{||s_1(t)||} =  
 
\left\{ \begin{array}{c} \sqrt{2/T} \cdot \cos(2\pi t/T) \\
 
\left\{ \begin{array}{c} \sqrt{2/T} \cdot \cos(2\pi t/T) \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
\\  {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.1 Basisfunktionen & Vektorräume^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.1 Basis Functions & Vector Spaces^]]

Latest revision as of 16:56, 13 July 2022

Given signal set  {si(t)}

In the diagram  M=5  different signals  si(t)  are shown.  Contrary to the nomenclature in the theory section,  the indexing variable  i  can have the values  0, ... ,M1

To be noted:

  • All signals are time-limited to  0  ...   T;  thus the energy of all signals is finite.
  • The signal  s1(t)  has the period  T0=T.  The frequency is therefore  f0=1/T.
  • The signals  si(t)  with  i0  are cosine oscillations with frequency  if0.
  • In contrast,  s0(t)  is constant between  0  and  T
  • The maximum value of all signals is  A  and  |si(t)|A holds.


In this exercise we are looking for the  N  basis functions,  which are numbered here with  j=0, ... ,N1


Note:  The exercise belongs to the chapter  "Signals, Basis Functions and Vector Spaces".



Question

1

Describe the signal set  {si(t)}  with  0i4  as compactly as possible.
Which description form is correct?

si(t)=Acos(2πit/T).
si(t)=Acos(2πit/T)  for  0t<T,  otherwise 0.
s_i(t) = A \cdot \cos {(2\pi t/T \, – \, i \cdot \pi/2)}  for  0 ≤ t < T,  otherwise 0.

2

Specify the number  N  of basis functions required.

N \ = \

3

What is the basis function  \varphi_0(t) that is equal in form to  s_0(t)

\varphi_0(t) = s_0(t),
\varphi_0(t) = \sqrt{1/T}  for  0 ≤ t < T,  outside  0.
\varphi_0(t) = \sqrt{2/T}  for  0 ≤ t < T,  outside  0.

4

What is the basis function  \varphi_1(t)  that is equal in form to  s_1(t)

\varphi_1(t) = s_1(t),
\varphi_1(t) = \sqrt{1/T} \cdot \cos {(2\pi t/T)} for 0 ≤ t < T,  outside 0.
\varphi_1(t) =\sqrt{2/T} \cdot \cos {(2\pi t/T)} for 0 ≤ t < T,  outside 0.


Solution

(1)  Correct is the  solution 2:

  • This takes into account the different frequencies and the limitation to the range  0 ≤ t < T.
  • The signals  s_i(t)  according to suggestion 3,  on the other hand,  do not differ with respect to frequency,  but have different phase positions.


(2)  The energy-limited signals   s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}   are orthogonal to each other   ⇒   the inner product of two signals  s_i(t)s_k(t)  with  i ≠ k  is always  0:

< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A^2 \cdot \int_{0}^{T}\cos(2\pi \cdot i \cdot t/T) \cdot \cos(2\pi \cdot k \cdot t/T)\,{\rm d} t
\Rightarrow \hspace{0.3cm} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} {A^2}/{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t + \frac{A^2}{2} \cdot \int_{0}^{T}\cos(2\pi (i+k) t/T) \,{\rm d} t \hspace{0.05cm}.
  • With  i ∈ \{0, \ \text{...} \ , 4\}  and  k ∈ \{0, \ \text{...}\ , 4\}  as well as  i ≠ j,  both  i \, - k  is integer  \ne0,  as is the  sum i + k.
  • Thus,  both integrals yield the result zero:
< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5} \hspace{0.05cm}.


(3)  The energy of the signal  s_0(t),  which is constant within  T,  is equal to

E_0 = ||s_0(t)||^2 = A^2 \cdot T \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_0 (t) = \frac{s_0(t)}{||s_0(t)||} = \left\{ \begin{array}{c} 1/\sqrt{T} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}

Therefore,  solution 2  is correct.


(4)  The  last solution  is correct because of

E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_1 (t) = \frac{s_1(t)}{||s_1(t)||} = \left\{ \begin{array}{c} \sqrt{2/T} \cdot \cos(2\pi t/T) \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}