Difference between revisions of "Aufgaben:Exercise 4.14Z: 4-QAM and 4-PSK"

From LNTwww
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit kohärenter Demodulation}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation}}
  
[[File:P_ID2068__Dig_Z_4_14.png|right|frame|Signalraumkonstellation von 4–QAM und 4-PSK]]
+
[[File:P_ID2068__Dig_Z_4_14.png|right|frame|Signal space constellation of the  "4-QAM"  and  "4-PSK"]]
Für die [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29| Quadraturamplitudenmodulation]] (<i>M</i>&ndashQAM) wurde im Theorieteil für $M &#8805; 16$) eine obere Schranke (&bdquo;Union&ndash;Bound&rdquo;) der Symbolfehlerwahrscheinlichkeit angegeben:
+
For&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"quadrature amplitude modulation"]]&nbsp; $\rm (M&ndash;QAM)$,&nbsp; an upper bound&nbsp; ("Union&ndash;Bound")&nbsp; on the symbol error probability was given in the theory section for&nbsp; $M &#8805; 16$:&nbsp;
:$$ p_{\rm UB}  =  4 \cdot {\rm Q} \left [  \sqrt{ { E_{\rm S}}/{ N_0}} \right ]  \ge p_{\rm S}  \hspace{0.05cm}.$$
+
:$$ p_{\rm UB}  =  4 \cdot {\rm Q} \left [  \sqrt{ { E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ]  \ge p_{\rm S}  \hspace{0.05cm}.$$
  
Im Theorieteil findet man ebenfalls die &bdquo;Union&ndash;Bound&rdquo; für die [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Mehrstufiges_Phase.E2.80.93Shift_Keying_.28M.E2.80.93PSK.29| <i>M</i>&ndash;stufige Phasenmodulation]] (<i>M</i>&ndash;PSK)
+
In the theory section,&nbsp; one can also find the&nbsp; "Union&ndash;Bound" for&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Multi-level_phase.E2.80.93shift_keying_.28M.E2.80.93PSK.29| "M&ndash;level phase modulation"]]&nbsp; &nbsp; $\rm (M&ndash;PSK)$,&nbsp;
:$$ p_{\rm UB}  =  2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]  \ge p_{\rm S} \hspace{0.05cm}.$$
+
:$$ p_{\rm UB}  =  2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ]  \ge p_{\rm S} \hspace{0.05cm}.$$
  
Bei beiden Verfahren hat jeder Signalraumpunkt die genau gleiche Energie, nämlich $E_{\rm S}$.
+
In both methods,&nbsp;  each signal space point has exactly the same energy,&nbsp; namely&nbsp; $E_{\rm S}$.
  
Aus der Grafik erkennt man, dass für den Sonderfall $M = 4$ die beiden Modulationsverfahren eigentlich identisch sein müssten, was aus den obigen Gleichungen nicht direkt hervorgeht.
+
From the graph,&nbsp; one can see that for the special case&nbsp; $M = 4$,&nbsp; the two modulation processes should actually be identical,&nbsp; which is not directly evident from the above equations.
  
Die 4&ndash;PSK ist hier mit dem Phasenoffset $\phi_{\rm off} = 0$ dargestellt. Mit einem allgemeinen Phasenoffset lauten dagegen die Inphase&ndash; und Quadraturanteile der Signalraumpunkte allgemein ($i = 0, \ ... \ , M = 1$):
+
The 4&ndash;PSK is shown here with the phase offset&nbsp; $\phi_{\rm off} = 0$.&nbsp; With a general phase offset,&nbsp; on the other hand,&nbsp; the in-phase and quadrature components of the signal space points are generally:&nbsp; $(i = 0, \ ... \ , M = 1)$:
 
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
 
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
  
''Hinweise:''
 
* Die Aufgabe bezieht sich auf die [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29| Theorieseite 6]] und die [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Mehrstufiges_Phase.E2.80.93Shift_Keying_.28M.E2.80.93PSK.29| Theorieseite 7]] des Kapitels Trägerfrequenzsysteme mit kohärenter Demodulation.
 
* In der obigen Grafik rot eingezeichnet ist die Gray&ndash;Zuordnung der Symbole zu Bitdupeln.
 
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
  
===Fragebogen===
+
 
 +
Notes:
 +
* The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation| "Carrier Frequency Systems with Coherent Demodulation"]].
 +
 
 +
* Reference is made in particular to the sections&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"Quadrature amplitude modulation"]]&nbsp; and&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Multi-level_phase.E2.80.93shift_keying_.28M.E2.80.93PSK.29|"Multi-level phase modulation"]].
 +
 
 +
* In the above diagram the Gray mapping of the symbols to bit-duples is shown in red.
 +
 
 +
 
 +
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Für welchen Phasenoffset stimmen die 4&ndash;QAM und die 4&ndash;PSK exakt überein?
+
{For which phase offset do the 4&ndash;QAM and the 4&ndash;PSK match exactly?
 
|type="{}"}
 
|type="{}"}
$\phi_{\rm off}$ = { 45 3% } $\ \rm Grad$
+
$\phi_{\rm off}\ = \ $ { 45 3% } $\ \rm degree$
  
{Wie lautet die obere Schranke (Union&ndash;Bound, $p_{\rm UB} &#8805; p_{\rm S}$) für die 4&ndash;PSK?
+
{What is the upper bound&nbsp; $($Union Bound,&nbsp; $p_{\rm UB} &#8805; p_{\rm S})$&nbsp; for the '''4&ndash;PSK'''?
 
|type="[]"}
 
|type="[]"}
- $p_{\rm UB} = 4 \cdot {\rm Q}[(E_{\rm S}/N_0)^{\rm 1/2}]$,
+
- $p_{\rm UB} = 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
+ $p_{\rm UB} = 2 \cdot {\rm Q}[(E_{\rm S}/N_0)^{\rm 1/2}]$,
+
+ $p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
- $p_{\rm UB} = 2 \cdot {\rm Q}[(2E_{\rm S}/N_0)^{\rm 1/2}]$.
+
- $p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.
  
{Geben Sie eine nähere obere Schranke für die 4&ndash;QAM an.
+
{Specify a closer upper bound for the '''4&ndash;QAM'''.
 
|type="[]"}
 
|type="[]"}
- $p_{\rm S} &#8804; 4 \cdot {\rm Q}[(E_{\rm S}/N_0)^{\rm 1/2}]$,
+
- $p_{\rm S} &#8804; 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
+ $p_{\rm S} &#8804; 2 \cdot {\rm Q}[(E_{\rm S}/N_0)^{\rm 1/2}]$,
+
+ $p_{\rm S} &#8804; 2 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
- $p_{\rm S} &#8804; 2 \cdot {\rm Q}[(2E_{\rm S}/N_0)^{\rm 1/2}]$.
+
- $p_{\rm S} &#8804; 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.
  
{Wie lauten die Bitfehlerwahrscheinlichkeitsschranken für 4&ndash;QAM und 4&ndash;PSK, Graycodierung vorausgesetzt?
+
{What is the bit error probability bound for the 4&ndash;QAM,&nbsp; assuming Gray coding?
 
|type="[]"}
 
|type="[]"}
- $p_{\rm B} &#8804; 2 \cdot {\rm Q}[(E_{\rm S}/N_0)^{\rm 1/2}]$,
+
- $p_{\rm B} &#8804; 2 \cdot {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$,
+ $p_{\rm B} &#8804; {\rm Q}[(2E_{\rm S}/N_0)^{\rm 1/2}]$,
+
+ $p_{\rm B} &#8804; {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$,
- $p_{\rm B} &#8804; {\rm Q}[(E_{\rm S}/N_0)^{\rm 1/2}]$.
+
- $p_{\rm B} &#8804; {\rm Q}[\sqrt{E_{\rm B}/N_0}\hspace{0.05cm}]$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit $M = 4$ lauten die Signalraumpunkte $\boldsymbol{s}_i = (s_{\rm I \it i}, s_{\rm Q \it i})$ der digitalen Phasenmodulation ($i = 0, \ ... \ , 3$):
+
'''(1)'''&nbsp; With&nbsp; $M = 4$,&nbsp; the signal space points are&nbsp; $\boldsymbol{s}_i = (s_{\rm I \it i}, s_{\rm Q \it i})$&nbsp; of digital phase modulation&nbsp; $(i = 0, \ \text{...} \ , 3)$:
 
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
 
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
  
Mit $\phi_{\rm off} \ \underline {= \pi/2 \ (45^°)}$ ergeben sich genau die Signalraumpunkte der 4&ndash;QAM:
+
*With&nbsp; $\phi_{\rm off} \ \underline {= \pi/2 \ (45^°)}$,&nbsp; we obtain exactly the signal space points of the 4&ndash;QAM:
:$$\boldsymbol{ s}_{\rm 0} = (+\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 1} = (-\sqrt{2}, +\sqrt{2})\hspace{0.05cm},$$
+
:$$\boldsymbol{ s}_{\rm 0} = (+\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 1} = (-\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ s}_{\rm 3} = (-\sqrt{2}, -\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 4} = (+\sqrt{2}, -\sqrt{2})
:$$ \boldsymbol{ s}_{\rm 3} = (-\sqrt{2}, -\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 4} = (+\sqrt{2}, -\sqrt{2})
 
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Für die 4&ndash;PSK ergibt sich mit der vorne angegebenen Gleichung
+
'''(2)'''&nbsp; <u>Solution 2</u>&nbsp; is correct: For the&nbsp; "4&ndash;PSK"&nbsp; holds:
:$$p_{\rm S} \le  p_{\rm UB} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] = $$
+
:$$p_{\rm S} \le  p_{\rm UB} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] =  2 \cdot {\rm Q} \left [ { 1}/{ \sqrt{2}} \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]=
:$$\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 2 \cdot {\rm Q} \left [ { 1}/{ \sqrt{2}} \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]=
 
 
  2 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 
  2 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$
  
Richtig ist also der <u>Lösungsvorschlag 2</u>.
 
  
 +
'''(3)'''&nbsp; <u>Solution 2</u>&nbsp; is correct:
 +
*The&nbsp; "4&ndash;QAM"&nbsp; is identical with the&nbsp; "4&ndash;PSK"&nbsp; (regarding error probability even independent of the phase offset).
 +
 +
*Solution 1,&nbsp; on the other hand,&nbsp; gives the&nbsp; "Union Bound"&nbsp; of the&nbsp; "M&ndash;QAM"&nbsp; in general,&nbsp; where&nbsp; $M = 4$&nbsp; is used.
 +
 +
*However,&nbsp; since there are no inner symbols in&nbsp; "4&ndash;QAM",&nbsp; this bound is too pessimistic.
  
'''(3)'''&nbsp; Da die 4&ndash;QAM mit der 4&ndash;PSK identisch ist (hinsichtlich Fehlerwahrscheinlichkeit sogar unabhängig vom Phasenoffset), ist auch hier der <u>Lösungsvorschlag 2</u> richtig. Der Lösungsvorschlag 1 gibt die Union Bound der <i>M</i>&ndash;QAM allgemein an, wobei $M = 4$ eingesetzt ist. Da es aber bei 4&ndash;QAM keine innere Symbole gibt, ist diese Schranke zu pessimistisch. Die sich ergebende &bdquo;Union Bound&rdquo; ist dann doppelt so groß wie die 4&ndash;PSK&ndash;Schranke.
+
*The resulting&nbsp; "Union Bound"&nbsp; is then twice as large as the 4&ndash;PSK bound.
  
  
'''(4)'''&nbsp; Hier ist wiederum der <u>zweite Lösungsvorschlag</u> richtig. Bei Graycodierung führt jeder Symbolfehler zu einem Bitfehler, wenn man nur benachbarte Entscheidungsregionen betrachtet: $p_{\rm B} \approx p_{\rm S}/2$. Außerdem gilt $E_{\rm S} = 2 \ E_{\rm B}$. Daraus folgt:
+
 
 +
'''(4)'''&nbsp; Here again the&nbsp; <u>second solution</u>&nbsp; is correct:
 +
*In Gray coding,&nbsp; each symbol error results in a bit error if only adjacent regions are considered: &nbsp; $p_{\rm B} \approx p_{\rm S}/2$.
 +
 +
*Furthermore,&nbsp; $E_{\rm S} = 2 \ E_{\rm B}$&nbsp; is valid.&nbsp; It follows that
 
:$$p_{\rm B} = \frac{p_{\rm S}}{2} \le   
 
:$$p_{\rm B} = \frac{p_{\rm S}}{2} \le   
 
  {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 
  {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 
+
*As derived in the solution to&nbsp; [[Aufgaben:Exercise_4.13:_Four-level_QAM|"Exercise 4.13"]],&nbsp; it is even exactly valid''':
Wie in der Musterlösung zur [[Aufgaben:4.13_Vierstufige_QAM| Aufgabe A4.13]] hergeleitet, gilt sogar exakt
 
 
:$$p_{\rm B} =  {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 
:$$p_{\rm B} =  {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 +
*In this derivation,&nbsp; it was used that the&nbsp; "4&ndash;QAM"&nbsp; can be represented by two orthogonal BPSK modulations&nbsp; (with cosine and minus sinusoidal carriers,&nbsp; respectively).
 +
*Thus,&nbsp; the bit error probability of the&nbsp; "4&ndash;QAM"&nbsp; and thus also of the&nbsp; "4&ndash;PSK" as a function of&nbsp; $E_{\rm B}/N_0$&nbsp; is the same as for BPSK.
  
Bei dieser Herleitung wurde verwendet, dass die 4&ndash;QAM durch zwei orthogonale BPSK&ndash;Modulationen (mit Cosinus&ndash; bzw. Minus&ndash;Sinusträger) dargestellt werden kann. Somit ist die Bitfehlerwahrscheinlichkeit der 4&ndash;QAM und damit auch der 4&ndash;PSK in Abhängigkeit von $E_{\rm B}/N_0$ die gleiche wie für BPSK.
 
  
Alle Ergebnisse der Aufgabe können Sie mit folgendem Interaktionsmodul per Simulation überprüfen: <i>M</i>&ndash;stufiges Phase Shift Keying und Union Bound
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
Line 87: Line 102:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.4 Kohärente Demodulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.4 Coherent Demodulation^]]

Latest revision as of 16:05, 1 October 2022

Signal space constellation of the  "4-QAM"  and  "4-PSK"

For  "quadrature amplitude modulation"  $\rm (M–QAM)$,  an upper bound  ("Union–Bound")  on the symbol error probability was given in the theory section for  $M ≥ 16$: 

$$ p_{\rm UB} = 4 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ] \ge p_{\rm S} \hspace{0.05cm}.$$

In the theory section,  one can also find the  "Union–Bound" for  "M–level phase modulation"    $\rm (M–PSK)$, 

$$ p_{\rm UB} = 2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ] \ge p_{\rm S} \hspace{0.05cm}.$$

In both methods,  each signal space point has exactly the same energy,  namely  $E_{\rm S}$.

From the graph,  one can see that for the special case  $M = 4$,  the two modulation processes should actually be identical,  which is not directly evident from the above equations.

The 4–PSK is shown here with the phase offset  $\phi_{\rm off} = 0$.  With a general phase offset,  on the other hand,  the in-phase and quadrature components of the signal space points are generally:  $(i = 0, \ ... \ , M = 1)$:

$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$



Notes:

  • In the above diagram the Gray mapping of the symbols to bit-duples is shown in red.




Questions

1

For which phase offset do the 4–QAM and the 4–PSK match exactly?

$\phi_{\rm off}\ = \ $

$\ \rm degree$

2

What is the upper bound  $($Union Bound,  $p_{\rm UB} ≥ p_{\rm S})$  for the 4–PSK?

$p_{\rm UB} = 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.

3

Specify a closer upper bound for the 4–QAM.

$p_{\rm S} ≤ 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm S} ≤ 2 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm S} ≤ 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.

4

What is the bit error probability bound for the 4–QAM,  assuming Gray coding?

$p_{\rm B} ≤ 2 \cdot {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$,
$p_{\rm B} ≤ {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$,
$p_{\rm B} ≤ {\rm Q}[\sqrt{E_{\rm B}/N_0}\hspace{0.05cm}]$.


Solution

(1)  With  $M = 4$,  the signal space points are  $\boldsymbol{s}_i = (s_{\rm I \it i}, s_{\rm Q \it i})$  of digital phase modulation  $(i = 0, \ \text{...} \ , 3)$:

$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
  • With  $\phi_{\rm off} \ \underline {= \pi/2 \ (45^°)}$,  we obtain exactly the signal space points of the 4–QAM:
$$\boldsymbol{ s}_{\rm 0} = (+\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 1} = (-\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ s}_{\rm 3} = (-\sqrt{2}, -\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 4} = (+\sqrt{2}, -\sqrt{2}) \hspace{0.05cm}.$$


(2)  Solution 2  is correct: For the  "4–PSK"  holds:

$$p_{\rm S} \le p_{\rm UB} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] = 2 \cdot {\rm Q} \left [ { 1}/{ \sqrt{2}} \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]= 2 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$


(3)  Solution 2  is correct:

  • The  "4–QAM"  is identical with the  "4–PSK"  (regarding error probability even independent of the phase offset).
  • Solution 1,  on the other hand,  gives the  "Union Bound"  of the  "M–QAM"  in general,  where  $M = 4$  is used.
  • However,  since there are no inner symbols in  "4–QAM",  this bound is too pessimistic.
  • The resulting  "Union Bound"  is then twice as large as the 4–PSK bound.


(4)  Here again the  second solution  is correct:

  • In Gray coding,  each symbol error results in a bit error if only adjacent regions are considered:   $p_{\rm B} \approx p_{\rm S}/2$.
  • Furthermore,  $E_{\rm S} = 2 \ E_{\rm B}$  is valid.  It follows that
$$p_{\rm B} = \frac{p_{\rm S}}{2} \le {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
  • As derived in the solution to  "Exercise 4.13",  it is even exactly valid:
$$p_{\rm B} = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
  • In this derivation,  it was used that the  "4–QAM"  can be represented by two orthogonal BPSK modulations  (with cosine and minus sinusoidal carriers,  respectively).
  • Thus,  the bit error probability of the  "4–QAM"  and thus also of the  "4–PSK" as a function of  $E_{\rm B}/N_0$  is the same as for BPSK.