Difference between revisions of "Aufgaben:Exercise 4.17Z: Rayleigh and Rice Distribution"

From LNTwww
 
(18 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit nichtkohärenter Demodulation}}  
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation}}  
  
[[File:P_ID2079__Dig_Z_4_17.png|right|frame|Rice- und Rayleighverteilung]]
+
[[File:P_ID2079__Dig_Z_4_17_ret.png|right|frame|Rice (top) and Rayleigh (bottom)]]
Für die Untersuchung von Nachrichtensystemen haben die Rayleigh– und die Rice–Verteilung eine große Bedeutung. Im Folgenden sei $y$ eine rayleigh– oder eine riceverteilte Zufallsgröße und $\eta$ jeweils eine Realisierung davon.
+
For the study of transmission systems,  the Rayleigh and Rice distributions are of great importance.  In the following let  $y$  be a Rayleigh or a Rice distributed random variable and  $\eta$  in each case a realization of it.
* Die <i>Rayleighverteilung</i> ergibt sich dabei für die Wahrscheinlichkeitsdichtefunktion (kurz: WDF) einer Zufallsgröße $y$, die sich aus den beiden gaußverteilten und statistisch unabhängigen Komponenten $u$ und $\upsilon$ (beide mit der Streuung $\sigma_n$) wie folgt ergibt:
+
* The&nbsp; "Rayleigh distribution"&nbsp; results thereby for the probability density function&nbsp; $\rm (PDF)$&nbsp; of a random variable&nbsp; $y$,&nbsp; which results from the two Gaussian distributed and statistically independent components&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; $($both with the standard deviation&nbsp; $\sigma_n)$&nbsp; as follows:
 
:$$y = \sqrt{u^2 + v^2} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} p_y (\eta) = \frac{\eta}{\sigma_n^2}
 
:$$y = \sqrt{u^2 + v^2} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} p_y (\eta) = \frac{\eta}{\sigma_n^2}
 
  \cdot {\rm exp } \left [ - \frac{\eta^2}{2 \sigma_n^2}\right ]
 
  \cdot {\rm exp } \left [ - \frac{\eta^2}{2 \sigma_n^2}\right ]
 
  \hspace{0.01cm}.$$
 
  \hspace{0.01cm}.$$
  
* Die <i>Riceverteilung</i> erhält man unter sonst gleichen Randbedingungen für den Anwendungsfall, dass bei einer der beiden Komponenten noch eine Konstante $C$ addiert wird:
+
* The&nbsp; "Rice distribution"&nbsp; is obtained under otherwise identical boundary conditions for the application case where a constant&nbsp; $C$&nbsp; is still added to one of the two components,&nbsp; for example:
 
:$$y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = \frac{\eta}{\sigma_n^2}
 
:$$y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = \frac{\eta}{\sigma_n^2}
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 + C^2}{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta \cdot  C}{ \sigma_n^2}\right ]
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 + C^2}{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta \cdot  C}{ \sigma_n^2}\right ]
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In dieser Gleichung bezeichnet ${\rm I}_0(x)$ die [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation#Rayleigh.E2.80.93_und_Riceverteilung| modifizierte Besselfunktion nullter Ordnung]].
+
In this equation,&nbsp; ${\rm I}_0(x)$&nbsp; denotes the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Rayleigh_and_Rice_Distribution|"modified zero-order Bessel function"]].
  
In der Grafik sind die beiden Dichtefunktionen dargestellt, wobei allerdings nicht angegeben wird, ob $p_{\rm I}(\eta)$ bzw. $p_{\rm II}(\eta)$ zu einer Rayleigh&ndash; oder zu einer Riceverteilung gehören. Bekannt ist nur, dass je eine Rayleigh&ndash; und eine Riceverteilung dargestellt ist. Der Parameter $\sigma_n$ ist bei beiden gleich.
+
In the graph,&nbsp; the two probability density functions are shown,&nbsp; but it is not indicated whether&nbsp; $p_{\hspace{0.03cm}\rm I}(\eta)$&nbsp; or&nbsp; $p_{\hspace{0.03cm}\rm II}(\eta)$&nbsp; belong to a Rayleigh or a Rice distribution,&nbsp; respectively.
 +
* It is only known that one Rayleigh and one Rice distribution is shown.
  
Für Ihre Entscheidung, ob Sie $p_{\rm I}(\eta)$ oder $p_{\rm II}(\eta)$ der Riceverteilung zuordnen, und für die Ermittlung der WDF&ndash;Parameter können Sie folgende Aussagen berücksichtigen:
+
* The parameter&nbsp; $\sigma_n$&nbsp; is the same for both distributions.
* Für große Werte des Quotienten $C/\sigma_n$ lässt sich die Riceverteilung durch eine Gaußverteilung mit Mittelwert $C$ und Streuung $\sigma_n$ annähern.
 
* Die der Grafik zugrunde liegenden Werte von $C$ und $\sigma_n$ sind ganzzahlig.
 
  
  
Hinsichtlich der Rayleighverteilung ist zu beachten:
+
For your decision whether to assign&nbsp; $p_{\hspace{0.03cm}\rm I}(\eta)$&nbsp; or&nbsp; $p_{\rm II}(\hspace{0.03cm}\eta)$&nbsp; to the Rice distribution and for the determination of the PDF parameters you can consider the following statements:
* Für beide Verteilungen ist das gleiche $\sigma_n$ zugrunde gelegt.
+
* For large values of the quotient&nbsp; $C/\sigma_n$,&nbsp; the Rice distribution can be approximated by a Gaussian distribution with mean&nbsp; $C$&nbsp; and standard deviation&nbsp; $\sigma_n$.&nbsp;
* Für die Streuung (Wurzel aus der Varianz) der Rayleighverteilung gilt:
+
 +
* The values of&nbsp; $C$&nbsp; and&nbsp; $\sigma_n$&nbsp; underlying the graph are integers.
 +
 
 +
 
 +
Regarding the Rayleigh distribution,&nbsp; note:
 +
* The same&nbsp; $\sigma_n$&nbsp; is used for both distributions.
 +
 
 +
* For the standard deviation&nbsp; (root of the variance)&nbsp; of the Rayleigh distribution holds:
 
:$$\sigma_y = \sigma_n  \cdot  \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n   
 
:$$\sigma_y = \sigma_n  \cdot  \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Für die Streuung/Varianz der Riceverteilung kann allgemein nur ein komplizierter Ausdruck mit hypergeometrischen Funktionen angegeben werden, ansonsten nur eine Näherung für $C >> \sigma_n$ entsprechend der Gaußverteilung.
 
  
 +
* For the standard deviation or for the variance of the Rice distribution in general only a complicated expression with hypergeometric functions can be given,&nbsp; otherwise only an approximation for&nbsp; $C \gg \sigma_n$&nbsp; corresponding to the Gaussian distribution.
  
''Hinweise:''
+
 
* Diese Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit nichtkohärenter Demodulation]].
+
 
* Gegeben ist zudem das folgende Integral:
+
 
 +
 
 +
 
 +
Notes:
 +
* This exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation|"Carrier Frequency Systems with Non-Coherent Demodulation"]].
 +
 +
* Given is also the following indefinite integral:
 
:$$\int x \cdot {\rm e }^{-x^2} \,{\rm d} x =
 
:$$\int x \cdot {\rm e }^{-x^2} \,{\rm d} x =
 
   -{1}/{2} \cdot {\rm e }^{-x^2} + {\rm const. } $$
 
   -{1}/{2} \cdot {\rm e }^{-x^2} + {\rm const. } $$
Line 40: Line 52:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Ordnen Sie die Grafiken der Rayleigh&ndash; bzw. Riceverteilung zu.
+
{Assign the graphs to the Rayleigh and Rice distributions, respectively.
 
|type="()"}
 
|type="()"}
- $p_{\rm I}(\eta)$ entspricht der Rayleighverteilung, $p_{\rm II}(\eta)$ der Riceverteilung.
+
- $p_{\hspace{0.03cm}\rm I}(\eta)$&nbsp; corresponds to the Rayleigh distribution, &nbsp;$p_{\hspace{0.03cm}\rm II}(\eta)$&nbsp; to the Rice distribution.
+ $p_{\rm I}(\eta)$ entspricht der Riceverteilung, $p_{\rm II}(\eta)$ der Rayleighverteilung.
+
+ $p_{\hspace{0.03cm}\rm I}(\eta)$&nbsp; corresponds to the Rice distribution, &nbsp;$p_{\hspace{0.03cm}\rm II}(\eta)$&nbsp; to the Rayleigh distribution.
  
{Geben Sie die Parameter der hier dargestellten Riceverteilung an.
+
{Give the parameters of the Rice distribution shown here.
 
|type="{}"}
 
|type="{}"}
$C \ = \ $ { 4 3% }
+
$C \hspace{0.25cm} = \ $ { 4 3% }
 
$\sigma_n \ = \ $ { 1 3% }
 
$\sigma_n \ = \ $ { 1 3% }
  
{Welche Verteilung besitzt eine größere Varianz,
+
{Which distribution has a larger variance?
 
|type="()"}
 
|type="()"}
- die Rayleighverteilung,
+
- The Rayleigh distribution,
+ die Riceverteilung?
+
+ the Rice distribution?
  
{Berechnen Sie die Überschreitungswahrscheinlichkeiten der Rayleighverteilung
+
{Calculate the excess probabilities of the Rayleigh distribution.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(y > \sigma_n) \ = \ $ { 0.607 3% }
+
${\rm Pr}(y > \sigma_n) \hspace{0.33cm} = \ $ { 60.7 3% } $ \ \%$
${\rm Pr}(y > 2\sigma_n) \ = \ $ { 0.135 3% }
+
${\rm Pr}(y > 2\sigma_n) \ = \ $ { 13.5 3% } $ \ \%$
${\rm Pr}(y > 3\sigma_n) \ = \ $ { 0.011 3% }
+
${\rm Pr}(y > 3\sigma_n) \ = \ $ { 1.1 3% } $ \ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die obere Grafik zeigt näherungsweise eine Gaußverteilung und gehört dementsprechend zur Riceverteilung. Richtig ist also der <u>zweite Lösungsvorschlag</u>.
+
'''(1)'''&nbsp; The&nbsp; <u>second solution</u>&nbsp; is correct:
 +
*The upper graph shows approximately a Gaussian distribution and belongs accordingly to the Rice distribution.
  
  
'''(2)'''&nbsp; Man erkennt aus der Grafik: Der Mittelwert der Gaußverteilung ist $\underline {C = 4}$ und die Streuung ist $\underline {\sigma_n = 1}$. Vorgegeben war ja, dass $C$ und $\sigma_n$ ganzzahlig seien. Damit lauten die beiden Dichtefunktionen:
+
 
 +
'''(2)'''&nbsp; You can see from the graph:&nbsp; The mean value of the Gaussian distribution is&nbsp; $\underline {C = 4}$ and the standard deviation is $\underline {\sigma_n = 1}$.  
 +
*It was given that&nbsp; $C$&nbsp; and&nbsp; $\sigma_n$&nbsp; were integers.&nbsp; Thus the two density functions are:
 
:$$p_{\rm I} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta}
 
:$$p_{\rm I} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta}
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 + 16}{2 }\right ] \cdot {\rm I }_0 (4\eta ) \approx
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 + 16}{2 }\right ] \cdot {\rm I }_0 (4\eta ) \approx
Line 77: Line 92:
  
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>, wie bereits aus der Grafik ersichtlich ist. Eine Rechnung bestätigt dieses Ergebnis:
+
'''(3)'''&nbsp; <u>Solution 2</u>&nbsp; is correct,&nbsp; as can already be seen from the graph.&nbsp; A calculation confirms this result:
:$$\sigma_{\rm Rice}^2 \hspace{-0.1cm} & = & \hspace{-0.1cm} \sigma_n^2 = 1\hspace{0.05cm},$$
+
:$$\sigma_{\rm Rice}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2 = 1\hspace{0.05cm},$$
:$$ \sigma_{\rm Rayl}^2 \hspace{-0.1cm} & = & \hspace{-0.1cm} \sigma_n^2  \cdot  ({2 - {\pi}/{2 }})  \approx 0.429   
+
:$$ \sigma_{\rm Rayl}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2  \cdot  ({2 - {\pi}/{2 }})  \approx 0.429   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Allgemein ist die Wahrscheinlichkeit, dass $y$ größer ist als ein Wert $y_0$, gleich
+
'''(4)'''&nbsp; In general,&nbsp; the probability that&nbsp; $y$&nbsp; is greater than a certain value&nbsp; $y_0$&nbsp; is equal to
 
:$${\rm Pr}(y > y_0) = \int_{y_0}^{\infty} \frac{\eta}{\sigma_n^2}
 
:$${\rm Pr}(y > y_0) = \int_{y_0}^{\infty} \frac{\eta}{\sigma_n^2}
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 \sigma_n^2}\right ] \,{\rm d} \eta   
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 \sigma_n^2}\right ] \,{\rm d} \eta   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Mit der Substitution $x^2 = \eta^2/(2\sigma_n^2)$ kann hierfür geschrieben werden:
+
*With the substitution&nbsp; $x^2 = \eta^2/(2\sigma_n^2)$&nbsp; can be written for this:
:$${\rm Pr}(y > y_0) = 2 \cdot \hspace{-0.5cm}\int_{y_0/(\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n)}^{\infty} \hspace{-0.5cm}x
+
:$${\rm Pr}(y > y_0) = 2 \cdot \hspace{-0.05cm}\int_{y_0/(\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n)}^{\infty} \hspace{-0.5cm}x
 
  \cdot {\rm e }^{ - x^2} \,{\rm d} x = \left [{\rm e }^{ - x^2} \right ]_{\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n}^{\infty}
 
  \cdot {\rm e }^{ - x^2} \,{\rm d} x = \left [{\rm e }^{ - x^2} \right ]_{\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n}^{\infty}
 
  = {\rm exp } \left [ -\frac{ y_0^2 }{2 \sigma_n^2 }\right ]\hspace{0.05cm}.$$
 
  = {\rm exp } \left [ -\frac{ y_0^2 }{2 \sigma_n^2 }\right ]\hspace{0.05cm}.$$
  
Hierbei wurde das vorne angegebene unbestimmte Integral benutzt. Insbesondere gilt:
+
*Here the indefinite integral given in the front was used.&nbsp; In particular:
:$${\rm Pr}(y > \sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 0.5}  \hspace{0.15cm} \underline{\approx 0.607} \hspace{0.05cm},$$
+
:$${\rm Pr}(y > \sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 0.5}  \hspace{0.15cm} \underline{\approx 60.7 \%} \hspace{0.05cm},$$
:$$ {\rm Pr}(y > 2\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 2.0}  \hspace{0.15cm} \underline{\approx 0.135} \hspace{0.05cm},$$
+
:$$ {\rm Pr}(y > 2\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 2.0}  \hspace{0.15cm} \underline{\approx 13.5 \%} \hspace{0.05cm},$$
:$$ {\rm Pr}(y > 3\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 4.5}  \hspace{0.15cm} \underline{\approx 0.011} \hspace{0.05cm}.$$
+
:$$ {\rm Pr}(y > 3\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 4.5}  \hspace{0.15cm} \underline{\approx 1.1 \%} \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
Line 102: Line 117:
  
  
 
+
[[Category:Digital Signal Transmission: Exercises|^4.5 Non-Coherent Demodulation^]]
 
 
 
 
 
 
[[Category:Aufgaben zu Digitalsignalübertragung|^4.5 Inkohärente Demodulation^]]
 

Latest revision as of 12:41, 10 October 2022

Rice (top) and Rayleigh (bottom)

For the study of transmission systems,  the Rayleigh and Rice distributions are of great importance.  In the following let  $y$  be a Rayleigh or a Rice distributed random variable and  $\eta$  in each case a realization of it.

  • The  "Rayleigh distribution"  results thereby for the probability density function  $\rm (PDF)$  of a random variable  $y$,  which results from the two Gaussian distributed and statistically independent components  $u$  and  $v$  $($both with the standard deviation  $\sigma_n)$  as follows:
$$y = \sqrt{u^2 + v^2} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} p_y (\eta) = \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2}{2 \sigma_n^2}\right ] \hspace{0.01cm}.$$
  • The  "Rice distribution"  is obtained under otherwise identical boundary conditions for the application case where a constant  $C$  is still added to one of the two components,  for example:
$$y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2 + C^2}{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta \cdot C}{ \sigma_n^2}\right ] \hspace{0.05cm}.$$

In this equation,  ${\rm I}_0(x)$  denotes the  "modified zero-order Bessel function".

In the graph,  the two probability density functions are shown,  but it is not indicated whether  $p_{\hspace{0.03cm}\rm I}(\eta)$  or  $p_{\hspace{0.03cm}\rm II}(\eta)$  belong to a Rayleigh or a Rice distribution,  respectively.

  • It is only known that one Rayleigh and one Rice distribution is shown.
  • The parameter  $\sigma_n$  is the same for both distributions.


For your decision whether to assign  $p_{\hspace{0.03cm}\rm I}(\eta)$  or  $p_{\rm II}(\hspace{0.03cm}\eta)$  to the Rice distribution and for the determination of the PDF parameters you can consider the following statements:

  • For large values of the quotient  $C/\sigma_n$,  the Rice distribution can be approximated by a Gaussian distribution with mean  $C$  and standard deviation  $\sigma_n$. 
  • The values of  $C$  and  $\sigma_n$  underlying the graph are integers.


Regarding the Rayleigh distribution,  note:

  • The same  $\sigma_n$  is used for both distributions.
  • For the standard deviation  (root of the variance)  of the Rayleigh distribution holds:
$$\sigma_y = \sigma_n \cdot \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n \hspace{0.05cm}.$$
  • For the standard deviation or for the variance of the Rice distribution in general only a complicated expression with hypergeometric functions can be given,  otherwise only an approximation for  $C \gg \sigma_n$  corresponding to the Gaussian distribution.




Notes:

  • Given is also the following indefinite integral:
$$\int x \cdot {\rm e }^{-x^2} \,{\rm d} x = -{1}/{2} \cdot {\rm e }^{-x^2} + {\rm const. } $$



Questions

1

Assign the graphs to the Rayleigh and Rice distributions, respectively.

$p_{\hspace{0.03cm}\rm I}(\eta)$  corresponds to the Rayleigh distribution,  $p_{\hspace{0.03cm}\rm II}(\eta)$  to the Rice distribution.
$p_{\hspace{0.03cm}\rm I}(\eta)$  corresponds to the Rice distribution,  $p_{\hspace{0.03cm}\rm II}(\eta)$  to the Rayleigh distribution.

2

Give the parameters of the Rice distribution shown here.

$C \hspace{0.25cm} = \ $

$\sigma_n \ = \ $

3

Which distribution has a larger variance?

The Rayleigh distribution,
the Rice distribution?

4

Calculate the excess probabilities of the Rayleigh distribution.

${\rm Pr}(y > \sigma_n) \hspace{0.33cm} = \ $

$ \ \%$
${\rm Pr}(y > 2\sigma_n) \ = \ $

$ \ \%$
${\rm Pr}(y > 3\sigma_n) \ = \ $

$ \ \%$


Solution

(1)  The  second solution  is correct:

  • The upper graph shows approximately a Gaussian distribution and belongs accordingly to the Rice distribution.


(2)  You can see from the graph:  The mean value of the Gaussian distribution is  $\underline {C = 4}$ and the standard deviation is $\underline {\sigma_n = 1}$.

  • It was given that  $C$  and  $\sigma_n$  were integers.  Thus the two density functions are:
$$p_{\rm I} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta} \cdot {\rm exp } \left [ - \frac{\eta^2 + 16}{2 }\right ] \cdot {\rm I }_0 (4\eta ) \approx \frac{1}{\sqrt{2\pi }}\cdot {\rm exp } \left [ - \frac{(\eta-4)^2 }{2 }\right ]\hspace{0.05cm},$$
$$ p_{\rm II} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta} \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 }\right ] \hspace{0.05cm}.$$


(3)  Solution 2  is correct,  as can already be seen from the graph.  A calculation confirms this result:

$$\sigma_{\rm Rice}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2 = 1\hspace{0.05cm},$$
$$ \sigma_{\rm Rayl}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2 \cdot ({2 - {\pi}/{2 }}) \approx 0.429 \hspace{0.05cm}.$$


(4)  In general,  the probability that  $y$  is greater than a certain value  $y_0$  is equal to

$${\rm Pr}(y > y_0) = \int_{y_0}^{\infty} \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 \sigma_n^2}\right ] \,{\rm d} \eta \hspace{0.05cm}.$$
  • With the substitution  $x^2 = \eta^2/(2\sigma_n^2)$  can be written for this:
$${\rm Pr}(y > y_0) = 2 \cdot \hspace{-0.05cm}\int_{y_0/(\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n)}^{\infty} \hspace{-0.5cm}x \cdot {\rm e }^{ - x^2} \,{\rm d} x = \left [{\rm e }^{ - x^2} \right ]_{\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n}^{\infty} = {\rm exp } \left [ -\frac{ y_0^2 }{2 \sigma_n^2 }\right ]\hspace{0.05cm}.$$
  • Here the indefinite integral given in the front was used.  In particular:
$${\rm Pr}(y > \sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 0.5} \hspace{0.15cm} \underline{\approx 60.7 \%} \hspace{0.05cm},$$
$$ {\rm Pr}(y > 2\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 2.0} \hspace{0.15cm} \underline{\approx 13.5 \%} \hspace{0.05cm},$$
$$ {\rm Pr}(y > 3\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 4.5} \hspace{0.15cm} \underline{\approx 1.1 \%} \hspace{0.05cm}.$$