Difference between revisions of "Aufgaben:Exercise 1.13Z: Binary Erasure Channel Decoding again"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage…“)
 
 
(26 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes
+
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Linear_Block_Codes}}
  
 +
[[File:P_ID2541__KC_Z_1_13.png|right|frame|Code table of the&nbsp; $\rm HC (7, 4, 3)$]]
  
}}
+
We consider as in the&nbsp; [[Aufgaben:Exercise_1.13:_Binary_Erasure_Channel_Decoding|"Exercise 1. 13"]]&nbsp; the decoding of a&nbsp; [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes|"Hamming Codes"]]&nbsp; after transmission over an erasure channel &nbsp; ⇒ &nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_. E2.80.93_BEC|"Binary Erasure Channel"]]&nbsp; $\rm (BEC)$.
  
[[File:|right|]]
+
The&nbsp; $(7, 4, 3)$-Hamming code is fully described by the adjacent code table&nbsp; $\underline{u}_{i} → \underline{x}_{i}$&nbsp; which can be used to find all solutions.
  
  
===Fragebogen===
 
  
 +
 +
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Decodierung_linearer_Blockcodes|"Decoding of Linear Block Codes"]].
 +
 +
* In contrast to&nbsp; [[Aufgaben:Exercise_1.13:_Binary_Erasure_Channel_Decoding|"Exercise 1.13"]]&nbsp; the solution is here not to be found formally, but intuitively.
 +
 +
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
What is the minimum distance&nbsp; $\ d_{\rm min}$&nbsp; of the present code?
|type="[]"}
+
|type="{}"}
- Falsch
+
$\ d_{\rm min} \ = \ $ { 3 }
+ Richtig
 
  
 +
{Is the code systematic?
 +
|type="()"}
 +
+ YES.
 +
- NO.
  
{Input-Box Frage
+
{Up to how many erasures&nbsp; $($maximum number:&nbsp; $e_{\rm max})$&nbsp; is successful decoding guaranteed?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$\ e_{\rm max} \ = \ $ { 2 }
  
 +
{The received word is&nbsp; $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$.&nbsp; What is the sent information word&nbsp; $\underline{u}$?
 +
|type="()"}
 +
- $\underline{u} = (1, 0, 0, 0),$
 +
+ $\underline{u} = (1, 0, 0, 1),$
 +
- $\underline{u} = (1, 0, 1, 0),$
 +
- $\underline{u} = (1, 0, 1, 1).$
  
 +
{Which of the following received words can be decoded?
 +
|type="[]"}
 +
+ $\underline{y}_{\rm A }= (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E}),$
 +
+ $\underline{y}_{\rm B} = ({\rm E}, {\rm E }, 0, {\rm E}, 0, 1, 0),$
 +
- $\underline{y}_{\rm C} = ({\rm E}, {\rm E}, {\rm E}, 1, 0, 1, 0),$
 +
- $\underline{y}_{\rm D} = (1, 0, {\rm E}, {\rm E}, {\rm E}, {\rm E}, 0).$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; The&nbsp; $(7, 4, 3)$&nbsp; Hamming code is considered here.&nbsp; Accordingly,&nbsp; the minimum distance is&nbsp; $d_{\rm min} \ \underline{= 3}$.
'''2.'''
+
 
'''3.'''
+
 
'''4.'''
+
'''(2)'''&nbsp; The first&nbsp; $k = 4$&nbsp; bits of each code word&nbsp; $\underline{x}$&nbsp; match the information word&nbsp; $\underline{u}$.&nbsp; Correct is therefore&nbsp; <u>YES</u>.
'''5.'''
+
 
'''6.'''
+
 
'''7.'''
+
'''(3)'''&nbsp;  If no more than&nbsp; $e_{\rm max} = d_{\rm min}- 1 \ \ \underline{ = 2}$&nbsp; bits are erased,&nbsp; decoding is possible with certainty.
 +
*Each code word differs from every other in at least three bit positions.
 +
 +
*With only two erasures,&nbsp; therefore,&nbsp; the code word can be reconstructed in any case.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp;  In the code table,&nbsp; one finds a single code word starting with&nbsp; "$10$"&nbsp; and ending with&nbsp; "$010$",&nbsp; namely $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$.&nbsp;
 +
 
 +
*Since this is a systematic code,&nbsp; the first&nbsp; $k = 4$&nbsp; bits describe the information word&nbsp; $\underline{u} = (1, 0, 0, 1)$ &nbsp; ⇒&nbsp; <u>answer 2</u>.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp;  Correct are the&nbsp; <u>suggested solutions 1 and 2</u>.
 +
 
 +
* $\underline{y}_{\rm D} = (1, 0, {\rm E},  {\rm E},  {\rm E},  {\rm E}, 0)$&nbsp; cannot be decoded because less than&nbsp; $k = 4$&nbsp; bits&nbsp; (number of information bits)&nbsp; arrive.
 +
 
 +
*$\underline{y}_{\rm C} = ( {\rm E},  {\rm E},  {\rm E}, 1, 0, 1, 0)$&nbsp; is not decodable because&nbsp;  $\underline{x} = (0, 1, 1, 1, 0, 1, 0)$&nbsp; and &nbsp; $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; are possible outcomes.
 +
 
 +
*$\underline{y}_{\rm B} = ( {\rm E},  {\rm E}, 0,  {\rm E}, 0, 1, 0)$&nbsp; is decodable,&nbsp; since of the 16 possible code words only&nbsp; $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; matches&nbsp; $\underline{y}_{\rm B}$&nbsp; in positions 3, 5, 6, 7.
 +
 
 +
*$\underline{y}_{\rm A} = (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E})$&nbsp; is decodable.&nbsp; Only the&nbsp; $m = 3$&nbsp; parity bits are missing.&nbsp; Thus,&nbsp; the information word&nbsp; $\underline{u} = (1, 0, 0, 1)$&nbsp; is also fixed&nbsp; (systematic code).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.5 Decodierung linearer Blockcodes
+
[[Category:Channel Coding: Exercises|^1.5 Linear Block Code Decoding
  
  
 
^]]
 
^]]

Latest revision as of 18:00, 1 November 2022

Code table of the  $\rm HC (7, 4, 3)$

We consider as in the  "Exercise 1. 13"  the decoding of a  "Hamming Codes"  after transmission over an erasure channel   ⇒   "Binary Erasure Channel"  $\rm (BEC)$.

The  $(7, 4, 3)$-Hamming code is fully described by the adjacent code table  $\underline{u}_{i} → \underline{x}_{i}$  which can be used to find all solutions.



Hints:

  • In contrast to  "Exercise 1.13"  the solution is here not to be found formally, but intuitively.


Questions

1

What is the minimum distance  $\ d_{\rm min}$  of the present code?

$\ d_{\rm min} \ = \ $

2

Is the code systematic?

YES.
NO.

3

Up to how many erasures  $($maximum number:  $e_{\rm max})$  is successful decoding guaranteed?

$\ e_{\rm max} \ = \ $

4

The received word is  $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$.  What is the sent information word  $\underline{u}$?

$\underline{u} = (1, 0, 0, 0),$
$\underline{u} = (1, 0, 0, 1),$
$\underline{u} = (1, 0, 1, 0),$
$\underline{u} = (1, 0, 1, 1).$

5

Which of the following received words can be decoded?

$\underline{y}_{\rm A }= (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E}),$
$\underline{y}_{\rm B} = ({\rm E}, {\rm E }, 0, {\rm E}, 0, 1, 0),$
$\underline{y}_{\rm C} = ({\rm E}, {\rm E}, {\rm E}, 1, 0, 1, 0),$
$\underline{y}_{\rm D} = (1, 0, {\rm E}, {\rm E}, {\rm E}, {\rm E}, 0).$


Solution

(1)  The  $(7, 4, 3)$  Hamming code is considered here.  Accordingly,  the minimum distance is  $d_{\rm min} \ \underline{= 3}$.


(2)  The first  $k = 4$  bits of each code word  $\underline{x}$  match the information word  $\underline{u}$.  Correct is therefore  YES.


(3)  If no more than  $e_{\rm max} = d_{\rm min}- 1 \ \ \underline{ = 2}$  bits are erased,  decoding is possible with certainty.

  • Each code word differs from every other in at least three bit positions.
  • With only two erasures,  therefore,  the code word can be reconstructed in any case.



(4)  In the code table,  one finds a single code word starting with  "$10$"  and ending with  "$010$",  namely $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$. 

  • Since this is a systematic code,  the first  $k = 4$  bits describe the information word  $\underline{u} = (1, 0, 0, 1)$   ⇒  answer 2.


(5)  Correct are the  suggested solutions 1 and 2.

  • $\underline{y}_{\rm D} = (1, 0, {\rm E}, {\rm E}, {\rm E}, {\rm E}, 0)$  cannot be decoded because less than  $k = 4$  bits  (number of information bits)  arrive.
  • $\underline{y}_{\rm C} = ( {\rm E}, {\rm E}, {\rm E}, 1, 0, 1, 0)$  is not decodable because  $\underline{x} = (0, 1, 1, 1, 0, 1, 0)$  and   $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$  are possible outcomes.
  • $\underline{y}_{\rm B} = ( {\rm E}, {\rm E}, 0, {\rm E}, 0, 1, 0)$  is decodable,  since of the 16 possible code words only  $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$  matches  $\underline{y}_{\rm B}$  in positions 3, 5, 6, 7.
  • $\underline{y}_{\rm A} = (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E})$  is decodable.  Only the  $m = 3$  parity bits are missing.  Thus,  the information word  $\underline{u} = (1, 0, 0, 1)$  is also fixed  (systematic code).