Difference between revisions of "Aufgaben:Exercise 4.18: Non-Coherent FSK Demodulation"

From LNTwww
 
(28 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit nichtkohärenter Demodulation}}  
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation}}  
  
[[File:P_ID2080__Dig_A_4_18.png|right|frame|Nichtkohärente Demodulation]]
+
[[File:EN_Dig_Z_4_18_neu.png|right|frame|Block diagram for non-coherent demodulation]]
Wir betrachten <i>Frequency Shift Keying</i> (FSK) mit $M = 2$ &#8658; binäre Signalisierung. Die beiden Basisfunktionen im Tiefpassbereich sind in diesem Fall komplex und lauten
+
We consider&nbsp; "Frequency Shift Keying"&nbsp; $\rm (FSK)$&nbsp; with&nbsp; $M = 2$ &nbsp; &#8658; &nbsp; binary signaling.&nbsp; The two low-pass basis functions in this case are complex:
 
:$$\xi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},$$
 
:$$\xi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},$$
 
:$$ \xi_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}.$$
 
:$$ \xi_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}.$$
  
Für die zwei möglichen Signalformen im Tiefpassbereich gilt dann mit der mittleren Symbolenergie $E_{\rm S}$:
+
Then,&nbsp; for the two possible waveforms in the low-pass region,&nbsp; with the mean symbol energy&nbsp; $E_{\rm S}$:
:$$m_0 : s_{\rm TP,\hspace{0.05cm}0}  = \sqrt{E_{\rm S}} \cdot \xi_1(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\boldsymbol{ s}_{\rm 0} = (\sqrt{E_{\rm S}}, 0)\hspace{0.05cm},$$
+
:$$m_0\text{:}\hspace{0.2cm} s_{\rm TP,\hspace{0.05cm}0}  = \sqrt{E_{\rm S}} \cdot \xi_1(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\boldsymbol{ s}_{\rm 0} = (\sqrt{E_{\rm S}}, 0)\hspace{0.05cm},$$
:$$m_1 : s_{\rm TP,\hspace{0.05cm}1}  = \sqrt{E_{\rm S}} \cdot \xi_2(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\boldsymbol{ s}_{\rm 1} = (0, \sqrt{E_{\rm S}})\hspace{0.05cm}.$$
+
:$$m_1\text{:}\hspace{0.2cm} s_{\rm TP,\hspace{0.05cm}1}  = \sqrt{E_{\rm S}} \cdot \xi_2(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\boldsymbol{ s}_{\rm 1} = (0, \sqrt{E_{\rm S}})\hspace{0.05cm}.$$
  
Hierbei gibt $h$ den sog. <i>Modulationsindex</i> an. Dieser muss gewisse Kriterien erfüllen, damit sich auch nach der Demodulation orthogonale Signalformen ergeben. Diese Kriterien hängen allerdings davon ab, ob beim Empfänger ein kohärenter oder ein nichtkohärenter Demodulator verwendet wird.
+
Here,&nbsp; $h$&nbsp; indicates the so-called&nbsp; "modulation index".&nbsp; This must meet certain criteria to result in orthogonal waveforms.&nbsp; However,&nbsp; these criteria depend on whether a coherent or a non-coherent demodulator is used at the receiver.
  
Die Grafik zeigt im unteren Bereich den nichtkohärenten Demodulator für binäres <i>Frequency Shift Keying</i> (FSK). Alle komplexen Signale sind blau beschriftet, komplexe Werte grün und reelle Werte rot.
+
The diagram shows the non-coherent demodulator for&nbsp; "Binary Frequency Shift Keying"&nbsp; $\rm (BFSK)$&nbsp; in the lower section.&nbsp; All complex signals are labeled in blue,&nbsp; complex values in green,&nbsp; and real values in red.
  
Gegenüber dem im [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Theorieteil]] angegeben Entscheidungsprozess wird nun ein komplizierter Entscheider betrachtet, der außer dem Schätzwert noch ein <i>Sicherheitsflag</i> ${\it \Gamma} = \{&bdquo;{\rm Z}&rdquo;, \ &bdquo;{\rm U}&rdquo;\}$ ausgibt. &bdquo;${\rm Z}$&rdquo; und &bdquo;${\rm U}$&rdquo; stehen hierbei für eine zuverlässige bzw. eine unzuverlässige Entscheidung. Es gibt also vier Möglichkeiten der Entscheidung, gesteuert durch den Parameter $\gamma$:
+
Compared to the decision process given in the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation| "theory part"]],&nbsp; we now consider a complex decision that outputs a&nbsp; "safety flag"&nbsp; ${\it \Gamma} = \{{\rm Z}, \ {\rm U}\}$&nbsp; in addition to the estimated value.&nbsp; The logical values&nbsp; ${\rm Z}$&nbsp; and&nbsp; ${\rm U}$&nbsp; stand for
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} m_0,\hspace{0.05cm}{\it \Gamma} = {\rm "Z"}, \hspace{0.2cm}{\rm falls} \hspace{0.15cm}y_1 > \gamma \cdot y_2\hspace{0.05cm},$$
+
*realiable decision&nbsp; (German: "zuverlässig" &nbsp; &rArr; &nbsp; subscript:&nbsp; "Z"),
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} m_0,\hspace{0.05cm}{\it \Gamma} = {\rm "U"}, \hspace{0.2cm}{\rm falls} \hspace{0.15cm}y_2 < y_1 < \gamma \cdot y_2\hspace{0.05cm},$$
+
* unreliable decision&nbsp; (German: "unzuverlässig" &nbsp; &rArr; &nbsp; subscript:&nbsp; "U").  
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} m_1,\hspace{0.05cm}{\it \Gamma} = {\rm "Z"}, \hspace{0.2cm}{\rm falls} \hspace{0.15cm}y_2 > \gamma \cdot y_1\hspace{0.05cm},$$
 
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} m_1,\hspace{0.05cm}{\it \Gamma} = {\rm "U"}, \hspace{0.2cm}{\rm falls} \hspace{0.15cm}y_1 < y_2 < \gamma \cdot y_1\hspace{0.05cm}.$$
 
  
In den Fragen zur Aufgabe werden die beiden Werte $\gamma = 1$ und $\gamma = 2$ betrachtet.
 
  
Für die Wahrscheinlichkeit, dass sich der Entscheider fälschlicherweise für das Symbol $m_1$ entscheidet und zudem anzeigt, dass diese Entscheidung als zuverlässig zu betrachten ist (besonders verwerflich), gilt
+
Thus,&nbsp; there are four possibilities for the decision,&nbsp; controlled by the parameter&nbsp; $\gamma$:
:$${\rm Pr}\{\hat{m} = m_1,\hspace{0.05cm}{\it \Gamma} = {\rm "Z"} \hspace{0.05cm}| \hspace{0.05cm}m_0 \} = \frac{1}{1 + \gamma^2} \cdot
+
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{0.1cm} m_0,\hspace{0.15cm}{\it \Gamma} = {\rm Z}, \hspace{0.5cm}{\rm if} \hspace{0.15cm}y_1 > \gamma \cdot y_2\hspace{0.05cm},$$
 +
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{0.1cm} m_0,\hspace{0.15cm}{\it \Gamma} = {\rm U}, \hspace{0.5cm}{\rm if} \hspace{0.15cm}y_2 < y_1 < \gamma \cdot y_2\hspace{0.05cm},$$
 +
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{0.1cm} m_1,\hspace{0.15cm}{\it \Gamma} = {\rm Z}, \hspace{0.5cm}{\rm if} \hspace{0.15cm}y_2 > \gamma \cdot y_1\hspace{0.05cm},$$
 +
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{0.1cm} m_1,\hspace{0.15cm}{\it \Gamma} = {\rm U}, \hspace{0.5cm}{\rm if} \hspace{0.15cm}y_1 < y_2 < \gamma \cdot y_1\hspace{0.05cm}.$$
 +
 
 +
In the questions for the exercise,&nbsp; the two values&nbsp; $\gamma = 1$&nbsp; and&nbsp; $\gamma = 2$&nbsp; are considered.
 +
 
 +
For the probability that the decision erroneously chooses the symbol&nbsp; $m_1$&nbsp; and,&nbsp; moreover,&nbsp; indicates that this decision is to be considered&nbsp; "reliable"&nbsp; (particularly reprehensible),&nbsp; the following applies
 +
:$${\rm Pr}\{\hat{m} = m_1,\hspace{0.15cm}{\it \Gamma} = {\rm Z} \hspace{0.05cm}| \hspace{0.05cm}m_0 \} = \frac{1}{1 + \gamma^2} \cdot
 
  {\rm exp } \left [ - \frac{\gamma^2 \cdot E_{\rm S}}{(1+\gamma^2) \cdot N_{\rm 0}}\right ]  \hspace{0.05cm}.$$
 
  {\rm exp } \left [ - \frac{\gamma^2 \cdot E_{\rm S}}{(1+\gamma^2) \cdot N_{\rm 0}}\right ]  \hspace{0.05cm}.$$
  
''Hinweis:''
 
* Die Aufgabe gehört zum Themengebiet des Kapitels [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit nichtkohärenter Demodulation]].
 
  
  
  
===Fragebogen===
+
 
 +
Note:&nbsp; The exercise belongs to the the chapter&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation|"Carrier Frequency Systems with Non-Coherent Demodulation"]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind bei kohärenter Demodulation der FSK zutreffend?
+
{Which statements are true in the case of coherent demodulation of the BFSK?
 
|type="[]"}
 
|type="[]"}
+ Orthogonalität ergibt sich, wenn $h$ ganzzahlig ist.
+
+ Orthogonality results if&nbsp; $h$&nbsp; is an integer.
+ Auch für $h = 0.5$ ergeben sich orthogonale Signalformen.
+
+ Orthogonal waveforms also result for&nbsp; $h = 0.5$.&nbsp;
- Orthogonalität ist grundsätzlich nicht zu erreichen.
+
- Orthogonality cannot be achieved in principle.
+ Beim AWGN&ndash;Kanal gilt $r(t) = s(t) + n(t)$.
+
+ For the AWGN channel  &nbsp; $r(t) = s(t) + n(t)$ &nbsp; is valid.
  
{Welche Aussagen sind bei nichtkohärenter Demodulation der FSK zutreffend?
+
{Which statements are true for the non-coherent demodulation of the BFSK?
 
|type="[]"}
 
|type="[]"}
+ Orthogonalität ergibt sich, wenn $h$ ganzzahlig ist.
+
+ Orthogonality results when&nbsp; $h$&nbsp; is an integer.
- Auch für $h = 0.5$ ergeben sich orthogonale Signalformen.
+
- Orthogonal waveforms also result for&nbsp; $h = 0.5$.&nbsp;
- Orthogonalität ist grundsätzlich nicht zu erreichen.
+
- Orthogonality cannot be achieved in principle.
- Beim AWGN&ndash;Kanal gilt $r(t) = s(t) + n(t)$.
+
- For the AWGN channel &nbsp; $r(t) = s(t) + n(t)$ &nbsp; is valid.
  
{Wie groß ist die Fehlerwahrscheinlichkeit, also die Wahrscheinlichkeit, dass der Schätzwert nicht mit der gesendeten Nachricht übereinstimmt? ($E_{\rm S}/N_0 = 10$).
+
{Let&nbsp; $E_{\rm S}/N_0 = 10$.&nbsp; What is the error probability,&nbsp; i.e.,&nbsp; the probability that the estimated value deviates from the transmitted message?
 
|type="{}"}
 
|type="{}"}
$p_{\rm S} \ = \ $ { 3.37 3% } $\ \cdot 10^{\rm &ndash;3}$
+
$p_{\rm S} \ = \ $ { 0.337 3% } $\ \%$
  
{Es sei $\gamma = 2$ und $E_{\rm S}/N_0 = 10$. Wie groß ist die Wahrscheinlichkeit, dass trotz Fehler das Sicherheitsflag eine zuverlässige Entscheidung signalisiert?
+
{Let&nbsp; $\gamma = 2$&nbsp; and&nbsp; $E_{\rm S}/N_0 = 10$.&nbsp; What is the probability that the security feature signals a reliable decision despite the errors?
 
|type="{}"}
 
|type="{}"}
$\gamma = 2 \text{:} \hspace{0.4cm} {\rm Pr}({\it \Gamma} \ = \ {\rm &bdquo;Z&rdquo;, \ Fehler}) \ = \ $ { 6.7 3% } $\ \cdot 10^{\rm &ndash;5}$
+
${\rm Pr}({\it \Gamma} = {\rm Z\hspace{0.05cm}  | \hspace{0.05cm}error}) \ = \ $ { 6.7 3% } $\ \cdot 10^{\rm &ndash;5}$
  
{Wie groß ist die (bedingte) Wahrscheinlichkeit, dass bei einem Fehler die Zusatzinformation &bdquo;unzuverlässig&rdquo; angezeigt wird? Es sei weiterhin $E_{\rm S}/N_0 = 10$.
+
{Furthermore,&nbsp; let&nbsp; $\gamma = 2$&nbsp; and&nbsp; $E_{\rm S}/N_0 = 10$.&nbsp; What is the&nbsp; (conditional)&nbsp; probability that the additional information&nbsp; "unreliable"&nbsp; is displayed in case of an error?
 
|type="{}"}
 
|type="{}"}
$\gamma = 2 \text{:} \hspace{0.4cm} {\rm Pr}({\it \Gamma} \ = \ {\rm &bdquo;U&rdquo;, \ Fehler}) \ = \ $ { 0.98 3% } $\ \cdot 10^{\rm &ndash;5}$
+
${\rm Pr}({\it \Gamma} = {\rm U\hspace{0.05cm}  | \hspace{0.05cm}error}) \ = \ $ { 98 3% } $\ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschlag 1, 2 und 4</u>. Bei kohärenter Demodulation ist Orthogonalität dann gegeben, wenn der Modulationsindex $h$ ein Vielfaches von $0.5$ ist. Binäre FSK mit $h = 0.5$ nennt man auch <i>Minimum Shift Keying</i> (MSK). Da durch die Phasenregelung die Phasenverschiebung (Laufzeit) auf dem AWGN&ndash;Übertragungskanal ausgeglichen wird &#8658; $\exp {({\rm j}\phi)} \cdot \exp {({\rm &ndash;j}\phi)} = 1$, gilt tatsächlich für die Signale im äquivalenten Tiefpassbereich:
+
'''(1)'''&nbsp; <u>Solutions 1, 2 and 4</u>&nbsp; are correct:
:$$r(t) = s(t) + n(t)  \hspace{0.05cm}.$$
+
*In coherent demodulation,&nbsp; orthogonality is given when the modulation index&nbsp; $h$&nbsp; is a multiple of&nbsp; $0.5$.&nbsp; Binary FSK with&nbsp; $h = 0.5$&nbsp; is also called&nbsp; "Minimum Shift Keying"&nbsp; $\rm (MSK)$.
 +
 +
*Since phase control compensates for the phase shift&nbsp; ("delay")&nbsp; on the AWGN transmission channel &nbsp; &#8658; &nbsp; ${\rm e}^{{\rm j}\phi} \cdot {\rm e}^{-{\rm j}\phi} = 1$,&nbsp; the signals in the equivalent low-pass region are actually: &nbsp; $r(t) = s(t) + n(t)  \hspace{0.05cm}.$
  
  
'''(2)'''&nbsp; Hier ist nur der <u>erste Lösungsvorschlag</u> richtig, das heißt, $h = 1, \ 2, \ 3, \ ...$ muss man nun ganzzahlig sein. Nichtkohärente Demodulation von FSK ist somit nicht möglich. Wegen der fehlenden Phasenregelung gilt außerdem:
+
 
 +
'''(2)'''&nbsp; Here,&nbsp; only the&nbsp; <u>first solution</u>&nbsp; is correct,&nbsp; i.e., now $h = 1, \ 2, \ 3, \text{ ...}$&nbsp; must be an integer.
 +
*So a non-coherent demodulation of FSK is not possible.
 +
 
 +
*Because of the missing phase control,&nbsp; the following is also true:
 
:$$r(t) = s(t) \cdot {\rm e }^{ - {\rm j }\hspace{0.05cm}\phi} + n(t)  \hspace{0.05cm}.$$
 
:$$r(t) = s(t) \cdot {\rm e }^{ - {\rm j }\hspace{0.05cm}\phi} + n(t)  \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Bei gleichwahrscheinlichen Nachrichten gilt:
+
'''(3)'''&nbsp; For equally probable messages applies:
 
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Pr}({\cal{E}}| \hspace{0.05cm}m = m_0) =    {\rm Pr}(\hat{m}= m_1| \hspace{0.05cm}m = m_0)\hspace{0.05cm}.$$
 
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Pr}({\cal{E}}| \hspace{0.05cm}m = m_0) =    {\rm Pr}(\hat{m}= m_1| \hspace{0.05cm}m = m_0)\hspace{0.05cm}.$$
  
Diese Wahrscheinlichkeit ergibt sich aus der vorgegebenen Gleichung mit $\gamma = 1$. In diesem Fall ist stets ${\it \Gamma} = &bdquo;{\rm Z}&rdquo;$ und die Entscheidungsregel lautet dann: Entscheide auf das Symbol $m_0$, falls $y_1 > y_2$:
+
*This probability is obtained from the given equation with $\gamma = 1$.
 +
 +
*In this case,&nbsp; ${\it \Gamma} ={\rm Z}$&nbsp; is always and the decision rule is: &nbsp; "Decide on the symbol&nbsp; $m_0$,&nbsp; if $y_1 > y_2$".
 +
 
 +
*It follows that:
 
:$$p_{\rm S} = \frac{1}{1 + \gamma^2} \cdot
 
:$$p_{\rm S} = \frac{1}{1 + \gamma^2} \cdot
 
  {\rm exp } \left [ - \frac{\gamma^2 \cdot E_{\rm S}}{(1+\gamma^2) \cdot N_{\rm 0}}\right ]_{\gamma = 1} =   
 
  {\rm exp } \left [ - \frac{\gamma^2 \cdot E_{\rm S}}{(1+\gamma^2) \cdot N_{\rm 0}}\right ]_{\gamma = 1} =   
 
  {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)}\hspace{0.05cm}.$$
 
  {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)}\hspace{0.05cm}.$$
  
Mit $E_{\rm S}/N_0 = 10$ erhält man $p_{\rm S} = 1/2 \cdot e^{\rm &ndash;5} \approx \ \underline {3.37 \cdot 10^{\rm &ndash;3}$.
+
*With&nbsp; $E_{\rm S}/N_0 = 10$,&nbsp; we get&nbsp; $p_{\rm S} = 1/2 \cdot {\rm e}^{\rm &ndash;5} \approx \underline {0.337 \cdot \%}$.
  
  
'''(4)'''&nbsp; Diese Wahrscheinlichkeit ergibt sich aus den Symmetriegründen zu
+
 
:$${\rm Pr}({\it \Gamma} = {\rm "Z"}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm Fehler}  ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
+
'''(4)'''&nbsp; For symmetry reasons,&nbsp; this probability results in
  {1}/{2} \cdot {\rm Pr}\{(\hat{m} = m_1)\hspace{0.05cm}\cap\hspace{0.05cm}{\it \Gamma} = {\rm "Z"} \hspace{0.05cm}| \hspace{0.05cm}m_0 \} +$$
+
:$${\rm Pr}({\it \Gamma} = {\rm Z}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm error}  ) =  
:$$ \hspace{-0.1cm} \ + \ \hspace{-0.1cm} {1}/{2}\cdot {\rm Pr}\{(\hat{m} = m_0)\hspace{0.05cm}\cap\hspace{0.05cm}({\it \Gamma} = {\rm "Z"}) \hspace{0.05cm}| \hspace{0.05cm}m_1 \} =$$
+
  {1}/{2} \cdot {\rm Pr}\{(\hat{m} = m_1)\hspace{0.05cm}\cap\hspace{0.05cm}{\it \Gamma} = {\rm Z} \hspace{0.05cm}| \hspace{0.05cm}m_0 \} + {1}/{2}\cdot {\rm Pr}\{(\hat{m} = m_0)\hspace{0.05cm}\cap\hspace{0.05cm}({\it \Gamma} = {\rm Z}) \hspace{0.05cm}| \hspace{0.05cm}m_1 \} $$
:$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}\{(\hat{m} = m_1)\hspace{0.05cm}\cap\hspace{0.05cm}({\it \Gamma} = {\rm "Z"}) \hspace{0.05cm}| \hspace{0.05cm}m_0 \} =$$
+
:$$\Rightarrow \hspace{0.3cm} {\rm Pr}({\it \Gamma} = {\rm Z}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm error}  ) = {\rm Pr}\{(\hat{m} = m_1)\hspace{0.05cm}\cap\hspace{0.05cm}({\it \Gamma} = {\rm Z}) \hspace{0.05cm}| \hspace{0.05cm}m_0 \} =\frac{1}{1 + 2^2} \cdot
:$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{1}{1 + 2^2} \cdot
 
 
  {\rm exp } \left [ - \frac{2^2 \cdot E_{\rm S}}{(1+2^2) \cdot N_{\rm 0}}\right ] = {1}/{5} \cdot {\rm e }^{-8} = \underline{6.7 \cdot 10^{-5}}\hspace{0.05cm}.$$
 
  {\rm exp } \left [ - \frac{2^2 \cdot E_{\rm S}}{(1+2^2) \cdot N_{\rm 0}}\right ] = {1}/{5} \cdot {\rm e }^{-8} = \underline{6.7 \cdot 10^{-5}}\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Da $&bdquo;{\rm U}&rdquo;$ und $&bdquo;{\rm Z}&rdquo;$ nach der Statistik ein vollständiges System ergeben, gilt mit den Ergebnissen der Teilaufgaben (3) und (4):
+
 
:$${\rm Pr}({\it \Gamma} = {\rm "U"}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm Fehler}  ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}( {\rm Fehler}  ) -
+
'''(5)'''&nbsp; Since&nbsp; ${\rm U}$&nbsp; and&nbsp; ${\rm Z}$&nbsp; give a&nbsp; "complete system"&nbsp; according to statistics,&nbsp; with the results of subtasks&nbsp; '''(3)'''&nbsp; and&nbsp; '''(4)''':
  {\rm Pr}({\it \Gamma} = {\rm "Z"}, {\rm Fehler} ) =$$
+
:$${\rm Pr}({\it \Gamma} = {\rm U}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm error}  ) ={\rm Pr}( {\rm error}  ) -
:$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3.37 \cdot 10^{-3} - 6.7 \cdot 10^{-5} = \underline{3.3 \cdot 10^{-3}}
+
  {\rm Pr}({\it \Gamma} = {\rm Z}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm error}  ) = 3.37 \cdot 10^{-3} - 6.7 \cdot 10^{-5} = \underline{3.3 \cdot 10^{-3}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Damit ist die gesuchte bedingte Wahrscheinlichkeit ${\rm Pr}({\it \Gamma} = {\rm U} | {\rm Fehler})$:
+
*Thus,&nbsp; the conditional probability,&nbsp; we are looking for,&nbsp; is&nbsp; "${\rm Pr}({\it \Gamma}= {\rm U}\hspace{0.05cm}|\hspace{0.05cm} {\rm error})$":
:$${\rm Pr}({\it \Gamma}= {\rm "U"}\hspace{0.05cm}|\hspace{0.05cm} {\rm Fehler}  )  =
+
:$${\rm Pr}({\it \Gamma}= {\rm U}\hspace{0.05cm}|\hspace{0.05cm} {\rm error}  )  =
\frac{{\rm Pr}({\it \Gamma} = {\rm "U"}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm Fehler}  ) }{{\rm Pr}( {\rm Fehler}  )} = \frac{3.3 \cdot 10^{-3}}{3.37 \cdot 10^{-3}}  \hspace{0.15cm} \underline{= 0.98}
+
\frac{{\rm Pr}({\it \Gamma} = {\rm U}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm error}  ) }{{\rm Pr}( {\rm error}  )} = \frac{3.3 \cdot 10^{-3}}{3.37 \cdot 10^{-3}}  \hspace{0.15cm} \underline{\approx 98 \%}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 106: Line 124:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.5 Inkohärente Demodulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.5 Non-Coherent Demodulation^]]

Latest revision as of 15:25, 8 October 2022

Block diagram for non-coherent demodulation

We consider  "Frequency Shift Keying"  $\rm (FSK)$  with  $M = 2$   ⇒   binary signaling.  The two low-pass basis functions in this case are complex:

$$\xi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},$$
$$ \xi_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}.$$

Then,  for the two possible waveforms in the low-pass region,  with the mean symbol energy  $E_{\rm S}$:

$$m_0\text{:}\hspace{0.2cm} s_{\rm TP,\hspace{0.05cm}0} = \sqrt{E_{\rm S}} \cdot \xi_1(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\boldsymbol{ s}_{\rm 0} = (\sqrt{E_{\rm S}}, 0)\hspace{0.05cm},$$
$$m_1\text{:}\hspace{0.2cm} s_{\rm TP,\hspace{0.05cm}1} = \sqrt{E_{\rm S}} \cdot \xi_2(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\boldsymbol{ s}_{\rm 1} = (0, \sqrt{E_{\rm S}})\hspace{0.05cm}.$$

Here,  $h$  indicates the so-called  "modulation index".  This must meet certain criteria to result in orthogonal waveforms.  However,  these criteria depend on whether a coherent or a non-coherent demodulator is used at the receiver.

The diagram shows the non-coherent demodulator for  "Binary Frequency Shift Keying"  $\rm (BFSK)$  in the lower section.  All complex signals are labeled in blue,  complex values in green,  and real values in red.

Compared to the decision process given in the  "theory part",  we now consider a complex decision that outputs a  "safety flag"  ${\it \Gamma} = \{{\rm Z}, \ {\rm U}\}$  in addition to the estimated value.  The logical values  ${\rm Z}$  and  ${\rm U}$  stand for

  • realiable decision  (German: "zuverlässig"   ⇒   subscript:  "Z"),
  • unreliable decision  (German: "unzuverlässig"   ⇒   subscript:  "U").


Thus,  there are four possibilities for the decision,  controlled by the parameter  $\gamma$:

$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{0.1cm} m_0,\hspace{0.15cm}{\it \Gamma} = {\rm Z}, \hspace{0.5cm}{\rm if} \hspace{0.15cm}y_1 > \gamma \cdot y_2\hspace{0.05cm},$$
$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{0.1cm} m_0,\hspace{0.15cm}{\it \Gamma} = {\rm U}, \hspace{0.5cm}{\rm if} \hspace{0.15cm}y_2 < y_1 < \gamma \cdot y_2\hspace{0.05cm},$$
$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{0.1cm} m_1,\hspace{0.15cm}{\it \Gamma} = {\rm Z}, \hspace{0.5cm}{\rm if} \hspace{0.15cm}y_2 > \gamma \cdot y_1\hspace{0.05cm},$$
$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{0.1cm} m_1,\hspace{0.15cm}{\it \Gamma} = {\rm U}, \hspace{0.5cm}{\rm if} \hspace{0.15cm}y_1 < y_2 < \gamma \cdot y_1\hspace{0.05cm}.$$

In the questions for the exercise,  the two values  $\gamma = 1$  and  $\gamma = 2$  are considered.

For the probability that the decision erroneously chooses the symbol  $m_1$  and,  moreover,  indicates that this decision is to be considered  "reliable"  (particularly reprehensible),  the following applies

$${\rm Pr}\{\hat{m} = m_1,\hspace{0.15cm}{\it \Gamma} = {\rm Z} \hspace{0.05cm}| \hspace{0.05cm}m_0 \} = \frac{1}{1 + \gamma^2} \cdot {\rm exp } \left [ - \frac{\gamma^2 \cdot E_{\rm S}}{(1+\gamma^2) \cdot N_{\rm 0}}\right ] \hspace{0.05cm}.$$



Note:  The exercise belongs to the the chapter  "Carrier Frequency Systems with Non-Coherent Demodulation".



Questions

1

Which statements are true in the case of coherent demodulation of the BFSK?

Orthogonality results if  $h$  is an integer.
Orthogonal waveforms also result for  $h = 0.5$. 
Orthogonality cannot be achieved in principle.
For the AWGN channel   $r(t) = s(t) + n(t)$   is valid.

2

Which statements are true for the non-coherent demodulation of the BFSK?

Orthogonality results when  $h$  is an integer.
Orthogonal waveforms also result for  $h = 0.5$. 
Orthogonality cannot be achieved in principle.
For the AWGN channel   $r(t) = s(t) + n(t)$   is valid.

3

Let  $E_{\rm S}/N_0 = 10$.  What is the error probability,  i.e.,  the probability that the estimated value deviates from the transmitted message?

$p_{\rm S} \ = \ $

$\ \%$

4

Let  $\gamma = 2$  and  $E_{\rm S}/N_0 = 10$.  What is the probability that the security feature signals a reliable decision despite the errors?

${\rm Pr}({\it \Gamma} = {\rm Z\hspace{0.05cm} | \hspace{0.05cm}error}) \ = \ $

$\ \cdot 10^{\rm –5}$

5

Furthermore,  let  $\gamma = 2$  and  $E_{\rm S}/N_0 = 10$.  What is the  (conditional)  probability that the additional information  "unreliable"  is displayed in case of an error?

${\rm Pr}({\it \Gamma} = {\rm U\hspace{0.05cm} | \hspace{0.05cm}error}) \ = \ $

$\ \%$


Solution

(1)  Solutions 1, 2 and 4  are correct:

  • In coherent demodulation,  orthogonality is given when the modulation index  $h$  is a multiple of  $0.5$.  Binary FSK with  $h = 0.5$  is also called  "Minimum Shift Keying"  $\rm (MSK)$.
  • Since phase control compensates for the phase shift  ("delay")  on the AWGN transmission channel   ⇒   ${\rm e}^{{\rm j}\phi} \cdot {\rm e}^{-{\rm j}\phi} = 1$,  the signals in the equivalent low-pass region are actually:   $r(t) = s(t) + n(t) \hspace{0.05cm}.$


(2)  Here,  only the  first solution  is correct,  i.e., now $h = 1, \ 2, \ 3, \text{ ...}$  must be an integer.

  • So a non-coherent demodulation of FSK is not possible.
  • Because of the missing phase control,  the following is also true:
$$r(t) = s(t) \cdot {\rm e }^{ - {\rm j }\hspace{0.05cm}\phi} + n(t) \hspace{0.05cm}.$$


(3)  For equally probable messages applies:

$$p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Pr}({\cal{E}}| \hspace{0.05cm}m = m_0) = {\rm Pr}(\hat{m}= m_1| \hspace{0.05cm}m = m_0)\hspace{0.05cm}.$$
  • This probability is obtained from the given equation with $\gamma = 1$.
  • In this case,  ${\it \Gamma} ={\rm Z}$  is always and the decision rule is:   "Decide on the symbol  $m_0$,  if $y_1 > y_2$".
  • It follows that:
$$p_{\rm S} = \frac{1}{1 + \gamma^2} \cdot {\rm exp } \left [ - \frac{\gamma^2 \cdot E_{\rm S}}{(1+\gamma^2) \cdot N_{\rm 0}}\right ]_{\gamma = 1} = {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)}\hspace{0.05cm}.$$
  • With  $E_{\rm S}/N_0 = 10$,  we get  $p_{\rm S} = 1/2 \cdot {\rm e}^{\rm –5} \approx \underline {0.337 \cdot \%}$.


(4)  For symmetry reasons,  this probability results in

$${\rm Pr}({\it \Gamma} = {\rm Z}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm error} ) = {1}/{2} \cdot {\rm Pr}\{(\hat{m} = m_1)\hspace{0.05cm}\cap\hspace{0.05cm}{\it \Gamma} = {\rm Z} \hspace{0.05cm}| \hspace{0.05cm}m_0 \} + {1}/{2}\cdot {\rm Pr}\{(\hat{m} = m_0)\hspace{0.05cm}\cap\hspace{0.05cm}({\it \Gamma} = {\rm Z}) \hspace{0.05cm}| \hspace{0.05cm}m_1 \} $$
$$\Rightarrow \hspace{0.3cm} {\rm Pr}({\it \Gamma} = {\rm Z}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm error} ) = {\rm Pr}\{(\hat{m} = m_1)\hspace{0.05cm}\cap\hspace{0.05cm}({\it \Gamma} = {\rm Z}) \hspace{0.05cm}| \hspace{0.05cm}m_0 \} =\frac{1}{1 + 2^2} \cdot {\rm exp } \left [ - \frac{2^2 \cdot E_{\rm S}}{(1+2^2) \cdot N_{\rm 0}}\right ] = {1}/{5} \cdot {\rm e }^{-8} = \underline{6.7 \cdot 10^{-5}}\hspace{0.05cm}.$$


(5)  Since  ${\rm U}$  and  ${\rm Z}$  give a  "complete system"  according to statistics,  with the results of subtasks  (3)  and  (4):

$${\rm Pr}({\it \Gamma} = {\rm U}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm error} ) ={\rm Pr}( {\rm error} ) - {\rm Pr}({\it \Gamma} = {\rm Z}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm error} ) = 3.37 \cdot 10^{-3} - 6.7 \cdot 10^{-5} = \underline{3.3 \cdot 10^{-3}} \hspace{0.05cm}.$$
  • Thus,  the conditional probability,  we are looking for,  is  "${\rm Pr}({\it \Gamma}= {\rm U}\hspace{0.05cm}|\hspace{0.05cm} {\rm error})$":
$${\rm Pr}({\it \Gamma}= {\rm U}\hspace{0.05cm}|\hspace{0.05cm} {\rm error} ) = \frac{{\rm Pr}({\it \Gamma} = {\rm U}\hspace{0.05cm}\cap\hspace{0.05cm} {\rm error} ) }{{\rm Pr}( {\rm error} )} = \frac{3.3 \cdot 10^{-3}}{3.37 \cdot 10^{-3}} \hspace{0.15cm} \underline{\approx 98 \%} \hspace{0.05cm}.$$