Difference between revisions of "Aufgaben:Exercise 5.4:Is the BSC Model Renewing?"

From LNTwww
 
(22 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Binary Symmetric Channel (BSC)}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)}}
  
[[File:P_ID1833__Dig_A_5_4.png|right|frame|Fehlerkorrelationsfunktion des BSC–Modells]]
+
[[File:P_ID1833__Dig_A_5_4.png|right|frame|Error correlation function  $\rm (ECF)$  of the BSC model]]
Zur Beschreibung von digitalen Kanalmodellen werden vorwiegend benutzt:
+
For the description of digital channel models are mainly used:
* die Fehlerabstandsverteilung (FAV)
+
* the error distance distribution  $\rm (EDD)$
 
:$$V_a(k) =  {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k}  {\rm Pr}(a = \kappa)\hspace{0.05cm},$$
 
:$$V_a(k) =  {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k}  {\rm Pr}(a = \kappa)\hspace{0.05cm},$$
* die Fehlerkorrelationsfunktion (FKF)
+
* the error correlation function  $\rm (ECF)$
 
:$$\varphi_{e}(k) = {\rm E}[e_{\nu} \cdot e_{\nu + k}]
 
:$$\varphi_{e}(k) = {\rm E}[e_{\nu} \cdot e_{\nu + k}]
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Für eine große Klasse von von Kanalmodellen besteht ein einfacher Zusammenhang zwischen diesen Beschreibungsgrößen, nämlich
+
For a large class of channel models,   there is a simple relationship between these descriptive quantities,  viz.
 
:$$\varphi_{e}(k) =
 
:$$\varphi_{e}(k) =
 
  \left\{ \begin{array}{c} \varphi_{e}(0) \\
 
  \left\{ \begin{array}{c} \varphi_{e}(0) \\
 
  \sum_{\kappa = 1}^{k}  {\rm Pr}(a = \kappa) \cdot \varphi_{e}(k - \kappa)\end{array} \right.\quad
 
  \sum_{\kappa = 1}^{k}  {\rm Pr}(a = \kappa) \cdot \varphi_{e}(k - \kappa)\end{array} \right.\quad
\begin{array}{*{1}c} f{\rm \ddot{u}r }\hspace{0.15cm}k = 0  \hspace{0.05cm},
+
\begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0  \hspace{0.05cm},
\\  f{\rm \ddot{u}r }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$
+
\\  f{\rm or }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$
  
Man nennt solche Kanalmodelle <font color="#cc0000"><span style="font-weight: bold;">erneuernd</span></font>. Sie zeichnen sich dadurch aus, dass bei ihnen die einzelnen Fehlerabstände statistisch voneinander unabhängig sind, so dass zur Generierung der Fehlerfolge der oft schnellere Weg über die Generierung der Fehlerabstände gegangen werden kann, wie in der [[Aufgaben:5.5_Fehlerfolge_und_Fehlerabstandsfolge| Aufgabe A5.5]] beschrieben wird.
+
Such channel models are called&nbsp; "'''renewing'''".  
  
In dieser Aufgabe soll überprüft werden, ob das BSC&ndash;Modell gemäß der oberen Grafik erneuernd ist. Die Fehlerkorrelationsfunktion $\varphi_e(k)$ ist in der unteren Grafik dargestellt. Die Wahrscheinlichkeiten der einzelnen Fehlerabstände sind beim BSC&ndash;Modell wie folgt gegeben:
+
*They are characterized by the fact that in them the individual error distances are statistically independent of each other,&nbsp;
 +
*so that to generate the error sequence the often faster way can be followed via the generation of the error distances,&nbsp; as described in&nbsp; [[Aufgaben:Exercise_5.5:_Error_Sequence_and_Error_Distance_Sequence| "Exercise 5.5"]].&nbsp;
 +
 
 +
 
 +
In this exercise,&nbsp; we want to check whether the BSC model is renewing according to the upper graph.
 +
*The error correlation function&nbsp; $\varphi_e(k)$&nbsp; is shown in the bottom graph.
 +
 +
*The probabilities of the individual error distances are given by the BSC model as follows:
 
:$${\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm}.$$
 
:$${\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm}.$$
  
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)| Binary Symmetric Channel (BSC)]].
 
* Verwenden Sie für numerische Berechnungen den BSC&ndash;Parameter $p = 0.01$.
 
* Die mittlere Fehlerwahrscheinlichkeit $p_{\rm M}$ hat dann den gleichen Wert.
 
  
  
  
===Fragebogen===
+
 
 +
<u>Notes:</u>
 +
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)|"Binary Symmetric Channel"]].
 +
 +
* Use the BSC parameter&nbsp; $p = 0.01$&nbsp; for numerical calculations.&nbsp; The mean error probability&nbsp; $p_{\rm M}$ then has the same value.
 +
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Calculate the ECF value&nbsp; $\varphi_e(k = 0)$.
|type="[]"}
+
|type="{}"}
+ correct
+
$\varphi_e(k = 0) \ = \ ${ 1 3% } $\ \cdot 10^{\rm -2} $
- false
+
 
 +
{Calculate the ECF value&nbsp; $\varphi_e(k = 1)$.
 +
|type="{}"}
 +
$\varphi_e(k = 1) \ = \ ${ 0.01 3% } $\ \cdot 10^{\rm -2} $
  
{Input-Box Frage
+
{Calculate the ECF value&nbsp; $\varphi_e(k = 2)$.
 
|type="{}"}
 
|type="{}"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
$\varphi_e(k = 2) \ = \ ${ 0.01 3% } $\ \cdot 10^{\rm -2} $
 +
 
 +
{Provide a reasoned summary of this exercise.
 +
|type="()"}
 +
+ The BSC model is renewing.
 +
- The BSC model is non-renewing.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; According to the general definition,&nbsp; $\varphi_e(k = 0) = {\rm E}[e_{\nu}^2]$.
'''(2)'''&nbsp;  
+
*However,&nbsp; because of&nbsp; $e_{\nu} &#8712; \{0, 1\}$ &nbsp; &rArr; &nbsp;  $\varphi_e(k = 0) = {\rm E}[e_\nu]$,&nbsp; holds simultaneously,&nbsp; which corresponds to the mean error probability&nbsp; $p_{\rm M} = p$&nbsp; &nbsp; &#8658; &nbsp; $\varphi_e(k = 0) \ \underline { = 0.01}$.
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
 
 +
'''(2)'''&nbsp; According to the general ECF definition,&nbsp; considering the BSC model:
 +
:$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + 1}]={\rm Pr}[e_{\nu} = 1 \cap
 +
e_{\nu + 1} = 1] = p \cdot p = p^2 \hspace{0.15cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$
 +
 
 +
*The same result is obtained via the equation valid only for renewing channel models:
 +
:$$\varphi_{e}(k = 1) = {\rm Pr}(a=1) \cdot \varphi_{e}(0) = p \cdot
 +
p = p^2 = 10^{-4}\hspace{0.05cm}.$$
 +
 
 +
*That means:&nbsp; The ECF value&nbsp; $\varphi_e(1)$&nbsp; does not argue against the BSC model being renewing.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; From the graph,&nbsp; we can already see that&nbsp; $\varphi_e(k = 2) = \varphi_e(k = 1) = 10^{&ndash;4}$ will hold.&nbsp; The explicit calculation confirms this result:
 +
:$$\varphi_{e}(k \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2) = {\rm
 +
Pr}[e_{\nu} = 1 \cap e_{\nu + 2} = 1] =
 +
{\rm Pr}[e_{\nu} = 1 \cap
 +
e_{\nu + 1} = 1 \cap e_{\nu + 2} = 1] + {\rm Pr}[e_{\nu} = 1 \cap
 +
e_{\nu + 1} = 0 \cap e_{\nu + 2} = 1] \hspace{0.05cm}.$$
 +
 
 +
*The first term in the BSC model with the conditional probabilities&nbsp; $($only first order required$)$&nbsp; is:
 +
:$${\rm Pr}[1\hspace{0.1cm}1 \hspace{0.1cm} 1] \hspace{-0.1cm} \ = \
 +
\hspace{-0.1cm}{\rm Pr}[e_{\nu +2} = 1
 +
\hspace{0.1cm}|\hspace{0.1cm} e_{\nu + 1} = 1] \cdot {\rm
 +
Pr}[e_{\nu +1} = 1 \hspace{0.1cm}|\hspace{0.1cm} e_{\nu } = 1]
 +
\cdot {\rm Pr}[ e_{\nu } = 1]=p \cdot p \cdot p =
 +
p^3\hspace{0.05cm}.$$
 +
 
 +
*Correspondingly,&nbsp; for the second term:
 +
:$${\rm Pr}[1\hspace{0.1cm}0 \hspace{0.1cm} 1] \hspace{-0.1cm} \ = \
 +
\hspace{-0.1cm}{\rm Pr}[e_{\nu +2} = 1
 +
\hspace{0.1cm}|\hspace{0.1cm} e_{\nu + 1} = 0] \cdot {\rm
 +
Pr}[e_{\nu +1} = 0 \hspace{0.1cm}|\hspace{0.1cm} e_{\nu } = 1]
 +
\cdot {\rm Pr}[ e_{\nu } = 1]=p \cdot (1-p) \cdot p = p^2
 +
-p^3\hspace{0.05cm}.$$
 +
:$$\Rightarrow \hspace{0.3cm} \varphi_{e}(k = 2) = {\rm
 +
Pr}[1\hspace{0.1cm}1 \hspace{0.1cm} 1] + {\rm Pr}[1\hspace{0.1cm}0
 +
\hspace{0.1cm} 1] = (p^3) + (p^2 -p^3)= p^2\hspace{0.15cm}\underline { =
 +
10^{-4}}\hspace{0.05cm}.$$
 +
 
 +
*Using the equation valid only for renewing channel models,&nbsp; we obtain:
 +
:$$\varphi_{e}(k = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm
 +
Pr}(a=1) \cdot \varphi_{e}(k= 1) + {\rm Pr}(a=2) \cdot
 +
\varphi_{e}(k= 0)= p \cdot p^2 + (1-p) \cdot p
 +
\cdot p = p^2 \hspace{0.05cm}.$$
 +
 
 +
*Thus,&nbsp; this result also does not argue against the BSC model being renewing.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The previous results already suggest that the BSC model is renewing.
 +
 
 +
*And also the fact that here the individual error distances are statistically independent of each other speaks in favor of this thesis.
 +
 
 +
*As a final proof,&nbsp; we show that the equation
 +
:$$\varphi_{e}(k) = \sum_{\kappa = 1}^{k}  {\rm Pr}(a = \kappa) \cdot
 +
\varphi_{e}(k - \kappa)= \varphi_{e}(0) \cdot  {\rm Pr}(a = k)+
 +
\sum_{\kappa = 1}^{k-1} \varphi_{e}(k - \kappa) \cdot {\rm Pr}(a =
 +
\kappa)$$
 +
 
 +
:yields the correct result when&nbsp; $\varphi_e(0) = p$&nbsp; and&nbsp; $\varphi_e(1) = \ \text{...} \ = \varphi_e(k&ndash;1) = p^2$&nbsp; are used.
 +
 
 +
*One obtains
 +
:$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  p \cdot
 +
(1-p)^{k-1} \cdot p + p^2 \cdot \sum_{\kappa = 1}^{k-1}
 +
(1-p)^{\kappa-1} \cdot p =p^2 \cdot (1-p)^{k-1} + p^3
 +
\cdot \sum_{\kappa = 0}^{k-2} (1-p)^{\kappa}\hspace{0.05cm}.$$
 +
 
 +
*Using the summation formula of a geometric series
 +
:$$\sum_{\kappa = 0}^{n} x^{\kappa} = \frac{1 - x^{n+1}}{1 -
 +
x}\hspace{0.05cm},$$
 +
 
 +
:this expression can be represented as follows:
 +
:$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  p^2 \cdot
 +
(1-p)^{k-1} + p^3 \cdot \frac{1 - (1-p)^{k-1}}{1 -
 +
(1-p)}= p^2 \cdot \left [
 +
(1-p)^{k-1} + 1 - (1-p)^{k-1} \right ] = p^2\hspace{0.05cm}.$$
 +
 
 +
*This means:&nbsp; The BSC model is in fact renewing &nbsp; &#8658; &nbsp; <u>solution 1</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^5.2 Binary Symmetric Channel (BSC)^]]
+
[[Category:Digital Signal Transmission: Exercises|^5.2 Binary Symmetric Channel^]]

Latest revision as of 15:29, 5 September 2022

Error correlation function  $\rm (ECF)$  of the BSC model

For the description of digital channel models are mainly used:

  • the error distance distribution  $\rm (EDD)$
$$V_a(k) = {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa)\hspace{0.05cm},$$
  • the error correlation function  $\rm (ECF)$
$$\varphi_{e}(k) = {\rm E}[e_{\nu} \cdot e_{\nu + k}] \hspace{0.05cm}.$$

For a large class of channel models,  there is a simple relationship between these descriptive quantities,  viz.

$$\varphi_{e}(k) = \left\{ \begin{array}{c} \varphi_{e}(0) \\ \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa) \cdot \varphi_{e}(k - \kappa)\end{array} \right.\quad \begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0 \hspace{0.05cm}, \\ f{\rm or }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$

Such channel models are called  "renewing".

  • They are characterized by the fact that in them the individual error distances are statistically independent of each other, 
  • so that to generate the error sequence the often faster way can be followed via the generation of the error distances,  as described in  "Exercise 5.5"


In this exercise,  we want to check whether the BSC model is renewing according to the upper graph.

  • The error correlation function  $\varphi_e(k)$  is shown in the bottom graph.
  • The probabilities of the individual error distances are given by the BSC model as follows:
$${\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm}.$$



Notes:

  • Use the BSC parameter  $p = 0.01$  for numerical calculations.  The mean error probability  $p_{\rm M}$ then has the same value.



Questions

1

Calculate the ECF value  $\varphi_e(k = 0)$.

$\varphi_e(k = 0) \ = \ $

$\ \cdot 10^{\rm -2} $

2

Calculate the ECF value  $\varphi_e(k = 1)$.

$\varphi_e(k = 1) \ = \ $

$\ \cdot 10^{\rm -2} $

3

Calculate the ECF value  $\varphi_e(k = 2)$.

$\varphi_e(k = 2) \ = \ $

$\ \cdot 10^{\rm -2} $

4

Provide a reasoned summary of this exercise.

The BSC model is renewing.
The BSC model is non-renewing.


Solution

(1)  According to the general definition,  $\varphi_e(k = 0) = {\rm E}[e_{\nu}^2]$.

  • However,  because of  $e_{\nu} ∈ \{0, 1\}$   ⇒   $\varphi_e(k = 0) = {\rm E}[e_\nu]$,  holds simultaneously,  which corresponds to the mean error probability  $p_{\rm M} = p$    ⇒   $\varphi_e(k = 0) \ \underline { = 0.01}$.


(2)  According to the general ECF definition,  considering the BSC model:

$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + 1}]={\rm Pr}[e_{\nu} = 1 \cap e_{\nu + 1} = 1] = p \cdot p = p^2 \hspace{0.15cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$
  • The same result is obtained via the equation valid only for renewing channel models:
$$\varphi_{e}(k = 1) = {\rm Pr}(a=1) \cdot \varphi_{e}(0) = p \cdot p = p^2 = 10^{-4}\hspace{0.05cm}.$$
  • That means:  The ECF value  $\varphi_e(1)$  does not argue against the BSC model being renewing.


(3)  From the graph,  we can already see that  $\varphi_e(k = 2) = \varphi_e(k = 1) = 10^{–4}$ will hold.  The explicit calculation confirms this result:

$$\varphi_{e}(k \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2) = {\rm Pr}[e_{\nu} = 1 \cap e_{\nu + 2} = 1] = {\rm Pr}[e_{\nu} = 1 \cap e_{\nu + 1} = 1 \cap e_{\nu + 2} = 1] + {\rm Pr}[e_{\nu} = 1 \cap e_{\nu + 1} = 0 \cap e_{\nu + 2} = 1] \hspace{0.05cm}.$$
  • The first term in the BSC model with the conditional probabilities  $($only first order required$)$  is:
$${\rm Pr}[1\hspace{0.1cm}1 \hspace{0.1cm} 1] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}[e_{\nu +2} = 1 \hspace{0.1cm}|\hspace{0.1cm} e_{\nu + 1} = 1] \cdot {\rm Pr}[e_{\nu +1} = 1 \hspace{0.1cm}|\hspace{0.1cm} e_{\nu } = 1] \cdot {\rm Pr}[ e_{\nu } = 1]=p \cdot p \cdot p = p^3\hspace{0.05cm}.$$
  • Correspondingly,  for the second term:
$${\rm Pr}[1\hspace{0.1cm}0 \hspace{0.1cm} 1] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}[e_{\nu +2} = 1 \hspace{0.1cm}|\hspace{0.1cm} e_{\nu + 1} = 0] \cdot {\rm Pr}[e_{\nu +1} = 0 \hspace{0.1cm}|\hspace{0.1cm} e_{\nu } = 1] \cdot {\rm Pr}[ e_{\nu } = 1]=p \cdot (1-p) \cdot p = p^2 -p^3\hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm} \varphi_{e}(k = 2) = {\rm Pr}[1\hspace{0.1cm}1 \hspace{0.1cm} 1] + {\rm Pr}[1\hspace{0.1cm}0 \hspace{0.1cm} 1] = (p^3) + (p^2 -p^3)= p^2\hspace{0.15cm}\underline { = 10^{-4}}\hspace{0.05cm}.$$
  • Using the equation valid only for renewing channel models,  we obtain:
$$\varphi_{e}(k = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(a=1) \cdot \varphi_{e}(k= 1) + {\rm Pr}(a=2) \cdot \varphi_{e}(k= 0)= p \cdot p^2 + (1-p) \cdot p \cdot p = p^2 \hspace{0.05cm}.$$
  • Thus,  this result also does not argue against the BSC model being renewing.



(4)  The previous results already suggest that the BSC model is renewing.

  • And also the fact that here the individual error distances are statistically independent of each other speaks in favor of this thesis.
  • As a final proof,  we show that the equation
$$\varphi_{e}(k) = \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa) \cdot \varphi_{e}(k - \kappa)= \varphi_{e}(0) \cdot {\rm Pr}(a = k)+ \sum_{\kappa = 1}^{k-1} \varphi_{e}(k - \kappa) \cdot {\rm Pr}(a = \kappa)$$
yields the correct result when  $\varphi_e(0) = p$  and  $\varphi_e(1) = \ \text{...} \ = \varphi_e(k–1) = p^2$  are used.
  • One obtains
$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p \cdot (1-p)^{k-1} \cdot p + p^2 \cdot \sum_{\kappa = 1}^{k-1} (1-p)^{\kappa-1} \cdot p =p^2 \cdot (1-p)^{k-1} + p^3 \cdot \sum_{\kappa = 0}^{k-2} (1-p)^{\kappa}\hspace{0.05cm}.$$
  • Using the summation formula of a geometric series
$$\sum_{\kappa = 0}^{n} x^{\kappa} = \frac{1 - x^{n+1}}{1 - x}\hspace{0.05cm},$$
this expression can be represented as follows:
$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p^2 \cdot (1-p)^{k-1} + p^3 \cdot \frac{1 - (1-p)^{k-1}}{1 - (1-p)}= p^2 \cdot \left [ (1-p)^{k-1} + 1 - (1-p)^{k-1} \right ] = p^2\hspace{0.05cm}.$$
  • This means:  The BSC model is in fact renewing   ⇒   solution 1.