Difference between revisions of "Aufgaben:Exercise 5.5: Error Sequence and Error Distance Sequence"

From LNTwww
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Digitalsignalübertragung/Binary Symmetric Channel (BSC)}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)}}
  
[[File:P_ID1834__Dig_A_5_5.png|right|frame|Fehlerfolge (oben, blau) und Fehlerabstandsfolge (unten, rot)]]
+
[[File:EN_Dig_A_5_5.png|right|frame|Error sequence&nbsp; (blue), <br>error distance sequence&nbsp;  (red)]]
Eine jede Fehlerfolge $&#9001;e_{\nu}&#9002;$ kann man auch als die Folge $&#9001;a_n&#9002;$ der Fehlerabstände angeben.  Ist die mittlere Fehlerwahrscheinlichkeit nicht zu groß, dann ergibt sich so ein geringerer Speicherbedarf als bei Speicherung der Fehlerfolge. Für den Vergleich in dieser Aufgabe soll von den folgenden Voraussetzungen ausgegangen werden:
+
Any error sequence&nbsp; $&#9001;e_{\nu}&#9002;$&nbsp; can also be specified as the sequence&nbsp; $&#9001;a_n&#9002;$&nbsp; of error distances.&nbsp; If the average error probability is not too large,&nbsp; then this results in a lower memory requirement than if the error sequence is stored.  
* Abgespeichert werden soll jeweils eine Fehlerfolge mit der Länge $N = 10^6$ Elementen.
 
* Für die Speicherung von $&#9001;e_{\nu}&#9002;$ soll die speichereffizienteste Methode (1 Bit pro Fehler) verwendet werden.
 
* Jeder Fehlerabstand wird durch 4 Byte (32 Bit) dargestellt.
 
  
 +
For the comparison in this exercise, the following assumptions are to be made:
 +
* A error sequence of length&nbsp; $N = 10^6$&nbsp; elements is to be stored in each case.
  
Ist das zugrundeliegende Kanalmodell erneuernd wie zum Beispiel das BSC&ndash;Modell, so können zur Generierung der Fehlerfolge $&#9001;e_{\nu}&#9002;$ auf einem Digitalrechner zwei unterschiedliche Methoden angewandt werden:
+
* The most memory-efficient method&nbsp; $($one bit per error$)$&nbsp; is to be used for storing&nbsp; $&#9001;e_{\nu}&#9002;$.&nbsp;
* die symbolweise Erzeugung der Fehler, beim BSC&ndash;Modell gemäß den Wahrscheinlichkeiten $p$ (Fehler) und $1&ndash;p$ (kein Fehler),
+
* die Erzeugung der Fehlerabstände, beim BSC&ndash;Modell entsprechend der [[Stochastische_Signaltheorie/Binomialverteilung| Binomialverteilung]].
+
* Each error distance is represented by&nbsp; $4$&nbsp; bytes&nbsp; $(32$&nbsp; bits$)$.
  
  
 +
If the underlying channel model is renewing, such as the BSC model, two different methods can be used to generate the error sequence&nbsp; $&#9001;e_{\nu}&#9002;$&nbsp; on a digital computer:
 +
# The symbol-wise generation of the errors,&nbsp; in the BSC model due to the probabilities&nbsp; $p$&nbsp; ("error")&nbsp; and &nbsp;$1-p$&nbsp; ("no error"),
 +
# The generation of the error distances,&nbsp; in the BSC model according to the&nbsp; [[Theory_of_Stochastic_Signals/Binomial_Distribution| "binomial distribution"]].
  
''Hinweise:''
 
* Die Aufgabe gehört zum Themengebiet des Kapitels [[Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)| Binary Symmetric Channel (BSC)]].
 
* Bei den folgenden Fragen gibt $G_e$ die erforderliche Dateigröße (in Byte) zur Abspeicherung der Fehlerfolge $&#9001;e_{\nu}&#9002;$ und $G_a$ (ebenfalls in Byte) die Dateigröße bei Abspeicherung der Fehlerabstände an.
 
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
  
===Fragebogen===
+
<u>Notes:</u>
 +
* The exercise belongs to  the chapter&nbsp; [[Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)| "Binary Symmetric Channel"]].
 +
 +
* In the following questions,&nbsp;
 +
**$G_e$&nbsp; indicates the required file size&nbsp; (in bytes)&nbsp; for storing the error sequence&nbsp; $&#9001;e_{\nu}&#9002;$,&nbsp; and&nbsp;
 +
** $G_a$&nbsp; indicates&nbsp; (also in bytes)&nbsp; the file size when storing the error distance sequence&nbsp; $&#9001;a_n&#9002;$.&nbsp;
 +
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wieviel Speicherplatz (in Byte) wird benötigt, wenn man eine Fehlerfolge der Länge $N = 10^6$ direkt abspeichert?
+
{How much storage space&nbsp; (in bytes)&nbsp; is required when saving an error sequence of length&nbsp;  $N = 10^6$&nbsp; directly?
 
|type="{}"}
 
|type="{}"}
$G_e \ = \ ${ 0.125 3% } $\ \cdot 10^6 \ \rm Byte$
+
$G_e \ = \ ${ 125 3% } $\ \rm kByte$
  
{Wie groß wird die Dateigröße in etwa bei Speicherung der Fehlerabstände? Es gelte $p_{\rm M} = 10^{-3}$.
+
{What is the approximate size of the file when storing the error distances?&nbsp; Let&nbsp; $p_{\rm M} = 10^{-3}$.
 
|type="{}"}
 
|type="{}"}
$p_{\rm M} = 10^{-3} \text{:} \hspace{0.4cm} G_a \ = \ ${ 0.004 3% } $\ \cdot 10^6 \ \rm Byte$
+
$G_a \ = \ ${ 4 3% } $\ \rm kByte$
  
{Wie groß wird die Datei bei Speicherung der Fehlerabstände mit $p_{\rm M} = 0.5$?
+
{How large will the file be when storing the error distances with&nbsp; $p_{\rm M} = 0.5$?
 
|type="{}"}
 
|type="{}"}
$p_{\rm M} = 0.5 \text{:} \hspace{0.4cm} G_a \ = \ ${ 2 3% } $\ \cdot 10^6 \ \rm Byte$
+
$G_a \ = \ ${ 2000 3% } $\ \rm kByte$
  
{Geben Sie die Grenze $p_{\rm M, \ max}$ der BSC&ndash;Fehlerwahrscheinlichkeit an, bei der die Speicherung als Fehlerabstandsfolge sinnvoll ist.
+
{Specify the limit&nbsp; $p_{\rm M, \ max}$&nbsp; of the BSC error probability at which storage as an error distance sequence is reasonable.
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm M, \ max} \ = \ ${ 3.125 3% } $\ \% $
 
$p_{\rm M, \ max} \ = \ ${ 3.125 3% } $\ \% $
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Pro Element $e_{\nu}$ der Fehlerfolge benötigt man genau ein $\rm Bit$. Die Multiplikation mit $N$ ergibt $10^6 \ \rm Bit$ entsprechend $G_e \ \underline {= 0.125 \cdot 10^6 \ \rm Byte}$.  
+
'''(1)'''&nbsp; For each element&nbsp; $e_{\nu}$&nbsp; of the error sequence exactly one&nbsp; $\rm bit$&nbsp; is needed.
 +
*Multiplication by&nbsp; $N$&nbsp; results in&nbsp; $10^6 \ \rm bits$&nbsp; corresponding to&nbsp; $G_e \ \underline {= 125 \ \rm kByte}$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; With&nbsp; $N = 10^6$&nbsp; and&nbsp; $p_{\rm M} = 10^{&ndash;3}$,&nbsp; about thousand error distances are to be stored,&nbsp; each one with&nbsp; $4 \ \rm bytes$ &nbsp; &#8658; &nbsp; $G_a \ \underline {= 4  \rm kByte}$.
 +
*In contrast to the storage of the error sequence,&nbsp; this value will vary slightly,&nbsp; since in an error sequence of&nbsp; (limited)&nbsp; length&nbsp; $N = 10^6$&nbsp; not always exactly&nbsp; $1000$&nbsp; errors will occur.
  
  
'''(2)'''&nbsp; Mit $N = 10^6$ und $p_{\rm M} = 10^{&ndash;3}$ sind ca. $1000$ Fehlerabstände abzuspeichern, jeder einzelne mit $4 \ \rm Byte$ &#8658; $G_a \ \underline {= 0.004 \cdot 10^6 \ \rm Byte}$. Im Gegensatz zur Speicherung der Fehlerfolge wird dieser Wert leicht variieren, da in einer Fehlerfolge der (begrenzten) Länge $N = 10^6$ nicht immer exakt $1000$ Fehler auftreten werden.
 
  
 +
'''(3)'''&nbsp; Now,&nbsp; on average,&nbsp; $0.5 \cdot 10^6$&nbsp; errors will occur &nbsp; &#8658; &nbsp; $G_a \ \underline {= 2000 \ \rm kByte}$.
 +
 +
*From this it can be seen that storing the error distances only makes sense if the&nbsp; (mean)&nbsp; error probability is not too large.
  
'''(3)'''&nbsp; Nun werden im Mittel $0.5 \cdot 10^6$ Fehler auftreten &nbsp; &#8658; &nbsp; $G_a \ \underline {= 2 \cdot 10^6 \ Byte}$. Daraus ist ersichtlich, dass die Speicherung der Fehlerabstände nur sinnvoll ist, wenn die (mittlere) Fehlerwahrscheinlichkeit nicht zu groß ist.
 
  
  
'''(4)'''&nbsp; Aus den Erklärungen zu den oberen Teilaufgaben folgt:
+
'''(4)'''&nbsp; From the explanations of the upper subtasks it follows:
 
:$$N \cdot p_{\rm M} \cdot 4 < {N}/{8} \Rightarrow
 
:$$N \cdot p_{\rm M} \cdot 4 < {N}/{8} \Rightarrow
\hspace{0.3cm}p_{\rm M, \hspace{0.05cm}max} = {1}/{32} \hspace{0.15cm}\underline {=
+
\hspace{0.3cm}p_{\rm M, \hspace{0.1cm}max} = {1}/{32} \hspace{0.15cm}\underline {=
 
3.125\%}\hspace{0.05cm}.$$
 
3.125\%}\hspace{0.05cm}.$$
  
Dieses Ergebnis ist unabhängig von der Folgenlänge $N$.
+
*This result is independent of the sequence length&nbsp; $N$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^5.2 Binary Symmetric Channel (BSC)^]]
+
[[Category:Digital Signal Transmission: Exercises|^5.2 Binary Symmetric Channel^]]

Latest revision as of 03:57, 18 September 2022

Error sequence  (blue),
error distance sequence  (red)

Any error sequence  $〈e_{\nu}〉$  can also be specified as the sequence  $〈a_n〉$  of error distances.  If the average error probability is not too large,  then this results in a lower memory requirement than if the error sequence is stored.

For the comparison in this exercise, the following assumptions are to be made:

  • A error sequence of length  $N = 10^6$  elements is to be stored in each case.
  • The most memory-efficient method  $($one bit per error$)$  is to be used for storing  $〈e_{\nu}〉$. 
  • Each error distance is represented by  $4$  bytes  $(32$  bits$)$.


If the underlying channel model is renewing, such as the BSC model, two different methods can be used to generate the error sequence  $〈e_{\nu}〉$  on a digital computer:

  1. The symbol-wise generation of the errors,  in the BSC model due to the probabilities  $p$  ("error")  and  $1-p$  ("no error"),
  2. The generation of the error distances,  in the BSC model according to the  "binomial distribution".



Notes:

  • In the following questions, 
    • $G_e$  indicates the required file size  (in bytes)  for storing the error sequence  $〈e_{\nu}〉$,  and 
    • $G_a$  indicates  (also in bytes)  the file size when storing the error distance sequence  $〈a_n〉$. 



Questions

1

How much storage space  (in bytes)  is required when saving an error sequence of length  $N = 10^6$  directly?

$G_e \ = \ $

$\ \rm kByte$

2

What is the approximate size of the file when storing the error distances?  Let  $p_{\rm M} = 10^{-3}$.

$G_a \ = \ $

$\ \rm kByte$

3

How large will the file be when storing the error distances with  $p_{\rm M} = 0.5$?

$G_a \ = \ $

$\ \rm kByte$

4

Specify the limit  $p_{\rm M, \ max}$  of the BSC error probability at which storage as an error distance sequence is reasonable.

$p_{\rm M, \ max} \ = \ $

$\ \% $


Solution

(1)  For each element  $e_{\nu}$  of the error sequence exactly one  $\rm bit$  is needed.

  • Multiplication by  $N$  results in  $10^6 \ \rm bits$  corresponding to  $G_e \ \underline {= 125 \ \rm kByte}$.


(2)  With  $N = 10^6$  and  $p_{\rm M} = 10^{–3}$,  about thousand error distances are to be stored,  each one with  $4 \ \rm bytes$   ⇒   $G_a \ \underline {= 4 \rm kByte}$.

  • In contrast to the storage of the error sequence,  this value will vary slightly,  since in an error sequence of  (limited)  length  $N = 10^6$  not always exactly  $1000$  errors will occur.


(3)  Now,  on average,  $0.5 \cdot 10^6$  errors will occur   ⇒   $G_a \ \underline {= 2000 \ \rm kByte}$.

  • From this it can be seen that storing the error distances only makes sense if the  (mean)  error probability is not too large.


(4)  From the explanations of the upper subtasks it follows:

$$N \cdot p_{\rm M} \cdot 4 < {N}/{8} \Rightarrow \hspace{0.3cm}p_{\rm M, \hspace{0.1cm}max} = {1}/{32} \hspace{0.15cm}\underline {= 3.125\%}\hspace{0.05cm}.$$
  • This result is independent of the sequence length  $N$.