Difference between revisions of "Aufgaben:Exercise 1.4: Maximum Likelihood Decision"

From LNTwww
 
(21 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Kanalmodelle und Entscheiderstrukturen
+
{{quiz-Header|Buchseite=Channel Coding/Channel Models and Decision Structures
  
 
}}
 
}}
  
[[File:P_ID2384__KC_A_1_4.png|right|frame|Zur Maximum–Likelihood–Decodierung]]
+
[[File:EN_KC_A_1_4_neu.png|right|frame|Maximum likelihood decoding model]]
  
Wir betrachten das digitale Übertragungssystem entsprechend der Grafik. Berücksichtigt sind dabei:
+
We consider the digital transmission system according to the graph.  Considered are:
*ein systematischer (5, 2)–Blockcode ''C'' mit den Codeworten
+
*a systematic  $(5, 2)$  block code  $\mathcal{C}$  with the code words
:$$\underline{x}_{0} \hspace{-0.1cm} \ =  \  \hspace{-0.1cm} (0, 0, 0, 0, 0) \hspace{0.05cm},$$ $$\underline{x}_{1} \hspace{-0.1cm} \  =  \  \hspace{-0.1cm} (0, 1, 0, 1, 0) \hspace{0.05cm},$$ $$\underline{x}_{2} \hspace{-0.1cm} \  =  \  \hspace{-0.1cm} (1, 0, 1, 0, 1) \hspace{0.05cm},$$ $$\underline{x}_{3} \hspace{-0.1cm} \  =  \  \hspace{-0.1cm} (1, 1, 1, 1, 1) \hspace{0.05cm},$$
+
:$$\underline{x}_{0} \hspace{-0.1cm} \ =  \  \hspace{-0.1cm} (0, 0, 0, 0, 0) \hspace{0.05cm},$$ $$\underline{x}_{1} \hspace{-0.1cm} \  =  \  \hspace{-0.1cm} (0, 1, 0, 1, 0) \hspace{0.05cm},$$ $$\underline{x}_{2} \hspace{-0.1cm} \  =  \  \hspace{-0.1cm} (1, 0, 1, 0, 1) \hspace{0.05cm},$$ $$\underline{x}_{3} \hspace{-0.1cm} \  =  \  \hspace{-0.1cm} (1, 1, 1, 1, 1) \hspace{0.05cm};$$
 +
*a digital (binary) channel model that changes the vector  $\underline{x} \in {\rm GF} (2^{5})$  over into the vector  $\underline{y} \in {\rm GF} (2^{5})$,
 +
*a  [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum_likelihood_decision_at_the_BSC_channel|Maximum likelihood decoder]]  (short:   ML decoder)  with the decision rule
 +
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}|\hspace{0.05cm} \underline{y} ) = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}).$$
  
===Fragebogen===
+
Here,  $d_{\rm H} (\underline{y}, \ \underline{x_{i}})$  is the  [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|Hamming distance]]  between the received word  $\underline{y}$  and the  (possibly)  sent code word  $\underline{x_{i}}$.
 +
 
 +
 
 +
 
 +
 
 +
Note:  This exercise belongs to the chapter  [[Channel_Coding/Channel_Models_and_Decision_Structures|"Channel Models and Decision Structures"]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Let&nbsp; $\underline{y} = (1, 0, 0, 0, 1)$.&nbsp; Which decisions satisfy the maximum likelihood criterion?
 +
|type="[]"}
 +
- $\underline{z} = \underline{x}_{0} = (0, 0, 0, 0, 0)$,
 +
- $\underline{z} = \underline{x}_{1} = (0, 1, 0, 1, 0)$,
 +
+ $\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$,
 +
- $\underline{z} = \underline{x}_{3} = (1, 1, 1, 1, 1)$.
 +
 
 +
 
 +
{Let&nbsp; $\underline{y} = (0, 0, 0, 1, 0)$.&nbsp; Which decisions satisfy the maximum likelihood criterion?
 +
|type="[]"}
 +
+ $\underline{z} = \underline{x}_{0} = (0, 0, 0, 0, 0)$,
 +
+ $\underline{z} = \underline{x}_{1} = (0, 1, 0, 1, 0)$,
 +
- $\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$,
 +
- $\underline{z} = \underline{x}_{3} = (1, 1, 1, 1, 1)$.
 +
 
 +
{What decision does the maximum likelihood decoder make for&nbsp; $\underline{y} = (1, 0, 1, 1, 1)$ when it is told that the last two symbols are uncertain?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- $\underline{z} = \underline{x}_{0} = (0, 0, 0, 0, 0)$,
+ Richtig
+
- $\underline{z} = \underline{x}_{1} = (0, 1, 0, 1, 0)$,
 +
+ $\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$,
 +
- $\underline{z} = \underline{x}_{3} = (1, 1, 1, 1, 1)$.
 +
 
  
  
{Input-Box Frage
+
{What information word&nbsp; $v = (v_{1}, v_{2})$&nbsp; does the decision lead to according to the last subtask?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$v_{1} \ = \ $ { 1 }
 
+
$v_{2} \ = \ $ { 0. }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; Correct&nbsp; <u>answer 3</u> &nbsp; &rArr; &nbsp;  $\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$:
'''2.'''
+
*The Hamming distances between the specific received word $\underline{y} = (1, 0, 0, 0, 1)$ and the four possible code words $\underline{x}_{i}$ are as follows:
'''3.'''
+
:$$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 3\hspace{0.05cm}.$$
'''4.'''
+
*A decision is made for the sequence with the smallest Hamming distance $d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1$.
'''5.'''
+
 
'''6.'''
+
 
'''7.'''
+
 
 +
'''(2)'''&nbsp; For&nbsp; $\underline{y} = (0, 0, 0, 1, 0)$&nbsp; the&nbsp; <u>answers 1 and 2</u>&nbsp; are correct,&nbsp; as the following calculation shows:
 +
:$$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 4\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct <u>answer 3</u> &nbsp; &rArr; &nbsp;  $\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$:
 +
*According to the Hamming distance,&nbsp;  a decision in favor of&nbsp; $x_{2}$&nbsp; would be just as possible as for&nbsp; $x_{3}$&nbsp; if the vector&nbsp; $\underline{y} = (1, 0, 1, 1, 1)$&nbsp; is received:
 +
:$$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 1\hspace{0.05cm}.$$
 +
*But the received vector&nbsp; $\underline{y}$&nbsp; is different from&nbsp; $x_{2}$&nbsp; with respect to the fourth bit and from&nbsp; $x_{3}$&nbsp; in the second bit.
 +
* Since the fourth bit is more uncertain than the second,&nbsp; it will choose&nbsp; $x_{2}$ .
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Since this is a systematic code,&nbsp; the decision for&nbsp; $\underline{z} = (1, 0, 1, 0, 1)$&nbsp; is equivalent to the decision
 +
:$$v_{1}  \ \underline{ = 1}, \ v_{2} \ \underline{= 0}.$$
 +
 
 +
*It is not certain that&nbsp; $\underline{u} = (1, 0)$&nbsp; was actually sent.  
 +
*But the probability is highest for this given the received vector $\underline{y} = (1, 0, 1, 1, 1)$.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.2 Kanalmodelle und Entscheiderstrukturen
+
[[Category:Channel Coding: Exercises|^1.2 Channel and Decision Device^]]
^]]
 

Latest revision as of 17:54, 1 November 2022

Maximum likelihood decoding model

We consider the digital transmission system according to the graph.  Considered are:

  • a systematic  $(5, 2)$  block code  $\mathcal{C}$  with the code words
$$\underline{x}_{0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0, 0, 0, 0, 0) \hspace{0.05cm},$$ $$\underline{x}_{1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0, 1, 0, 1, 0) \hspace{0.05cm},$$ $$\underline{x}_{2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (1, 0, 1, 0, 1) \hspace{0.05cm},$$ $$\underline{x}_{3} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (1, 1, 1, 1, 1) \hspace{0.05cm};$$
  • a digital (binary) channel model that changes the vector  $\underline{x} \in {\rm GF} (2^{5})$  over into the vector  $\underline{y} \in {\rm GF} (2^{5})$,
  • Maximum likelihood decoder  (short:   ML decoder)  with the decision rule
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}|\hspace{0.05cm} \underline{y} ) = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}).$$

Here,  $d_{\rm H} (\underline{y}, \ \underline{x_{i}})$  is the  Hamming distance  between the received word  $\underline{y}$  and the  (possibly)  sent code word  $\underline{x_{i}}$.



Note:  This exercise belongs to the chapter  "Channel Models and Decision Structures".



Questions

1

Let  $\underline{y} = (1, 0, 0, 0, 1)$.  Which decisions satisfy the maximum likelihood criterion?

$\underline{z} = \underline{x}_{0} = (0, 0, 0, 0, 0)$,
$\underline{z} = \underline{x}_{1} = (0, 1, 0, 1, 0)$,
$\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$,
$\underline{z} = \underline{x}_{3} = (1, 1, 1, 1, 1)$.

2

Let  $\underline{y} = (0, 0, 0, 1, 0)$.  Which decisions satisfy the maximum likelihood criterion?

$\underline{z} = \underline{x}_{0} = (0, 0, 0, 0, 0)$,
$\underline{z} = \underline{x}_{1} = (0, 1, 0, 1, 0)$,
$\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$,
$\underline{z} = \underline{x}_{3} = (1, 1, 1, 1, 1)$.

3

What decision does the maximum likelihood decoder make for  $\underline{y} = (1, 0, 1, 1, 1)$ when it is told that the last two symbols are uncertain?

$\underline{z} = \underline{x}_{0} = (0, 0, 0, 0, 0)$,
$\underline{z} = \underline{x}_{1} = (0, 1, 0, 1, 0)$,
$\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$,
$\underline{z} = \underline{x}_{3} = (1, 1, 1, 1, 1)$.

4

What information word  $v = (v_{1}, v_{2})$  does the decision lead to according to the last subtask?

$v_{1} \ = \ $

$v_{2} \ = \ $


Solution

(1)  Correct  answer 3   ⇒   $\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$:

  • The Hamming distances between the specific received word $\underline{y} = (1, 0, 0, 0, 1)$ and the four possible code words $\underline{x}_{i}$ are as follows:
$$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 3\hspace{0.05cm}.$$
  • A decision is made for the sequence with the smallest Hamming distance $d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1$.


(2)  For  $\underline{y} = (0, 0, 0, 1, 0)$  the  answers 1 and 2  are correct,  as the following calculation shows:

$$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 4\hspace{0.05cm}.$$


(3)  Correct answer 3   ⇒   $\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$:

  • According to the Hamming distance,  a decision in favor of  $x_{2}$  would be just as possible as for  $x_{3}$  if the vector  $\underline{y} = (1, 0, 1, 1, 1)$  is received:
$$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 1\hspace{0.05cm}.$$
  • But the received vector  $\underline{y}$  is different from  $x_{2}$  with respect to the fourth bit and from  $x_{3}$  in the second bit.
  • Since the fourth bit is more uncertain than the second,  it will choose  $x_{2}$ .


(4)  Since this is a systematic code,  the decision for  $\underline{z} = (1, 0, 1, 0, 1)$  is equivalent to the decision

$$v_{1} \ \underline{ = 1}, \ v_{2} \ \underline{= 0}.$$
  • It is not certain that  $\underline{u} = (1, 0)$  was actually sent.
  • But the probability is highest for this given the received vector $\underline{y} = (1, 0, 1, 1, 1)$.