Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.5: Three Variants of GF(2 power 4)"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type="[]"…“)
 
 
(33 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper
+
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
 +
[[File:EN_KC_A_2_5.png|right|frame|Powers of two different extension fields over GF(24) - a not quite complete list]]
 +
Irreducible and primitive polynomials have great importance in the description of error correction methods.&nbsp; For example,&nbsp; in&nbsp; '''[LN97]'''&nbsp; one finds the following irreducible polynomials of degree&nbsp; m=4:
 +
* p1(x)=x4+x+1,
  
 +
* p2(x)=x4+x3+1,
  
}}
+
* p3(x)=x4+x3+x2+x+1.
  
[[File:|right|]]
 
  
 +
The first two polynomials are also primitive.&nbsp; This can be seen from the power tables given on the right &ndash; the lower table&nbsp; (B)&nbsp; however not quite complete.
 +
 +
*From both tables we see that all powers&nbsp; αi&nbsp; for &nbsp; 1 &#8804; i &#8804; 14 &nbsp; are unequal&nbsp; 1&nbsp; in the polynomial representation.&nbsp; Only for&nbsp; i=15&nbsp;  it follows that
 +
:α15=α0=1Coefficientvector0001.
 +
*It is not specified whether the tables &nbsp;(A)&nbsp; and &nbsp;(B)&nbsp; result from the polynomial &nbsp; p1(x)=x4+x+1 &nbsp; or from &nbsp; p2(x)=x4+x3+1. &nbsp; You are to make these assignments in subtasks&nbsp; '''(1)'''&nbsp; and&nbsp; '''(2)'''.
 +
 +
*In the subtask&nbsp; '''(3)'''&nbsp; you are also to complete the missing powers&nbsp; α5, α6, α7&nbsp; and&nbsp; α8&nbsp; in the table&nbsp; (B).
  
===Fragebogen===
+
*The subtask&nbsp; '''(4)'''&nbsp; refers to the also irreducible polynomial &nbsp; $p_3(x) = x^4 + x^3 + x^2 + x +1$.&nbsp; According to the above criteria,&nbsp; you are to decide whether this polynomial is primitive.
  
 +
 +
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Channel_Coding/Extension_Field|"Extension Field"]].
 +
 +
*The literature citation&nbsp; '''[LN97]'''&nbsp; refers to the book&nbsp; "Lidl, R.; Niederreiter, H.:&nbsp; Finite Fields.&nbsp; Encyclopedia of Mathematics and its Application. 2nd ed. Cambridge: University Press, 1997."
 +
 +
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Which polynomial underlies the table &nbsp;(A)&nbsp;?
 +
|type="()"}
 +
+ p1(x)=x4+x+1,
 +
- p2(x)=x4+x3+1.
 +
 
 +
{Which polynomial underlies the table &nbsp;(B)&nbsp;?
 +
|type="()"}
 +
- p1(x)=x4+x+1,
 +
+ p2(x)=x4+x3+1.
 +
 
 +
{Complete the entries missing in the table &nbsp;(B).&nbsp; Which of the following entries are correct?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ α5=α3+α+1 &nbsp; &rArr; &nbsp; Coefficient vector&nbsp; "1011",
+ Richtig
+
- α6=α2+1 &nbsp; &rArr; &nbsp; Coefficient vector&nbsp; "0111",
 +
- α7=α3+α2+α+1 &nbsp; &rArr; &nbsp; Coefficient vector&nbsp; "1111"
 +
+ α8=α3+α2+α &nbsp; &rArr; &nbsp; Coefficient vector&nbsp; "1110".
  
 +
{Is the polynomial &nbsp; p3(x)=x4+x3+x2+x+1 &nbsp; primitive?&nbsp; Clarify this question using the powers&nbsp; αi&nbsp; (i&nbsp; where necessary).
 +
|type="()"}
 +
- Yes.
 +
+ No.
 +
</quiz>
  
{Input-Box Frage
+
===Solution===
|type="{}"}
+
{{ML-Kopf}}
$\alpha$ = { 0.3 }
+
'''(1)'''&nbsp; From the upper power table &nbsp;(A)&nbsp; on the data page one recognizes among other things the property
 +
:$$\alpha^{4} = \alpha + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^{4} + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}
 +
p(x) = x^4 + x +1 =p_1(x)\hspace{0.05cm}.$$
  
 +
Thus,&nbsp; the <u>proposed solution 1</u>&nbsp; is correct.
  
  
</quiz>
+
'''(2)'''&nbsp; Following the same procedure,&nbsp; it can be shown that the power table &nbsp;(B)&nbsp; is based on the polynomial&nbsp; p2(x)=x4+x3+1 &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.
 +
 
 +
 
 +
'''(3)'''&nbsp; Starting from polynomial&nbsp; p2(x)=x4+x3+1&nbsp; one obtains from the determining equation&nbsp; p(α)=0&nbsp; the result&nbsp; α4=α3+1. This further yields:
 +
:α5 = αα4=α(α3+1)=α4+α=α3+α+1vector1011,
 +
:α6 = αα5=α(α3+α+1)=α4+α2+α=α3+α2+α+1vector1111,
 +
:α7 = αα6=α4+α3+α2+α=α2+α+1vector0111,
 +
:α8 = αα7=α(α2+α+1)=α3+α2+αvector1110.
 +
 
 +
*Thus,&nbsp; only the&nbsp; <u>proposed solutions 1 and 4</u>&nbsp; are correct.&nbsp; The other two statements are interchanged.
 +
 +
*The following are the complete power tables for&nbsp; p1(x)=x4+x+1&nbsp; (left,&nbsp; red background) and for&nbsp; p2(x)=x4+x3+1&nbsp; (right,&nbsp; blue background).
 +
 
 +
[[File:P_ID2512__KC_A_2_5d_neu.png|right|frame|Complete power tables over&nbsp; GF(24)&nbsp; for two different polynomials <br>(Sorry,&nbsp; we used here the German terms)]]
 +
 
  
===Musterlösung===
 
{{ML-Kopf}}
 
'''1.'''
 
'''2.'''
 
'''3.'''
 
'''4.'''
 
'''5.'''
 
'''6.'''
 
'''7.'''
 
{{ML-Fuß}}
 
  
 +
'''(4)''' The polynomials&nbsp; p1(x)=x4+x+1&nbsp; and&nbsp; p2(x)=x4+x3+1&nbsp; are primitive.
 +
*This can be seen from the fact that&nbsp; αi1&nbsp; for&nbsp; 0<i<14&nbsp; in each case.
 +
 +
*In contrast,&nbsp; α15=α0=1 holds.&nbsp; In both cases,&nbsp; the Galois field can be expressed as follows:
 +
:$${\rm GF}(2^4) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0}  = 1,\hspace{0.05cm}\hspace{0.1cm}
 +
\alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2},\hspace{0.1cm}  ... \hspace{0.1cm}  , \hspace{0.1cm}\alpha^{14}\hspace{0.1cm}\}\hspace{0.05cm}. $$
  
 +
&rArr; &nbsp; For the polynomial&nbsp; p3(x)=x4+x3+x2+x+1&nbsp; we get:
 +
:α4 = α3+α2+α+1vector1111,
 +
:α5 = αα4=α4+α3+α2+α=
 +
::=(α3+α2+α+1)+α3+α2+α=1vector0001.
 +
*So here is already&nbsp; α5=α0=1 <br> p3(x) is not a primitive polynomial &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.
 +
 +
*For the other powers of this polynomial holds:
 +
:$$\alpha^6 = \alpha^{11} = \alpha\hspace{0.05cm},\hspace{0.2cm} 
 +
\alpha^7 = \alpha^{12} = \alpha^2\hspace{0.05cm},\hspace{0.2cm}
 +
\alpha^8 = \alpha^{13} = \alpha^3\hspace{0.05cm},$$
 +
:$$\alpha^9 = \alpha^{14} = \alpha^4\hspace{0.05cm},\hspace{0.2cm}
 +
\alpha^{10} = \alpha^{15} = \alpha^0 = 1\hspace{0.05cm}.$$
 +
{{ML-Fuß}}
  
[[Category:Aufgaben zu  Kanalcodierung|^2.2 Erweiterungskörper
 
  
  
^]]
+
[[Category:Channel Coding: Exercises|^2.2 Extension Field^]]

Latest revision as of 19:10, 3 October 2022

Powers of two different extension fields over GF(24) - a not quite complete list

Irreducible and primitive polynomials have great importance in the description of error correction methods.  For example,  in  [LN97]  one finds the following irreducible polynomials of degree  m=4:

  • p1(x)=x4+x+1,
  • p2(x)=x4+x3+1,
  • p3(x)=x4+x3+x2+x+1.


The first two polynomials are also primitive.  This can be seen from the power tables given on the right – the lower table  (B)  however not quite complete.

  • From both tables we see that all powers  αi  for   1i14   are unequal  1  in the polynomial representation.  Only for  i=15  it follows that
α15=α0=1Coefficientvector0001.
  • It is not specified whether the tables  (A)  and  (B)  result from the polynomial   p1(x)=x4+x+1   or from   p2(x)=x4+x3+1.   You are to make these assignments in subtasks  (1)  and  (2).
  • In the subtask  (3)  you are also to complete the missing powers  α5, α6, α7  and  α8  in the table  (B).
  • The subtask  (4)  refers to the also irreducible polynomial   p3(x)=x4+x3+x2+x+1.  According to the above criteria,  you are to decide whether this polynomial is primitive.


Hints:

  • The literature citation  [LN97]  refers to the book  "Lidl, R.; Niederreiter, H.:  Finite Fields.  Encyclopedia of Mathematics and its Application. 2nd ed. Cambridge: University Press, 1997."


Questions

1

Which polynomial underlies the table  (A) ?

p1(x)=x4+x+1,
p2(x)=x4+x3+1.

2

Which polynomial underlies the table  (B) ?

p1(x)=x4+x+1,
p2(x)=x4+x3+1.

3

Complete the entries missing in the table  (B).  Which of the following entries are correct?

α5=α3+α+1   ⇒   Coefficient vector  "1011",
α6=α2+1   ⇒   Coefficient vector  "0111",
α7=α3+α2+α+1   ⇒   Coefficient vector  "1111"
α8=α3+α2+α   ⇒   Coefficient vector  "1110".

4

Is the polynomial   p3(x)=x4+x3+x2+x+1   primitive?  Clarify this question using the powers  αi  (i  where necessary).

Yes.
No.


Solution

(1)  From the upper power table  (A)  on the data page one recognizes among other things the property

α4=α+1α4+α+1=0p(x)=x4+x+1=p1(x).

Thus,  the proposed solution 1  is correct.


(2)  Following the same procedure,  it can be shown that the power table  (B)  is based on the polynomial  p2(x)=x4+x3+1   ⇒   Proposed solution 2.


(3)  Starting from polynomial  p2(x)=x4+x3+1  one obtains from the determining equation  p(α)=0  the result  α4=α3+1. This further yields:

α5 = αα4=α(α3+1)=α4+α=α3+α+1vector1011,
α6 = αα5=α(α3+α+1)=α4+α2+α=α3+α2+α+1vector1111,
α7 = αα6=α4+α3+α2+α=α2+α+1vector0111,
α8 = αα7=α(α2+α+1)=α3+α2+αvector1110.
  • Thus,  only the  proposed solutions 1 and 4  are correct.  The other two statements are interchanged.
  • The following are the complete power tables for  p1(x)=x4+x+1  (left,  red background) and for  p2(x)=x4+x3+1  (right,  blue background).
Complete power tables over  GF(24)  for two different polynomials
(Sorry,  we used here the German terms)


(4) The polynomials  p1(x)=x4+x+1  and  p2(x)=x4+x3+1  are primitive.

  • This can be seen from the fact that  αi1  for  0<i<14  in each case.
  • In contrast,  α15=α0=1 holds.  In both cases,  the Galois field can be expressed as follows:
GF(24)={0,α0=1,α,α2,...,α14}.

⇒   For the polynomial  p3(x)=x4+x3+x2+x+1  we get:

α4 = α3+α2+α+1vector1111,
α5 = αα4=α4+α3+α2+α=
=(α3+α2+α+1)+α3+α2+α=1vector0001.
  • So here is already  α5=α0=1
     p3(x) is not a primitive polynomial   ⇒   Proposed solution 2.
  • For the other powers of this polynomial holds:
α6=α11=α,α7=α12=α2,α8=α13=α3,
α9=α14=α4,α10=α15=α0=1.