Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.3: AWGN and BSC Model"

From LNTwww
 
(22 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Binary Symmetric Channel (BSC)}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)}}
  
[[File:P_ID1831__Dig_A_5_3.png|right|frame|AWGN–Kanal und BSC–Modell]]
+
[[File:EN_Dig_A_5_3.png|right|frame|AWGN and BSC model]]
Die Grafik zeigt oben das analoge Kanalmodell eines digitalen Übertragungssystems, wobei das additive Rauschsignal n(t) mit der Rauschleistungsdichte N0/2 wirksam ist. Es handelt sich um AWGN–Rauschen. Die Varianz des Rauschanteils vor dem Entscheider (nach dem Matched–Filter) ist dann
+
The upper graphic shows the analog channel model of a digital transmission system,  where the additive noise signal  n(t)  with the  (two-sided)  noise power density  N0/2  is effective.  This is AWGN noise.  The variance of the noise component before the decision  $(afterthematchedfilter)$  is then
 
:σ2=N02T.
 
:σ2=N02T.
  
Weiter soll gelten:
+
Further, let hold:
* Es treten keine Impulsinterferenzen auf. Wurde das Symbol qν=H gesendet, so ist der Nutzanteil des Detektionssignal gleich +s0, bei qν=L dagegen $–s_0$.
+
* No intersymbol interference occurs.  If the symbol  qν=H  was sent,  the useful component of the detection signal is equal to  +s0,  while for  qν=L,  it is equal to  $-s_0$.
* Der Schwellenwertentscheider berücksichtigt eine Schwellendrift, das heißt, die Schwelle <i>E</i> kann durchaus vom Optimalwert E=0 abweichen. Die <i>Entscheidungsregel</i> lautet:
+
 
 +
* The threshold decision takes into account a threshold drift,&nbsp; that is,&nbsp; the threshold&nbsp; $E$&nbsp; may well deviate from the optimal value&nbsp; E=0.&nbsp; The&nbsp; "decision rule"&nbsp; is:
 
:$$\upsilon_\nu =
 
:$$\upsilon_\nu =
 
  \left\{ \begin{array}{c} \mathbf{H} \\
 
  \left\{ \begin{array}{c} \mathbf{H} \\
 
  \mathbf{L} \end{array} \right.\quad
 
  \mathbf{L} \end{array} \right.\quad
\begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}d (\nu \cdot T) > E  \hspace{0.05cm},
+
\begin{array}{*{1}c} {\rm if}\hspace{0.15cm}d (\nu \cdot T) > E  \hspace{0.05cm},
\\  {\rm falls} \hspace{0.15cm} d (\nu \cdot T) \le E\hspace{0.05cm}.\\ \end{array}$$
+
\\  {\rm if} \hspace{0.15cm} d (\nu \cdot T) \le E\hspace{0.05cm}.\\ \end{array}$$
* Mit dem Schwellenwert E=0 ergibt sich die mittlere Fehlerwahrscheinlichkeit zu
+
* With the threshold value&nbsp; E=0,&nbsp; the mean error probability is given by
 
:pM=Q(s0/σ)=0.01.
 
:pM=Q(s0/σ)=0.01.
  
Die untere Grafik zeigt ein digitales Kanalmodell, das durch die vier Übergangswahrscheinlichkeiten p1,p2,p3 und p4 charakterisiert ist. Dieses soll an das analoge Kanalmodell angepasst werden.
+
&rArr; &nbsp; The bottom graph shows a digital channel model characterized by the four transition probabilities&nbsp; $p_1, &nbsp; p_2, &nbsp; p_3$ &nbsp; and &nbsp; p4.&nbsp; This is to be fitted to the analog channel model.
 +
 
 +
 
 +
 
 +
 
  
''Hinweise:''
+
<u>Notes:</u>
* Die Aufgabe beschreibt das Themengebiet des Kapitels [[Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)| Binary Symmetric Channel (BSC)]].  
+
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)| "Binary Symmetric Channel"]].
* Zahlenwerte der so genannten Q&ndash;Funktion können Sie mit dem folgenden Interaktionsmodul ermitteln: [[Komplementäre Gaußsche Fehlerfunktionen]]
+
 +
* Numerical values of the Q&ndash;function can be determined with the interactive applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Functions"]].&nbsp;
 +
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Quotient s0/σ liegt dieser Aufgabe zugrunde?
+
{Which quotient&nbsp; s0/σ&nbsp; is the basis of this exercise?
 
|type="{}"}
 
|type="{}"}
 
s0/σ = { 2.32 3% }
 
s0/σ = { 2.32 3% }
  
{Für die Schwelle gelte E=0. Ist das vorliegende digitale Übertragungssystem durch das BSC&ndash;Modell beschreibbar, unter der Voraussetzung,
+
{For the threshold, let&nbsp; E=0.&nbsp; Is the digital transmission system at hand describable by the BSC model,&nbsp; assuming that
 
|type="[]"}
 
|type="[]"}
+ dass die Quellensymbole L und H gleichwahrscheinlich sind,
+
+ the source symbols&nbsp; L&nbsp; and&nbsp; H&nbsp; are equally probable,
+ dass das Quellensymbol L deutlich häufiger auftritt als H?.
+
+ the source symbol&nbsp; L&nbsp; occurs significantly more frequently than&nbsp; H?
  
{Berechnen Sie die Übergangswahrscheinlichkeiten für E=+s0/4.
+
{Calculate the transition probabilities for&nbsp; E=+s0/4.
 
|type="{}"}
 
|type="{}"}
 
p1 =  { 0.959 3% }
 
p1 =  { 0.959 3% }
Line 43: Line 50:
 
p4 =  { 0.998 3% }
 
p4 =  { 0.998 3% }
  
{Nun gelte E=+s0/4. Ist das vorliegende digitale Übertragungssystem durch das BSC&ndash;Modell beschreibbar, unter der Voraussetzung,
+
{Now let&nbsp; E=+s0/4.&nbsp; Is the present digital transmission system describable by the BSC model under the condition that
 
|type="[]"}
 
|type="[]"}
- dass die Quellensymbole L und H gleichwahrscheinlich sind,
+
- the source symbols&nbsp; L&nbsp; and&nbsp; H&nbsp; are equally probable,
- dass das Quellensymbol L deutlich häufiger auftritt als H?.
+
- the source symbol&nbsp; L&nbsp; occurs significantly more frequently than&nbsp; H?
  
{Es gelte pL=Pr(qν=L) und pH=Pr(qν=H). Welche der folgenden Aussagen sind dann für die mittlere Fehlerwahrscheinlichkeit zutreffend?
+
{Let&nbsp; pL=Pr(qν=L)&nbsp; and&nbsp; pH=Pr(qν=H).&nbsp; Which of the following statements are then true for the mean error probability&nbsp; pM?&nbsp;
 
|type="[]"}
 
|type="[]"}
+ pM ist beim BSC&ndash;Modell (E=0) unabhängig von pL und pH.
+
+ pM&nbsp; in the BSC model &nbsp;$($valid for &nbsp;$E = 0)$&nbsp; is independent of&nbsp; pL&nbsp; and &nbsp;pH.
- pM ist beim BSC&ndash;Modell (E=0) für pL=pH am kleinsten.
+
- pM&nbsp; in the BSC model &nbsp;$($valid for &nbsp;$E = 0)$&nbsp; is smallest for&nbsp; pL=pH.&nbsp;
+ Für pL=0.9, pH=0.1 und E=+s0/4 ist $p_{\rm M}kleinerals1\%$.
+
+ For&nbsp; pL=0.9,&nbsp; pH=0.1&nbsp; and&nbsp; E=+s0/4&nbsp; &nbsp; &rArr; &nbsp; $p_{\rm M} < 1\%$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; The mean error probability is&nbsp; pM=Q(s0/σ)=0.01.
'''(2)'''&nbsp;  
+
*From this it follows for the quotient of the detection useful sample value and the detection noise rms value:
'''(3)'''&nbsp;  
+
:s0/σ=Q1(0.01)2.32_.
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
 
 +
'''(2)'''&nbsp; With&nbsp; E=0,&nbsp; the probabilities of the digital channel model are given by:
 +
:p2=p3=p=0.01,p1=p4=1p=0.99.
 +
 
 +
*A comparison with the theory part shows that this channel model corresponds to the BSC model,&nbsp; independent of the statistics of the source symbols.
 +
*Thus,&nbsp; <u>both solutions</u>&nbsp; are correct.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The transition probability&nbsp; p2&nbsp; now describes the case where the decision threshold&nbsp; E=0.25s0&nbsp; was mistakenly undershot.
 +
*Then&nbsp; vν=L,&nbsp; although qν=H&nbsp; was sent.&nbsp; Thus,&nbsp; the distance from the threshold is only&nbsp; 0.75s0&nbsp; and it holds:
 +
:$$p_{\rm 2}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Q} \left ( \frac{0.75 \cdot s_0}{\sigma} \right ) = {\rm Q} \left ( 0.75 \cdot 2.32 \right )
 +
= {\rm Q} \left ( 1.74 \right )\hspace{0.15cm}\underline {\approx 0.041}\hspace{0.05cm}, \hspace{0.5cm}
 +
p_{\rm 1}  \hspace{-0.1cm} \ = \  \hspace{-0.1cm}1 - p_{\rm 2} \hspace{0.15cm}\underline {=
 +
0.959}\hspace{0.05cm}.$$
 +
 
 +
*Similarly, the transition probabilities&nbsp; p3&nbsp; and&nbsp; p4&nbsp; can be calculated,&nbsp; now assuming the threshold distance&nbsp; 1.25s0:
 +
:$$p_{\rm 3}  = {\rm Q} \left ( 1.25 \cdot 2.32 \right )
 +
= {\rm Q} \left ( 2.90 \right )\hspace{0.15cm}\underline {\approx  0.002}\hspace{0.05cm}, \hspace{0.2cm}
 +
p_{\rm 4}  = 1 - p_{\rm 3}\hspace{0.15cm}\underline { =
 +
0.998}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; <u>Neither</u>&nbsp; of the two solutions applies:
 +
*With the decision threshold&nbsp; E &ne; 0,&nbsp; the BSC model is not applicable regardless of the symbol statistic,
 +
 
 +
*since the symmetry property of the channel&nbsp; (the&nbsp; "S"&nbsp; flag in&nbsp; "BSC")&nbsp; does not hold.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; <u>Statements 1 and 3</u>&nbsp; are true,&nbsp; but not statement 2:
 +
*In the BSC model,&nbsp; pM=1%&nbsp; is independent of the symbol probabilities&nbsp; pL&nbsp; and&nbsp; pH.
 +
 +
*In contrast,&nbsp; for pL=0.9,&nbsp; pH=0.1&nbsp; and&nbsp; E=+s0/4:
 +
:$$p_{\rm M}  = 0.9 \cdot p_{\rm 3} + 0.1 \cdot p_{\rm 2}= 0.9 \cdot 0.2\% + 0.1 \cdot 4.1\%
 +
\approx 0.59\% \hspace{0.05cm}.$$
 +
 
 +
*The minimum results for&nbsp; pL=0.93&nbsp; and&nbsp; pH=0.07&nbsp; to
 +
:pM0.45%.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^5.2 Binary Symmetric Channel (BSC)^]]
+
[[Category:Digital Signal Transmission: Exercises|^5.2 Binary Symmetric Channel^]]

Latest revision as of 15:30, 5 September 2022

AWGN and BSC model

The upper graphic shows the analog channel model of a digital transmission system,  where the additive noise signal  n(t)  with the  (two-sided)  noise power density  N0/2  is effective.  This is AWGN noise.  The variance of the noise component before the decision  (after the matched filter)  is then

σ2=N02T.

Further, let hold:

  • No intersymbol interference occurs.  If the symbol  qν=H  was sent,  the useful component of the detection signal is equal to  +s0,  while for  qν=L,  it is equal to  s0.
  • The threshold decision takes into account a threshold drift,  that is,  the threshold  E  may well deviate from the optimal value  E=0.  The  "decision rule"  is:
υν={HLifd(νT)>E,ifd(νT)E.
  • With the threshold value  E=0,  the mean error probability is given by
pM=Q(s0/σ)=0.01.

⇒   The bottom graph shows a digital channel model characterized by the four transition probabilities  p1,p2,p3   and   p4.  This is to be fitted to the analog channel model.



Notes:



Questions

1

Which quotient  s0/σ  is the basis of this exercise?

s0/σ = 

2

For the threshold, let  E=0.  Is the digital transmission system at hand describable by the BSC model,  assuming that

the source symbols  L  and  H  are equally probable,
the source symbol  L  occurs significantly more frequently than  H?

3

Calculate the transition probabilities for  E=+s0/4.

p1 = 

p2 = 

p3 = 

p4 = 

4

Now let  E=+s0/4.  Is the present digital transmission system describable by the BSC model under the condition that

the source symbols  L  and  H  are equally probable,
the source symbol  L  occurs significantly more frequently than  H?

5

Let  pL=Pr(qν=L)  and  pH=Pr(qν=H).  Which of the following statements are then true for the mean error probability  pM

pM  in the BSC model  (valid for  E=0)  is independent of  pL  and  pH.
pM  in the BSC model  (valid for  E=0)  is smallest for  pL=pH
For  pL=0.9pH=0.1  and  E=+s0/4    ⇒   pM<1%.


Solution

(1)  The mean error probability is  pM=Q(s0/σ)=0.01.

  • From this it follows for the quotient of the detection useful sample value and the detection noise rms value:
s0/σ=Q1(0.01)2.32_.


(2)  With  E=0,  the probabilities of the digital channel model are given by:

p2=p3=p=0.01,p1=p4=1p=0.99.
  • A comparison with the theory part shows that this channel model corresponds to the BSC model,  independent of the statistics of the source symbols.
  • Thus,  both solutions  are correct.


(3)  The transition probability  p2  now describes the case where the decision threshold  E=0.25s0  was mistakenly undershot.

  • Then  vν=L,  although qν=H  was sent.  Thus,  the distance from the threshold is only  0.75s0  and it holds:
p2 = Q(0.75s0σ)=Q(0.752.32)=Q(1.74)0.041_,p1 = 1p2=0.959_.
  • Similarly, the transition probabilities  p3  and  p4  can be calculated,  now assuming the threshold distance  1.25s0:
p3=Q(1.252.32)=Q(2.90)0.002_,p4=1p3=0.998_.


(4)  Neither  of the two solutions applies:

  • With the decision threshold  E0,  the BSC model is not applicable regardless of the symbol statistic,
  • since the symmetry property of the channel  (the  "S"  flag in  "BSC")  does not hold.


(5)  Statements 1 and 3  are true,  but not statement 2:

  • In the BSC model,  pM=1%  is independent of the symbol probabilities  pL  and  pH.
  • In contrast,  for pL=0.9pH=0.1  and  E=+s0/4:
pM=0.9p3+0.1p2=0.90.2%+0.14.1%0.59%.
  • The minimum results for  pL=0.93  and  pH=0.07  to
pM0.45%.